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ABSTRACT

Our research demonstrates the usefulness of data analytics using
digital twin for detecting inconsistencies in weather measurements,
which are critical to various agricultural decision-making and
automation tasks. By leveraging digital twin technology, we develop
a modular framework named Cerealia that allows end-users
to check for data inconsistencies when perfect weather feeds
are unavailable. Cerealia uses neural network models to check
anomalies and aids end-users in informed decision-making. We
develop a prototype of Cerealia using the NVIDIA Jetson
Orin platform and test it with an operational weather network
established in a commercial orchard.
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1 INTRODUCTION

Modern agriculture, especially high-value specialty crop produc-
tion, relies heavily on data-driven automation technologies for pro-
duction management. Agricultural decision-making increasingly
relies on precise and consistent environmental data to optimize
crop health, resource utilization, and yield predictions. Regional
as well as localized weather critically drives several on-farm
decision-support models and intelligent automated systems,
including irrigation, abiotic stress (e.g., cold, heat) mitigation, and
pest management, among others [1]. Weather data measurements,
which include essential metrics such as temperature, humidity,
and precipitation, form the foundation of such decisions. However,
weather networks, like any geo-distributed cyber-physical systems,
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are often plagued by inconsistencies due to sensor faults, calibration
drift, communication errors, environmental interference, or cyber
breaches. Imperfect measurements can significantly undermine the
reliability of downstream applications in agriculture, ranging from
predictive modeling to real-time interventions. Such discrepancies
can lead to inaccurate predictions, suboptimal resource allocation,
and reduced agricultural productivity. To address this problem,
we adopt the digital twin technology [2] and develop a modular
data analyzer for assessing and understanding weather feeds and
their impact on growers’ decision-making process. We name our
framework Cerealia.1

A key feature of Cerealia is to design it as a modular tool that
end-users can utilize for several in-farm decision-making tasks
when perfect physical measurements are unavailable. We build
dynamic virtual data streams that mirror physical stations—to
monitor, validate, and enhance the reliability of weather data in the
face of anomalies. While digital twin technology is used in other
domains (e.g., control systems, manufacturing, robotics), its benefits
are not fully explored for digital agriculture. By leveraging the
concept of digital twins, we show that it is feasible to create a virtual
replica of weather networks for real-time inconsistency detection,
data imputation, and predictive analytics. As a user-inspired
scenario, we study inconsistency implications, i.e., how erroneous
weather data impacts in-farm decision-making. Specifically, our
case study involves predicting fruit surface temperature, which is a
crucial indicator of fruit stress. Growers use temperature prediction
tools to initiate automated cooling precautions to reduce crop losses.
We show that Cerealia is useful to observe whether inconsistent
data affects the fruit surface temperature prediction.

Our Contributions. This is an interdisciplinary research
where the core is a spatially distributed system (weather
network) used for domain-specific (viz., agriculture) data analytics.
Although biosystems researchers develop models for agricultural
decision-making tasks, they often assume a perfect setup in which
sensor readings are free from faults or attacks—an assumption that
does not hold in practice. Our work leverages the power of data
analytics tools (viz., machine learning models) to bridge the gap
between the physical weather network and data-driven agricultural
decision-making in the presence of imperfect measurements. We
note that time series prediction and anomaly detection are not
new research areas. However, our contribution is not on proposing
a new detection or prediction algorithm. Instead, we introduce a
“plug-and-play” architecture that enables ag-tech stakeholders to: (a)
use any learning tools to analyze inconsistencies in measurements
and (b) evaluate how these inconsistencies impact decision-making

1In ancient Roman religion, Cerealia was a major festival dedicated to the sowing,
growing, and harvesting crops. As our work aims to assist in better decision-making
for agricultural stakeholders, we name our framework Cerealia.
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Figure 1: Workflow of Cerealia. We make Cerealia

modular that allows designers to integrate various noisy

data that can be used with historical weather traces to

train machine learning model(s). A runtime consistency

checker module uses a trained model to check for imperfect

measurements and their impact on targeted decision-making

applications (for instance, fruit heat/frost prediction).

activities (e.g., predicting the temperature of fruits). With a digital
twin tool like Cerealia, end-users can analyze inconsistencies in
weather data and their impact on agricultural decision-making in
real time. Our modular design allows seamless integration of both
new and existing machine learning and decision-making models.

