
A New Covert Channel in Fixed-Priority
Real-Time Multiframe Tasks

Mohammad Fakhruddin Babar and Monowar Hasan
School of Electrical Engineering & Computer Science, Washington State University, USA

Email: m.babar@wsu.edu, monowar.hasan@wsu.edu

Abstract—This study investigates the presence of illicit
information flows in fixed-priority multiframe real-time systems.
We identify an algorithmic covert channel (called FrameLeaker)
that enables a low-priority task to deduce the execution patterns
(frames) of a high-priority task. We show that the response
time of a targeted low-priority task (receiver) can be used to
extract the execution behavior of a high-priority task (sender).
We further introduce a metric called “inference precision ratio”
to evaluate the efficacy of the received information.

Index Terms—Covert Channel, Real-time System, Multiframe.

I. INTRODUCTION

In high-assurance systems such as those with real-time
requirements, information flows must be explicit (i.e., passed
through authorized channels.). Any communication between
real-time tasks must be known and configured a priori.
As third-party vendors often supply various applications in
modern real-time systems, it is challenging to thoroughly trust
or verify them, leading to new vulnerabilities. A covert timing
channel refers to an unauthorized communication path where
one entity (sender) transmits information to another entity
(receiver) in violation of security policies. In safety-critical
real-time systems (e.g., avionics, automotive, industrial control
systems), it is of utmost importance to provide strong isolation
among applications that require different levels of criticality
to limit interference among them. Hence, there must not exist
any illicit information flow (viz., covert channels) between
tasks. We identify that the deterministic nature of real-time
schedulers can contribute to one such channel in multiframe
fixed-priority systems.

Multiframe real-time tasks [1] are used in many industrial
applications where execution time is different from one phase
to another of its execution. For instance, a periodic task
in a control system may collect a small amount of data
collection in each period that takes a small execution time
but then summarize and store this data every k cycle using
a sophisticated algorithm that takes a larger execution time.
Another example is in real-time multimedia encoding, where
different encodings may take a variable time.

This research is partly supported by the US National Science Foundation
(Award 2312006). Any findings, opinions, recommendations, or conclusions
expressed in the paper are those of the authors and do not necessarily reflect
the sponsor’s views.

The research aims to formally analyze the creation and
investigation of a covert timing channel by a high-priority
sender task and a low-priority receiver task in the presence
of a third-party task under the rate-monotonic scheduling. We
show that by analyzing the response time of the receiver, it is
possible to signal the execution behavior of the high-priority
sender. By exploiting this channel, a rogue task can signal its
frame patterns to another task. We name this covert channel
vulnerability FrameLeaker. Knowing such information can
leak critical information to other parties. For instance, in the
control task example, frame patterns can leak whether a task is
performing data collection or logging/processing. Our analysis
shows an illegitimate communication path between a high
and low-priority task, even with the presence of other benign
tasks. We formally show that the receiver task can predict
at least one of the frames from the sender from its runtime
delay (viz., response time). We further introduce a metric
(called inference precision ratio) that quantity the goodness
of received information.

In this paper, we made the following contributions.
• We propose an analytical model that finds the existence of

an algorithmic covert channel (named FrameLeaker) for a
set of multiframe tasks running using the rate monotonic
scheduling policy (Section III);

• We formally characterize the channel and prove that it
will always be possible for a low-priority receiver task to
infer at least one frame of the sender task (Section III);
and

• We devise a metric (called inference precision ratio)
to determine the chances of successful inference
(Section IV).

II. BACKGROUND AND MODELS

A. Preliminaries: Covert Channels

A covert channel is a hidden communication channel. Such
channels are not intended to exist in the system and are created
furtively by untrusted entities using techniques antithetical to
the system’s intended design. From a real-time perspective,
we investigate how malicious tasks can exploit deterministic
scheduling policies to illicitly transfer information (frame
patterns in our context).

