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1.1 Introduction

The fifth generation (5G) cellular networks are expected to provide wide variety of high rate
(i.e., 300 Mbps and 60 Mbps in downlink and uplink, respectively, in 95 percent of locations
and time [1]) multimedia services. The 5G communication platform is seen as a global
unified standard with seamless connectivity among existing standards, e.g., High Speed
Packet Access (HSPA), Long Term Evolution-Advanced (LTE-A), and Wireless Fidelity
(WiFi). Some of the emerging features and trends of 5G networks are: multi-tier dense
heterogeneous networks [2], [3], device-to-device (D2D) and machine-to-machine (M2M)
communications [3], [4], densification of the heterogeneous base stations (e.g., extensive use
of relays and small cells) [5], cloud-based radio access network [3], integrated use of multiple
radio access technologies [6], wireless network virtualization [3], massive and 3D MIMO [3],
[7], millimeter wave [8], and full duplex [9] communications.

Conventional 3G systems are single-tier and based on code division multiple access
(CDMA) technology. In CDMA systems, all network nodes use the same frequency resource
and are distinguished from each other by different pseudo-random spreading codes, which
are not exactly orthogonal. Therefore the interference among the nodes is closely related
to transmit power. Through efficient power control and spreading schemes [10], [11],
interference in CDMA systems can be well-managed. 4G systems (such as LTE/LTE-
A) employ orthogonal frequency division multiplexing (OFDM) to improve the spectrum
efficiency. Due to unplanned deployment of small cells, resource allocation and interference
management in 4G networks is quite different to those in single-tier 3G networks. In a
heterogeneous 4G network (which is mainly consists with macro and small cells), there is
always a major interferer leading to higher dominant-interference-ratio compared to single-
tier network [12]. Therefore, advance interference management schemes such as almost blank
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subframe (ABS)1 and coordinated multi-point transmission (CoMP)2 have been developed
for LTE-A based 4G networks.

In future 5G networks, dense deployment of small cells (e.g., pico and femto cells) and
heterogeneous nodes (e.g., relays, low power access points, autonomous M2M sensors etc.)
has been envisioned to improve the overall network capacity and spectrum efficiency. The 5G
cellular wireless systems will have a multi-tier architecture consisting of macrocells, different
types of licensed small cells and D2D/M2M networks to serve users with different quality-
of-service (QoS) requirements in a spectrum efficient manner. Radio resource management
(e.g., interference mitigation and resource allocation) in such ultra dense 5G systems will
be extremely complected due to the irregular and pseudo-random network topology, and
therefore, existing management schemes may not be sufficient. For example, it has been
shown that in single-tier systems, less than 5% network nodes experience interference from
more than two major interferers. However, in 5G heterogeneous networks, this number is
expected to be 40%, (e.g., almost half of nodes are affected by more than two interferers)
[12], [15].

Considering the dense deployment and large number of network nodes, resource allocation
and interference management is one of the fundamental research challenges for such multi-
tier heterogeneous networks. In this chapter, we consider the radio resource allocation
problem in a multi-tier orthogonal frequency division multiple access (OFDMA)-based
cellular (e.g., 5G LTE-A) network. In particular, we present three novel approaches for
distributed resource allocation in such networks utilizing the concepts of stable matching,
factor graph-based message passing, and distributed auction.

Matching theory, a sub-field of economics, is a promising concept for distributed resource
management in wireless networks. The matching theory allows low-complexity algorithmic
manipulations to provide a decentralized self-organizing solution to the resource allocation
problems. In matching-based resource allocation, each of the agents (e.g., radio resources
and transmitter nodes) ranks the opposite set using a preference relation. The solution of the
matching is able to assign the resources with the transmitters depending on the preferences.

The message passing approach for resource allocation provides low (e.g., polynomial
time) complexity solution by distributing the computational load among the nodes in the
network. In the radio resource allocation problems, the decision making agents (e.g., radio
resources and the transmitters) form a virtual graphical structure. Each node computes and
exchanges simple messages with neighboring nodes in order to find the solution of the
resource allocation problem.