Cerealia is implemented and tested by using a commercial
orchard located in Central Washington, United States and
maintained by Washington State University (§3–§4). The data
analyzermodules (e.g., learningmodels) are deployed on anNVIDIA
Jetson Orin platform [3]. We measure the overheads of running
learning models on our evaluation platform and test the scalability
of Cerealia. We find that the overheads of checking (in terms
of timing and memory usage) are minimal (less than 1 s and
0.5 MB of memory use). Our technical report [4] presents additional
evaluation results.

2 DESIGN ANDWORKFLOW

The high-level architecture of Cerealia is illustrated in Fig. 1. We
design Cerealia using a two-layer architecture: (a) physical layer
and (b) digital twin analyzer layer, as we present below.

2.1 Components of Cerealia

2.1.1 Physical Layer. As shown in Block 1 of Fig. 1, the physical
layer consists of weather stations deployed in the field. Many off-
the-shelf weather stations (e.g., Cabled Vantage Pro2 [5], ATMOS
41W [6]) and existing weather networks (e.g., AgWeatherNet [7])
generally collect field measurements from stations in a periodic
interval and store them in a cloud gateway for further processing.
We follow a similar approach in Cerealia, where a cloud storage

service collects data from distributed stations and feeds this to our
analysis engines in the digital twin layer (see next).

2.1.2 Digital Twin Layer. The digital twin layer is the crux of
the Cerealia and contains several modules (Blocks 2 - 7 in
Fig. 1). In the offline phase (gray-shaded blocks in the data analyzer
layer), Cerealia collects historical field measurements accumulated
over the years from stations of interest or existing region-specific
weather datasets and stores them in its internal database (Block 2
in the figure). These historical traces could be sanitized (i.e., free
from anomalous data) or may have inconsistent measurements. As
the focus of Cerealia is to emulate various inconsistent scenarios
and see how they affect application-specific decision-making, we
incorporate a noise generator module (Block 3 ) that allows us to
inject various types of anomalous data. We train machine learning
models based on historical observations and noise traces to check
for inconsistent data at runtime (Block 4 ).

The runtime components of Cerealia (Blocks 5 - 7 ) use trained
models and real-time measurements obtained from the physical
layer to check for data inconsistencies. If anomalous data is detected,
Cerealia notifies the user. Further, the historical database can be
further updated by using sanitized or imputed data (Block 6 ) from
the consistency checker (Block 5 ). Besides, the users can use the
trained models and real-time measurements to see how noisy data
affects the prediction of a given agricultural task (Block 7 ).

Cerealia supports incremental learning and updates. This allows
Cerealia to adapt for the targeted weather network, which is often
the key requirement for regional agricultural decision-making. For
instance, as new samples are generated, Cerealia updates the
historical database and retrains the model with new observations
(the circular loops in Blocks 5 , 6 , 2 , 4 ). As model training
typically takes time, and weather data is generated at a higher
volume/frequency, designers can opt for model retraining at a
coarse granularity. The granularity of updating the historical
database and the retraining models is left as a designer-chosen
parameter. Our evaluation considers an on-shot scenario (i.e.,
without any retraining) and demonstrates the performance of
inference and effectiveness of runtime decision-making, as model
training is typically conducted offline (i.e., when the system is not
operational).

The key components of the data analyzer layer (i.e., Blocks 3 - 7 )
are modular by design. Our current implementation incorporates
four kinds of noisy data and uses nine machine-learning models to
see the models’ behavior under these inconsistencies to find the best
possible solution for Cerealia. However, other faulty/anomalous
data and other statistical models or anomaly detection tools can
be incorporated with Cerealia to check for inconsistencies. For
demonstration purposes, we tested Cerealia for an agricultural
use cases (e.g., fruit surface temperature prediction problem).2
However, this component of Cerealia (i.e., Block 7 ) can be
adapted for any other agriculture decision-making tasks (e.g., fruit
bloom phenology [8], soil water content prediction [9]) without
loss of generality.