A covert channel can be classified into two major
categories: (a) noiseless channel and (b) noisy channel. A
covert communication path can be represented as a discrete979-8-3503-7128-4/24/$31.00 ©2024 IEEE

https://orcid.org/0000-0003-3557-8809
https://orcid.org/0000-0002-2657-0402

X2

X1

X3

Y2

Y1

Y3

X2

X1

X3

Y1

Y2

Noiseless Channel Noisy Channel

Fig. 1. Types of covert channels: (a) output alphabets directly map a particular
input alphabet (noiseless channel, left); and (b) multiple input alphabets can
result in the same output alphabets (noisy channel, right).

memoryless channel, where information flows from a sender
to a receiver, as illustrated in Figure 1. The channel is discrete
when the input alphabets X = {x1, . . . , xj} and the output
alphabets Y = {y1, . . . , yj} are finite. It is memoryless when
the current output depends only on the current input. When
noise occurs during the transmission, it affects the output
the receiver observes. The behavior of a noisy channel can
be nondeterministic, meaning that the output observed by
the receiver is no longer solely determined by the input
symbol transmitted. For instance, in the noisy channel depicted
in Fig. 1, upon receiving y1, the receiver cannot reliably
determine which value (x2 or x3) was the input transmitted
by the sender.

B. System Model

We consider a uniprocessor real-time system with three
periodic multi-frame tasks i.e., τH , τN , and τL. A task τH
intends to secretly leak its execution behavior to a τL in
the presence of a high-priority task τN . Hence, τN acts as
a “noise” in the covert channel between τH and τL. We
donate hp(τi) as the set of high-priority tasks than τi. By
assumption, hp(τL) = {τN , τH} and τN is the highest-priority
task. We further assume that the tasks are scheduled using rate
monotonic [2] scheduling policy.

Each task τi is characterized by τi = {Ci, Ti, Di, ni}, where
Ci is the set of worst-case execution times of the task, Ti is
the inter-arrival time (period), Di is the relative deadline, and
ni denotes the repeating sequence of frames [1]. If a task has
ni ≥ 1 frames, then Ci = {C0

i , C
1
i , · · · , C

ni−1
i }. Each frame

may have a worst-case execution time that may differ from
other frames. All frames in the same task are released with
the time interval Ti and have the same deadline Di.

TABLE I
MULTIFRAME TASKSET

Task T C Priority
τ1 10 {1,3,5} High
τ2 20 2 Low

Table I shows an example with 2 tasks τ1 and τ2 where τ1 is
a multi-frame task with 3 frames represented by the execution
time values 1, 3, and 5; and τ2 has just one frame. We further
assume the tasks follow the implicit deadline model (Di = Ti),
i.e., the tasks must complete before their next periodic arrival.

C. Threat Model

We consider a noninterference model [3], i.e., the scheduling
parameters, the scheduling algorithm, and the resulting
schedule are publicly available to the adversary. Besides, all
tasks have access to precise clocks. We aim to analyze whether
a rouge task τH can form a covert channel by exploiting the
deterministic nature of real-time schedules. Particularly, the
high-priority task (τH) wants to leak its execution patterns
(frames) to a low-priority one (τH) in the presence of another
benign task (τN).

III. FRAMELEAKER: ALGORITHMIC COVERT CHANNELS
IN MULTIFRAME REAL-TIME SYSTEM

We demonstrate a vulnerability in multiframe scheduling
where a low-priority task can infer another high-priority task’s
varying execution behavior by observing the impact that the
low-priority task has on its own response time (i.e., the time
between arrival and completion of a frame). We refer to this
FrameLeaker. For instance, if τH consists of nH frames, by
analyzing the response time of τL, we infer what frames τH
is transmitting at a given point in time. In this case, the two
parties do not require any explicit communication path. The
receiver task (τL) can extract the sending signal by observing
its completion time (say, by reading the system clock). Hence,
we refer to this illegitimate information flow as algorithimic
covert channel.

As an example, consider a taskset presented in Table II,
where τH has three frames (i.e., C = {1, 2, 3}). Depending
on the τH ’s frame execution, the response time of τL varies. To
illustrate, when the active frame is 3, the response time of τL
is 9, and when the active frame is 2, the response time of τL is
8 (see Fig. 4). We represent the FrameLeaker covert channel
vulnerability as a communication model described as a set
with input-output binary relations. We do so by extending the
response time analysis for multiframe task models considering
all possible invocations of the receiver task, as we present
below.