Similar to matching-based allocation, auction method is also inherited from economics
and used in wireless resource allocation problems. Resource allocation algorithms based
on auction method provides polynomial complexity solution which are shown to output
near-optimal performance. The auction process evolves with a bidding process, in which
unassigned agents (e.g., transmitters) raise the cost and bid for resources simultaneously.

1The ABS approach coordinates the subframe utilization across different cells in the time domain. Without
transmitting data signals, only necessary control signals are transmitted in the subframes that are configured as
ABSs in an aggressor cell (e.g., the dominant interferer cell). Therefore, the user equipments (UEs) in neighboring
cells suffering strong interference can be scheduled with higher data transmission priority. For details refer to [13].

2The basic idea of CoMP is to avoid the interference among adjacent cells. This can be achieved by a coordinated
spatial domain inter-cell scheduling, or transforming the interfering signals to desired signals via joint transmission
and reception among multiple transmission points [14].
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Once the bids from all the agents are available, the resources are assigned to the highest
bidder.

We illustrate each of the modeling schemes with respect to a practical radio resource
allocation problem. In particular, we consider a multi-tier network consisting a macro base
station (MBS), a set of small cell base stations (SBSs) and corresponding small cell user
equipments (SUEs), as well as D2D user equipments (DUEs). There is a common set of
radio resources (e.g., resource blocks [RBs]) available to the network tiers (e.g., MBS, SBSs,
and DUEs). The SUEs and DUEs use the available resources (e.g., RB and power level) in
an underlay manner as long as the interference caused to the macro-tier (e.g., macro user
equipments [MUEs]) remains below a given threshold. The goal of resource allocation is
twofold: i) to allocate the available RBs and transmit power levels to the SUEs and DUEs in
order to maximize the spectral efficiency (which is defined by sum data rate of the SUEs and
DUEs); and ii) to keep the interference caused to macro-tier (e.g., MUEs) by the underlay
transmitters (e.g., SBSs and DUEs) within an acceptable limit. We show that due to the nature
of the resource allocation problem, the centralize solution is computationally expensive and
also incurs huge signaling overhead. Therefore, it may not be feasible to solve the problem
by a single centralized controller node (e.g., MBS) especially in a dense network. Hence
distributed solutions with low signaling overhead are desirable.

We assume that readers are familiar with the basics of OFDMA-based cellular wireless
networks (e.g., LTE-A networks), as well as have preliminary background on theory of
computing (e.g., data structures, algorithms, and computational complexity). Followed by
a brief theoretical overview of the modeling tools (e.g., stable matching, message passing,
and auction algorithm), we present the distributed solution approaches for the resource
allocation problem in the aforementioned network setup. We also provide a brief qualitative
comparison in terms of various performance metrics such as complexity, convergence,
algorithm overhead etc.

The organization of the rest of the chapter is as follows: beginning with the brief overview
of 5G multi-tier network architecture in Section 1.2, we present the system model, related
assumptions, and the resource allocation problem is presented in Section 1.3. The disturbed
solutions for resource allocation problem, e.g., stable matching, message passing, and auction
method are discussed in the Sections 1.4, 1.5, 1.6, respectively. The qualitative comparisons
among the resource allocation approaches are presented in Section 1.7. We conclude the
chapter in Section 1.8 highlighting the directions for future research.

1.2 Multi-tier 5G Cellular : Overview and Challenges

Beyond the previous standards, one of the key requirements of the 5G systems is to provide
the better end-user quality of experience. The visions of 5G networks are included but
not limited to the following [2], [5], [16]: i) Capacity and throughput improvement (e.g.,
1000 times of throughput improvement over 4G, cell data rate 10 Gb/s, and signaling
loads less than 1-100%); ii) Reduced latency (e.g., 2-5 milliseconds end-to-end latency);
iii) Network densification (approximately 1000 times higher mobile data per unit area,
100-10000 times higher number of connecting devices); iv) Improved energy efficiency (e.g.,
10 times prolonged battery life).