2Additional use cases presented in our technical report [4].
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2.2 Decision-Making under Imperfections

At each time instance 𝑡 , each station captures a set of readings
from 𝑛 sensors. Let us represent these readings as follows: X(𝑡) =
{𝑥1 (𝑡), 𝑥2 (𝑡), . . . , 𝑥𝑛 (𝑡)}, where 𝑥𝑖 (𝑡) represents the recorded value
for weather attribute 𝑖 (e.g., air temperature, atmospheric pressure,
solar radiation, wind speed). As mentioned in §2.1, Cerealia
maintains a database of historical weather traces. Let us denote the
historical dataset as follows: 𝐻 = {X(𝑡1),X(𝑡2), . . . ,X(𝑡𝑚)}, where
𝑡1, 𝑡2, . . . , 𝑡𝑚 are the timestamps of the recorded entries. Note that
this historical dataset 𝐻 does not necessarily contain all sanitized
or perfect measurements. For a given time instance 𝑡 , we mimic
imperfect environments during model training by injecting noisy
samples, X𝑛𝑜𝑖𝑠𝑒 (𝑡).

Cerealia allows the end-users to use the trained models
(obtained from historical observations 𝐻 , including inconsistent
samples) and make informed decisions about their target
applications. For instance, we can run an inference operation
to check for inconsistent weather data at any time epoch 𝑡 .
Cerealia continuously fetches data from the physical layer
and then classifies incoming sequences as clean or anomalous.
Given a new real-time sequence of size 𝑘 i.e., X = {𝑋 (𝑡 −
𝑘), . . . , 𝑋 (𝑡)}, the model classifies it to detect any anomalies as
follows: 𝑦real-time = 𝑓pretrained_model (X), where 𝑓pretrained_model (X)
is the output (inference) from the machine learning model. If
𝑦real-time ≠ clean, the sequence is flagged as inconsistent,
indicating an anomaly. In our current implementation, any data
labeled as anomalous triggers an alert for the operator.3

3 IMPLEMENTATION

We integrate Cerealia with a commercial apple orchard located in
Quincy, Washington, United States (47◦13′31.3′′ 119◦57′38.0′′W).
The orchard has an average elevation of 322 m and an average
slope of 2◦ facing east. The station where we have access is
installed at 1.5 m above ground level. The station uses an all-in-one
weather sensor (ATMOS 41 from METER Group [6]). It measures
several weather parameters such as solar radiation, precipitation,
vapor pressure, relative humidity, barometric pressure, horizontal
wind speed, wind gust, wind direction, tilt, lightning strike, and
lightning average distance. Weather stations sample measurements
at 5-minute intervals and send the data to a vendor cloud service
(ZENTRA Cloud [10]). We obtained weather data from March 2023
to January 2025. The collection frequency is twelve data tuples per
hour per station (recall: stations send data to the cloud in 5-minute
intervals), resulting in 192,613 data points.

We deploy the data analyzer layer on NVIDIA Jetson Orin
Developer Kit (12-core Arm Cortex-A78AE 64-bit CPU, 64 GB
LPDDR5 RAM, and 2048-core GPU with 64 Tensor Cores) [3].
The algorithms are implemented in Python and executed on
Linux (kernel version 5.15.148). We crawl weather station data
from ZENTRA Cloud through HTTP requests using the Python
requests package. We use TensorFlow [11] for model training and
inference purposes.

3Other response measures are possible (although not incorporated), for instance,
ignoring the measurements from the station or sending a command to the physical
layer to turn off or reset the station.

Cerealia implementation is publicly available: https://
github.com/CPS2RL/ag-dt. Additional implementation details and
evaluation results are available in our technical report [4].

4 CASE STUDY: FRUIT SURFACE

TEMPERATURE PREDICTION

Heat stress to maturing fruit is a key concern for tree fruit growers.
Localized weather-based fruit surface temperature (an indicator of
fruit stress) can help in planning better mitigation strategies and
ultimately reduce crop losses. To reduce fruit stress, growers use
overhead cyclic rotating sprinklers, foggers, netting, and protectant
sprays [12]. However, precise data inputs are needed for the
actuation and effective use of some of these mitigation techniques.
Faulty or incorrect weather estimations can affect the initiation
of such protective measures. We now show how Cerealia could
be useful to predict fruit surface temperature so that growers can
make informed decisions.