TABLE II
EXAMPLE TASKSET 1

Task T C

τN 5 2
τH 10 {1,2,3}
τL 20 2

A. Response Time Analysis for Multiframe Tasks

The response time Ri of a task τi consists of two types of
execution: the task’s execution and the delay caused by the
execution of other higher-priority tasks (called interference).
Let π(τi) represent a scheduling priority assigned to a task
τi. A taskset Γ running a fixed-priority scheduling policy will
meet deadlines for all tasks if [4]: ∀τi ∈ Γ Ri ≤ Di, where
Ri = Ci +

∑
τj∈hp(τi)

⌈Ri

Tj
⌉Cj .

Assume a multiframe task τj with nj execution frames
{C0

j , C
1
j , · · · , C

nj−1
j }. Let us define a cumulative function

Task Noise

Task High

Task Low

Schedule

Time0 5

Response Time Analysis

. . .

. . .

. . .

. . .

. . .

. . .

. . .

20 2910

Fig. 2. Response time analysis of Task τL for Taskset 1 (see Table II). τL
releases second instance at t = 20. Frame sequence of task τH is {3, 1, 2}.
We can see that RL(1) = 9 and high is transmitting frames where CH = 3.

ξj(k) that calculates the summation of the execution time
of different frames of τj up to a certain invocation k and
is defined as follows [1]:

ξj(k) =

i=k∑
i=1

C
i mod nj

j . (1)

To illustrate, the value ξj(3) for task τj whose execution times
are {5, 8, 3, 4, 2} is 16. The value ξj(3) for task τj whose
execution times are {5, 8, 2, 4, 2} is 15. For a single-frame
task, the cumulative function is ξj(k) = kCj because of the
constancy of Cj for all frames of the multiframe task.

Based on this function ξj(k), the response time for the
multiframe task model is represented as [1]: Ri = Cm

i +∑
τj∈hp(τi)

ξj(⌈Ri

Tj
⌉), where Cm

i ∈ Ci is called the “peak
frame” that leads to worst-case behavior. We can solve the
above using the following standard recurrence process:

Rw+1
i = Ci +

∑
τj∈hp(τi)

ξj(⌈
Rw

i

Tj
⌉), (2)

where w = 0, 1, 2, 3, · · · and R0
i = Ci. The worst-case

response time is obtained when Rw+1
i = Rw

i for the smallest
value of w.

B. Extended Timing Analysis for Multiframe Tasks

To expose FrameLeaker covert channel vulnerability (frame
length) from τH , we extend Eq. (2) to calculate all possible
response times of τL. Before we present details of our analysis,
let us start with a definition.

Definition 1 (Active Frame). The frames in a multiframe task
arrive sequentially at regular intervals. The frame ready to be
executed at a given time t is defined as the active frame. We
denote the active frame of the kth job of task τi as Ci(k).

For example, if task τi has three frames {2, 3, 5}, for the
second job of τi, the active frame is 3. Likewise, the active
frame for the fourth job of τi is 2.

We measure the response time of jobs arriving at TL interval
to observe which frames of τH transmit during that time.

𝜏𝐿 arrives

𝜏𝐿 arrives

𝐶𝐿 − 𝞴 𝞴

𝜏𝐿 Inference from high priority task

𝞴

Time

Time

𝜏𝐿 ends

𝜏𝐿 ends

Fig. 3. Execution of τL has CL−λ unit of time for computation and λ time
for response time calculation. The bottom part depicts high-priority tasks (τN
and τL) preempt τL.

Hence, we calculate response time of kth released task of τL
as follows:

Rw+1
L (k) = Ci(k) +

∑
τj∈{τN ,τH}

ξj(⌈
Rw

i (k)

Tj
⌉) (3)

Using Eq. (3), we deduce the response time of τL at
different instance, i.e., Ri(k), where k = 1, 2, 3, · · · . For the
first instance of task τL (i.e., first job), the response time is
RL(1). Additionally, by assumption RL ≤ DL (i.e., the task
meets the deadline), and hence schedulable.