A promising solution to meet the expectations of 5G performance requirements (such
as high throughput and improved energy efficiency) is to enable multiple tiers in the
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network architecture [3], [17]. In addition to conventional macrocell-tier (e.g., a MBS with
corresponding MUEs), these heterogeneous network tiers may include low power nodes
(e.g., pico and femto cells, relays etc.) as well as wireless peer-to-peer (P2P) nodes (e.g.,
D2D and M2M UEs, sensors etc.). The heterogeneity of different classes of base stations
(e.g., macrocells and small cells) not only improve the spectral efficiency but also provide
flexible coverage area. With the reduced cell size in small cells (e.g., pico and femto cells),
the area spectral efficiency is increased through higher spectrum reuse. Additionally, the
coverage can be improved by deploying indoor small cells (in the spots such as home,
office buildings, public vehicles etc.). By reusing exiting cellular radio resources, wireless
P2P communication (e.g., D2D/M2M communication among UEs and autonomous sensors)
underlaying cellular architecture can significantly increase the overall spectrum and energy
efficiency. In addition, the network-controlled P2P communications in 5G systems will
allow other nodes (such as relay or M2M gateway), rather than the MBS, to control the
communications among P2P nodes [18]. It is worth mentioning that the deployments of
heterogeneous nodes in 5G systems will significantly have much higher density than present
single-tier networks [5]. The evolution towards multi-tier heterogeneous network in future
5G systems is illustrated in Fig. 1.1.
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Figure 1.1 From conventional single-tier systems to future heterogeneous multi-tier 5G cellular
networks.
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1.2.1 Challenges in Radio Resource Management for Multi-tier Systems

Regardless of the benefits of multi-tier deployment, as the future heterogeneous network
nodes become more dense, the network topology tends to be complicated. Due to the dense
deployment of heterogeneous nodes in 5G networks, one approach of improving the resource
utilization to use the available resources as a spectrum underlay manner. However, for the
underlay communication networks, interference management (e.g., mitigating inter-cell and
inter/intra-tier interference) is one of the key challenges. In addition to heterogeneity and
dense deployment of wireless devices, coverage and traffic load imbalance due to varying
transmit powers of different base stations, different access restrictions (e.g., public, private,
hybrid etc.) in different tiers make the interference management and resource allocation
problems more challenging than those in conventional single-tier systems. Different channel
access priorities and the provision of P2P communication also complicate the dynamics of the
interference. Nevertheless, the adoption of multiple tiers in the cellular network architecture
will provide better performance in terms of capacity, spectral efficiency, coverage, and
power consumption; provided that there exists an efficient inter-tier and intra-tier interference
management scheme [17].

Recent studies (e.g., [19], [20], [21]) reveled that the optimum radio resource allocation
in future OFDMA-based multi-tier network is generally an NP-hard problem, and hence
computationally intractable. The centralized methods (e.g., brute-force, sub-optimal, and
heuristic-based approaches) for solving the resource allocation problems in a dense network
are not scalable. Besides, the centralize approaches could bring bottleneck to the controller
node due to the requirement of global information to manage the whole network tiers
(e.g., small cells, D2D/M2M UEs etc.). On the contrary, the distributed or semi-distributed
approaches with low signaling overhead are suitable for dense multi-tier networks, where the
network nodes (such as SBSs and P2P nodes) perform resource allocation independently or
by the minimal assistance of the central controllers (e.g., MBSs). In addition, the distributed
methods turns out to be an efficient solution for practical implementations due to reduced
computational complexity.

This chapter, therefore, aims to provide an outline of distributed resource management
approaches for such multi-tier 5G network architecture. The term distributed refers to the fact
that the underlay nodes independently determine the allocation with the minimal assistance
of MBS. Key mathematical symbols and notations used in the chapter are summarized in
Table 1.1.

1.3 System Model

1.3.1 Network Model and Assumptions

Let us consider a transmission scenario of heterogeneous network as shown in Fig. 1.2. The
network consists of one MBS and a set of C cellular MUEs, i.e., Um = {1, 2, · · · , C}. There
are also D D2D pairs and a cluster of S SBSs located within the coverage area of the MBS.
The set of SBSs is denoted by S = {1, 2, · · ·S}. For simplicity we assume that each SBS
serves only one SUE for a single time instance and the set of SUE is given by U s where
|U s| = S. The set of D2D pairs is denoted as Ud = {1, 2, · · · , D}. In addition, the d-th
element of the sets UdT and UdR denotes the transmitter and receiver UE of the D2D pair
d ∈ Ud, respectively. The set of UEs in the network is given by U = Um ∪ U s ∪ Ud. For
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Table 1.1 List of major notations