We use nine learning models (see Table 1, additional model
details are provided in our technical report [4]) to predict the apple
surface temperatures from the weather measurements obtained
from the orchard. The weather parameters for surface temperature
prediction include canopy air temperature (◦C), wind speed (m/s),
dew point (◦C), and solar radiation (W/m2). Past research shows
fruit surface temperature can be estimated from these weather
attributes [13]. We study for both perfect and imperfect weather
feeds. For imperfect cases, approximately 20% of the weather sensor
feeds are faulty/inconsistent samples, and like before, we use equal
noise splits (i.e., 5% for each class).

In the absence of faulty data (i.e., column labeled with “No
Imperfection” in Table 1), CNN and Transformer-based models (in
particular, ResNet and Informer) show best performance with the
lowest MAE, RMSE, and 𝑅2 numbers. Based on these findings, we
conclude that convolutional and attention-based models perform
well on clean (consistent) weather data. We then check for cases
where we have noisy readings (the “Imperfect Measurement”
column in Table 1). As Table 1 shows, the performance of
the models (MAE, RMSE, and 𝑅2) drops in the presence of
inconsistent measurements. If we perform predictions ignoring
faulty measurements, it can lead to incorrect decision-making
for farmers who rely on the apple surface temperature values to
initiate proper protective actions (such as adjustment of irrigation
or covering fruits). Hence, we also test how data analytics can assist
in this case. The last column in Table 1 (“Imputing Inconsistencies”)
shows the performance numbers when Cerealia replaces faulty
measurements with imputed values using a generative model (e.g.,
C-RNN-GAN [14]). As the table shows, imputing faulty samples
with the expected value improves overall prediction performance
(i.e., the errors are lower than in the imperfect case). For this
prediction problem, our experiments show GRU, TST, and TST-AE
have more variability (higher MAE and RMSE but lower 𝑅2). We
attribute this to the model’s internal architectures, which cause
them to learn less efficiently (larger errors). ResNet and Informer
models show better results for predicting the surface temperature in
noisy measurements. This case study further indicates how growers
can leverage the modularity of Cerealia and customize it for
weather-driven decision-making problems.

https://github.com/CPS2RL/ag-dt
https://github.com/CPS2RL/ag-dt
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Table 1: Using Cerealia to predict apple surface temperature.

No Imperfection Imperfect Measurements Imputing Inconsistencies

Models MAE RMSE R2
MAE RMSE R2

MAE RMSE R2

TCN 0.6874 1.2911 0.9288 1.9347 4.9019 0.2634 0.7652 1.3466 0.9226
ResNet 0.5823 1.2395 0.9344 2.1711 5.4140 0.1014 0.6695 1.3038 0.9274

LSTM 0.8335 1.3969 0.9167 1.9208 4.1776 0.4650 0.9215 1.4688 0.9079
Bi-LSTM 1.0283 1.5890 0.8922 1.9139 3.8689 0.5411 1.0959 1.6467 0.8842
GRU 1.7242 2.1495 0.8027 2.3225 3.8069 0.5557 1.8041 2.2292 0.7879

TST 0.8128 1.3729 0.9195 2.4770 5.3600 0.1193 0.9348 1.8015 0.8615
Informer 0.5983 1.2530 0.9330 2.2968 5.3474 0.1234 0.6769 1.3122 0.9265

TST-AE 1.5949 1.9784 0.8329 2.3072 3.5205 0.6201 1.6834 2.0721 0.8167
LSTM-AE 0.9393 1.4239 0.9134 1.7415 3.4767 0.6295 1.0146 1.4949 0.9046

5 RELATEDWORK AND CONCLUSION

There has been some work in weather-driven digital agriculture
that leverages machine learning models for several applications
such as irrigation management, disease modeling, crop yield
estimation, fruit stress estimation, and real-time farming decision
making [15–24]. While such research facilitates digital agriculture,
data quality and consistency challenges are not explored. Fault
handling is widely investigated [25–28], but their consequences in
weather applications are not well explored. Researchers also explore
the weather data imputation problem [1, 29]. However, unlike our
comprehensive design space exploration, prior study is limited to
assessing only a single statistical or machine learning model.

In contrast to existing research, we introduce a novel use of
spatial data analysis models to assess data inconsistency issues
in agricultural weather networks. To our knowledge, Cerealia
is one of the first comprehensive digital twin tools for resiliency
analysis of weather-driven agricultural systems. Cerealia will be a
fundamental tool for twinning physical entities to provide in silico
emulation capabilities and deliver insights to farm decision-making.
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