C. Identifying Frame Signals

By leveraging the noninterference model, the receiver task
keeps track of time read from the system time, including
preemptions. For correct system operation (and remain
stealthy) τL should not run more than its worst-case execution
time, CL. Hence, it saves some budget for analyses to
reconstruct (passive) information received from the sender.
Hence, we define a parameter, λ, whose value is set by the
receiver to limit the running time of the inference function in
each period. This inference duration λ, is an integer in the
range 0 < λ < CL, as shown in Fig. 3.

We use the active frames to deduce the signals from τH .
Hence, we calculate the response time of τL when both τH and
τL arrive simultaneously, i.e., at multiple of the least common
multiple (LCM) of TH and TL. We then determine the
response time of τL at those points. Considering the response
time of τL at any other time may introduce interference from
the previously released frame and the effect of the upcoming
frame (i.e., create more noise in the inference). In contrast,
the response time at the multiple of LCM of TH , and TL is
noiseless as both τH and τL arrive simultaneously, and τL can
deduce the frame that τH is transmitting correctly.

We use the following indexing to find the initial position of
a multiframe of τH at different times. If τH has nH frames,
then for kth release of the τL, frame initial index p will be
calculated as follows:

p = ⌈ t

TL
⌉ mod nH , t = k×TLCM , k = 0, 1, 2, 3, · · · , (4)

Algorithm 1 FrameLeaker Inference: Inferring frames of high-
priority task τH

1: Input: Γ = {τ1, τ2, · · · , τn}
2: Output: Deduced frame of τH by τL
3: Length of multi-frame of sender task ← nH

4: TLCM ← LCM(TL, TH)
5: t_max← nH×TLCM

6: t← 0
7: C_deduce← {} ▷ Store the deduced frame of τH
8: RL ← {}
9: while t < tmax do ▷ Each job of τL will calculate response

time RL till tmax

10: index = ⌈ t
TH
⌉ mod nH ▷ index flag is used to detect the

active frame of τH
11: RL ← RL(t/TL) ▷ Calculate RL(t/TL) using Eq. (3)
12: C_deduce ← CH [index]
13: t← t+TLCM ▷ Response times at multiple of TLCM

14: end while
15: set(C_deduce) ▷ Getting the deduced frame comparing RL &
C_deduce. set() returns distinct elements

where TLCM is LCM(TL, TH). To illustrate, let us assume τH
has three execution frames (e.g., {1, 2, 3}) and for 2nd release
of τL, frame sequence of τH will be 3, 1, 2, · · · and so on.

D. Algorithm

FrameLeaker’s inference process is presented in Algorithm
1. The variable TLCM stores the LCM of TL and TH (Line 4).
We calculate the response time of τL at a multiple of TLCM

until a timeout period, tmax (Line 5). We store the deduced
frame of τH in C_deduce (Line 7) and response time of τL
in RL (Line 8). We find the active frame index of τH (Line
10) and calculate RL using Eq. (3) (Line 11). We store the
deduced frame of τH in C_deduce (Line 12) and infer the
deduced frame comparing RL and C_deduce (Line 15).

E. Examples and Illustrations

We illustrate the inference process with a few examples.

Example 1. Assume we have three tasks τN , τH , τL with
periods 5, 10, and 20. τH has three frames 1, 3, and 5, as
listed in Table II. Response time of τL varies because of the
multiframe nature of the τH . We infer which frame τH is
transmitting by analyzing the response time of τL. To evaluate
the response time of τL, we need to find the frame sequence
of τH at the time of kth arrival of τL. We can see the frame
sequence of τH at t = 0, 20, 40 in Fig. 4. Using Eq (3), we
calculate the response time of the first instances of τL. RL(k)
denotes the response time of τL at kth release. Using Eq. (3),
RL(1) = 5, RL(2) = 9, RL(3) = 8.