Notation Physical Interpretation

• Network model:
Um, Us, Ud Set of MUE, SUE, and D2D pairs, respectively
KT, KR Set of underlay transmitters and receivers, respectively
N , L Set of RBs and power levels, respectively

K, N , L Total number of underlay transmitters, RBs, and power levels, respectively
uk The UE associated with underlay transmitter k

x
(n,l)
k ,X Allocation indicator, whether transmitter k using resource {n, l} and the

indicator vector, respectively
g

(n)
i,j Channel gain between link i, j over RB n

γ
(n)
uk

SINR in RB n for the UE uk
Γ

(n,l)
uk

Achievable SINR of the UE uk over RB n using power level l
p

(n)
k Transmit power of transmitter k over RB n
Ruk Achievable data rate for uk

I(n), I(n)
max Aggregated interference and threshold limit for the RB n, respectively

U
(n,l)
k Utility for transmitter k using resource {n, l}

• Stable matching:
µ Matching (e.g., allocation) of transmitter to the resources

i1 �j i2 Preference relation for agent j (i.e., i1 is more preferred than i2)
Pk(N ,L), Pn(KT,L) Preference profile for the transmitter k and RB n, respectively

•Message passing:
δ{n,l}→k

(
x

(n,l)
k

)
Message delivered by the resource {n, l} to the transmitter k

δk→{n,l}
(
x

(n,l)
k

)
Message from transmitter k to the resource {n, l}

ψ{n,l}→k Normalized message from the resource {n, l} to the transmitter k
ψk→{n,l} Normalized message from the transmitter k to the resource {n, l}
τ

(n,l)
k Node marginals for the transmitter k using resource {n, l}

• Auction method:
C

(n,l)
k Cost for transmitter k using resource {n, l}

B
(n,l)
k Data rate (multiplied by a weighting factor) achieved by transmitter k

using resource {n, l}
b
(n,l)
k Local bidding information available to transmitter k for the resource {n, l}
ε Minimum bid increment parameter

Θk = {n, l} Assignment of resource {n, l} to the transmitter k

•Miscellaneous:
|y|, |Y| Length (cardinality) of the vector (set) y (Y)
y(t) Value of variable y at any iteration t
z := y Assignment of the value of variable y to the variable z

/* comment */ Commented text inside algorithms

notational convenience, we denote by KT = S ∪ UdT the set of underlay transmitters (e.g.,
SBSs and transmitting D2D UEs) and KR = U s ∪ UdR denotes the set of underlay receivers
(e.g., SUEs and receiving D2D UEs).

The SBSs and DUEs are underlaid within the macro-tier (e.g., MBS and MUEs). Both
the macro-tier and the underlay-tier (e.g., SBSs, SUEs, and D2D pairs) use the same set
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Figure 1.2 Schematic diagram of the heterogeneous network model. The D2D pairs, SBSs, and SUEs
are underlaid within the macro-tier by reusing same set of radio resources.

N = {1, 2, · · ·N} of orthogonal RBs3. Each transmitter node in the underlay-tier (e.g., SBS
and D2D transmitter) selects one RB from the available N RBs. In addition, the underlay
transmitters are capable of selecting the transmit power from a finite set of power levels, i.e.,
L = {1, 2, · · ·L}. Each SBS and D2D transmitter should select a suitable RB-power level
combination. This RB-power level combination is referred to as transmission alignment4

[23]. For each RB n ∈ N , there is a predefined threshold I(n)
max for maximum aggregated

interference caused by the underlay-tier to the macro-tier. We assume that value of I(n)
max is

known to the underlay transmitters by using the feedback control channels. An underlay
transmitter (i.e., SBS or transmitter DUE) is allowed to use the particular transmission
alignment as long as the cross-tier interference to the MUEs is within the threshold limit.