Example 2. Assume we have three tasks τN , τH , τL with
periods 4, 8, and 12. τH has three frames with durations
{1, 2, 3} as listed in Table III. τL calculates the frame sequence
of τH at the time of kth arrival of τL. In this example, the
frame sequence of τH at t = 0, 24, 48 (multiple of LCM of
TL, TH , see Fig. 5). Using Eq. (3), RL(1) = 5. In this case, τL
can only infer τH ’s frame duration when τH transmits its first

τH Frame Seq. RL(k)

(1,2,3) RL(1) = 5
(3,1,2) RL(2) = 9
(2,3,1) RL(3) = 8

2

1

3

9

5

8

Sender Task

(High)
Receiver Task

(Low)

2

1

4

8

5

10

2

1

3

X

5

X

Sender Task

(High)
Receiver Task

(Low)
Sender Task

(High)
Receiver Task

(Low)

Fig. 4. Response times and input/output signal mapping for Taskset 1.

τH Frame Seq. RL(k)

(1,2,3) RL(1) = 52

1

3

9

5

8

Sender Task

(High)
Receiver Task

(Low)

2

1

4

8

5

10

2

1

3

X

5

X

Sender Task

(High)
Receiver Task

(Low)
Sender Task

(High)
Receiver Task

(Low)

Fig. 5. Response times and input/output signal mapping for Taskset 2.

TABLE III
EXAMPLE TASKSET 2

Task T C

τN 4 1
τH 8 {1,2,3}
τL 12 2

frame. Due to the parameters of the system (i.e., period and
number of frames), we cannot extract more than one frame.
For instance, in this taskset LCM(TH ,TL)

TH
= nH . As a result,

at each checking point (i.e., multiple of LCM(TL, TH)), τH
transmits the same frame. Thus, τL cannot infer more than
one frame.

F. Characterizing the Channel

We now characterize the FrameLeaker covert channel. Let
us introduce two definitions.

Definition 2 (Channel Deducibility). A channel is fully
deducible if task τL can infer all the frames of task τH .
Likewise, a channel is partially deducible if task τL can infer
some, but not all, frames of task τH .

By observing its response time, τL can infer which frame
is transmitted by the task τH . For instance, as in Example 1,
τL can map the frame sequence τH and the corresponding
response time (Fig 4). As we shall present below, it is always
possible to extract information about at least one frame, and
hence, the covert channel we discovered is partially deducible.

Lemma 1. The noisy channel in FrameLeaker is always at
least partially deducible for a schedulable taskset.

Proof. We deduce the frame of sender task τH using the
response time of τL at a multiple of LCM of TL and TH ,
i.e., TLCM = LCM(TL, TH). We check response time at
t = k × TLCM , k = 0, 1, 2, 3, · · · , when both τL, τH arrive
simultaneously. In these values of t, the response time of τL

1 10 20 30 40 50 60 70 80 90 100
Taskset ID

0.0

0.2

0.4

0.6

0.8

1.0
In

fe
re

nc
e

Pr
ec

isi
on

Number of Frames = 3

1 10 20 30 40 50 60 70 80 90 100
Taskset ID

0.0

0.2

0.4

0.6

0.8

1.0

In
fe

re
nc

e
Pr

ec
isi

on

Number of Frames = 6

(a) Inference precision: periods of τH and τL generated randomly.

1 10 20 30 40 50 60 70 80 90 100
Taskset ID

0.0

0.2

0.4

0.6

0.8

1.0

In
fe

re
nc

e
Pr

ec
isi

on

Number of Frames = 3

1 10 20 30 40 50 60 70 80 90 100
Taskset ID

0.0

0.2

0.4

0.6

0.8

1.0

In
fe

re
nc

e
Pr

ec
isi

on

Number of Frames = 6

(b) Inference precision: periods of τH and τL are harmonic.

1 10 20 30 40 50 60 70 80 90 100
Taskset ID

0.0

0.2

0.4

0.6

0.8

1.0

In
fe

re
nc

e
Pr

ec
isi

on

Number of Frames = 3

1 10 20 30 40 50 60 70 80 90 100
Taskset ID

0.0

0.2

0.4

0.6

0.8

1.0

In
fe

re
nc

e
Pr

ec
isi

on

Number of Frames = 6

(c) Inference precision: fixed the period of τL with varying period of
τH .

1 10 20 30 40 50 60 70 80 90 100
Taskset ID

0.0

0.2

0.4

0.6

0.8

1.0

In
fe

re
nc

e
Pr

ec
isi

on
Number of Frames = 3

1 10 20 30 40 50 60 70 80 90 100
Taskset ID

0.0

0.2

0.4

0.6

0.8

1.0

In
fe

re
nc

e
Pr

ec
isi

on

Number of Frames = 6

(d) Inference precision: fixed the period of τH while τL’s period is
varied.

Fig. 6. Inference precision for 100 randomly generated tasks with fixed frame length (3 and 6) for four different cases: (a) TL and TH are randomly
generated, (b) TL and TH are harmonic, (c) Fixed TL and varied TH , and (d) Fixed TH and varied TL. The red line indicates the average precision value,
while the green line indicates the minimum precision value.

has no interference from the previous frame of τH . At each
multiple of TTCM , τL may receive different frames of τH . But
in the worst case scenario, the frame of τH comes in such a
way that where at each multiple of TLCM , exactly the same
frame of τH arrives. This happens when TL

TH
= nH . Thus,

we can conclude that even in the worst-case scenario, τL can
deduce at least one frame of τH .

IV. EVALUATION

We measure the information leakage in FrameLeaker using
synthetically generated workloads. We evaluated using 100
randomly generated task sets under the following setups: (a)
TL and TH are randomly generated, (b) TL and TH are
harmonic, (c) Fixed TL and varied TH , and (d) Fixed TH and
varied TL. In randomly generated case, the task periods are

TABLE IV
SIMULATION PARAMETERS

Parameters Value
Period TH [10, 15] ms
Period TL [30, 50] ms
Number of frames, ni {3, 6}
Number of taskset for each utilization, Nu 100

TABLE V
AVERAGE AND MINIMUM PRECISION

Case No. of Frames Avg. Precision Min. Precision
Random 3 0.88 0.33
Random 6 0.75 0.20

Harmonic 3 0.87 0.33
Harmonic 6 0.72 0.25
Fixed TL 3 0.92 0.33
Fixed TL 6 0.84 0.33
Fixed TH 3 0.96 0.33
Fixed TH 6 0.83 0.25

randomly selected from [15, 30] ms for τH and [50, 70] ms
for τL. Table IV lists the key simulation parameters. In the
harmonic period case, we vary the ratio of TL

TH
in the range of

[2, 5]. In the fixed TL case, we set TL = 120 and vary TH in
the range of TL

[2,5] (i.e., TH < TL). In the fixed TH case, we
set TH = 30.

Metric: Inference Precision Ratio. We propose a metric to
measure the successful inference of receiving frames. This
metric represents the ratio of detectable frames to the total
frame length and is calculated as follows:

Q =
Total number of deducible frames (nd)

Total number of frames (nj)

For instance, in Example 1, Q = 3/3 = 1, while in Example 2,
Q = 1/3 = 0.33. These relative quantities can serve as
effective metrics for comparing the deducibility levels of two
noisy channels. For instance, when the Q of noisy channel A
for a given task set exceeds that of channel B for another
one, we may conclude that the receiver can deduce more
information about the frame sequence.

A. Results

We include the average inference precision (red line) and
minimum precision (green line) in each plot (see Fig. 6). The
average precision and minimum precision values for all four
cases are listed in Table V. Inference is better for lower frame
numbers (see Figs. 6). When we fix TH and vary TL, the
best average precision value is achieved (i.e., 0.96). Based
on the minimum precision value and also from Lemma 1,
we can conclude it is possible to deduce at least one frame
in the worst-case scenario (i.e., inference precision value is
always greater than 0). In all of our experimental cases, we
observed that the 90th percentile value is 1, indicating that our
framework achieves very high inference precision.

V. RELATED WORK AND CONCLUSION

While some work exists on securing real-time sys-
tems [5]–[7], there has not been much work on exploring
attack surfaces. Perhaps the closed work is Son et al. [8]
that identified timing covert channels for rate monotonic
schedulers. However, this early work does not provide any
analytical verification. There exists other work [3], [9]–[13]
for discovering side and covert channel leakages, but none of
them have considered multi-frame scenarios.

FrameLeaker exposes an algorithmic covert channel in
multi-frame task scenarios. Under the assumption that τL is a
task with the longest period, we show that the low-priority task
least infers the transmission of one frame of a multi-frame task
while in the best case, we can infer all of them! Our findings
will help designers to be cognizant of covert channel leaks
and modify schedulers to prevent such information flows.

REFERENCES

[1] A. K. Mok and D. Chen, “A multiframe model for real-time tasks,” IEEE
transactions on Software Engineering, vol. 23, no. 10, pp. 635–645,
1997.

[2] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling
algorithm: Exact characterization and average case behavior,” in RTSS,
vol. 89, pp. 166–171, 1989.

[3] M. Völp, C.-J. Hamann, and H. Härtig, “Avoiding timing channels in
fixed-priority schedulers,” in Proceedings of the 2008 ACM symposium
on Information, computer and communications security, pp. 44–55,
2008.

[4] M. Joseph and P. Pandya, “Finding response times in a real-time system,”
The Computer Journal, vol. 29, no. 5, pp. 390–395, 1986.

[5] M.-K. Yoon, S. Mohan, C.-Y. Chen, and L. Sha, “Taskshuffler:
A schedule randomization protocol for obfuscation against timing
inference attacks in real-time systems,” in 2016 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pp. 1–12,
IEEE, 2016.

[6] S. Mohan, M.-K. Yoon, R. Pellizzoni, and R. B. Bobba, “Integrating
security constraints into fixed priority real-time schedulers,” Real-Time
Systems, vol. 52, pp. 644–674, 2016.

[7] M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba, “Contego:
An Adaptive Framework for Integrating Security Tasks in Real-Time
Systems,” in 29th Euromicro Conference on Real-Time Systems (ECRTS
2017), pp. 23:1–23:22, 2017.

[8] J. Son et al., “Covert timing channel analysis of rate monotonic real-
time scheduling algorithm in mls systems,” in 2006 IEEE Information
Assurance Workshop, pp. 361–368, IEEE, 2006.

[9] C.-Y. Chen, S. Mohan, R. Pellizzoni, R. B. Bobba, and N. Kiyavash, “A
novel side-channel in real-time schedulers,” in 2019 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pp. 90–102,
IEEE, 2019.

[10] M. Völp, B. Engel, C.-J. Hamann, and H. Härtig, “On confidentiality-
preserving real-time locking protocols,” in 2013 IEEE 19th Real-Time
and Embedded Technology and Applications Symposium (RTAS),
pp. 153–162, IEEE, 2013.

[11] S. Kadloor, N. Kiyavash, and P. Venkitasubramaniam, “Mitigating
timing side channel in shared schedulers,” IEEE/ACM transactions on
networking, vol. 24, no. 3, pp. 1562–1573, 2015.

[12] X. Gong and N. Kiyavash, “Quantifying the information leakage in
timing side channels in deterministic work-conserving schedulers,”
IEEE/ACM Transactions on Networking, vol. 24, no. 3, pp. 1841–1852,
2015.

[13] J. Kwak and J. Lee, “Covert timing channel design for uniprocessor
real-time systems,” in Parallel and Distributed Computing, Applications
and Technologies: 19th International Conference, PDCAT 2018, Jeju
Island, South Korea, August 20-22, 2018, Revised Selected Papers 19,
pp. 159–168, Springer, 2019.

	Introduction
	Background and Models
	Preliminaries: Covert Channels
	System Model
	Threat Model

	FrameLeaker: Algorithmic Covert Channels in Multiframe Real-time system
	Response Time Analysis for Multiframe Tasks
	Extended Timing Analysis for Multiframe Tasks
	Identifying Frame Signals
	Algorithm
	Examples and Illustrations
	Characterizing the Channel

	Evaluation
	Results

	Related Work and Conclusion
	References