The system model considered here is a multi-tier heterogeneous network since each of the
network tiers (e.g., macro-tier and underlay-tier consisting with small cells and D2D UEs)
has different transmit power range, coverage region, and specific set of users with different
application requirements. It is assumed that the user association to the base stations (either
MBS or SBSs) is completed prior to resource allocation. In addition, the potential DUEs are
discovered during the D2D session setup by transmitting known synchronization or reference
signal (i.e., beacons) [24]. According to our system model, only one MUE is served on each
RB to avoid co-tier interference within the macro-tier. However multiple underlay UEs (e.g.,

3The minimum scheduling unit of LTE-A standard is referred to as an RB. One RB consists of 12 subcarriers
(e.g., 180 kHz) in the frequency domain and one sub-feame (e.g., 1 millisecond) in the time domain. For a brief
overview of heterogeneous network in the context of LTE-A standard refer to [22, Chapter 1].

4Throughout this chapter we use the term resource and transmission alignment interchangeably.
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SUEs and DUEs) can reuse the same RB to improve the spectrum utilization. This reuse
causes severe cross-tier interference to the MUEs, and also co-tier interference within the
underlay-tier; which leads the requirement of an efficient resource allocation scheme.

1.3.2 Achievable Data Rate

The MBS transmits to the MUEs using a fixed power p
(n)
M > 0 for ∀n. For each

underlay transmitter k ∈ KT, the transmit power over the RBs is determined by the vector

Pk =
[
p

(1)
k , p

(2)
k , · · · , p(N)

k

]T
where p(n)

k ≥ 0 denotes the the transmit power level of the

transmitter k over RB n. The transmit power p(n)
k , ∀n must be selected from the finite set of

power levels L. Note that if the RB n is not allocated to the transmitter k, the corresponding
power variable p(n)

k = 0. Since we assume that each underlay transmitter selects only one
RB, only one element in the power vector Pk is non-zero.

All links are assumed to experience independent block fading. We denote by g
(n)
i,j the

channel gain between the links i and j over RB n and defined by g(n)
i,j = β

(n)
i,j d

−α
i,j where

β
(n)
i,j denote the channel fading component between link i and j over RB n, di,j is the distance

between node i and j, and α is the path-loss exponent.
For the SUEs, we denote uk as the SUE associated to SBS k ∈ S, and for the DUEs,

uk refer to the receiving D2D UE of the D2D transmitter k ∈ UdT . The received signal-
to-interference-plus-noise ratio (SINR) for the any arbitrary SUE or D2D receiver, i.e.,
uk ∈ KR, k ∈ KT over RB n is given by

γ(n)
uk

=
g

(n)
k,uk

p
(n)
k

g
(n)
M,uk

p
(n)
M︸ ︷︷ ︸

interference from macro-tier

+
∑

k′∈KT,k′ 6=k

g
(n)
k′,uk

p
(n)
k′︸ ︷︷ ︸

interference from underlay-tier

+ σ2
(1.1)

where g(n)
k,uk

is the link gain between the SBS and SUE (e.g., uk ∈ U s, k ∈ S) or the link

gain between the D2D UEs (e.g., uk ∈ UdR , k ∈ UdT ), and g(n)
M,uk

is the interference gain
between the MBS and the UE uk. In Equation (1.1), the variable σ2 = N0BRB where BRB

is the bandwidth corresponding to an RB and N0 denotes the thermal noise. Similarly, the
SINR for the MUE m ∈ Um over RB n can be written as follows:

γ(n)
m =

g
(n)
M,mp

(n)
M∑

k∈KT

g
(n)
k,mp

(n)
k + σ2

. (1.2)

Given the SINR, the data rate of the UE u ∈ U over RB n can be calculated according to the
Shannon’s formula, i.e., R(n)

u = BRB log2

(
1 + γ

(n)
u

)
.

1.3.3 Formulation of the Resource Allocation Problem

The objective of resource (i.e., RB and transmit power) allocation problem is to obtain the
assignment of RB and power level (e.g., transmission alignment) for the underlay UEs (e.g.,
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D2D UEs, and SUEs) that maximizes the achievable sum data rate. The RB and power level
allocation indicator for any underlay transmitter k ∈ KT is denoted by a binary decision
variable x(n,l)

k where

x
(n,l)
k =

{
1, if the transmitter k is trasnmitting over RB n with power level l
0, otherwise.

(1.3)

Note that the decision variable x(n,l)
k = 1 implies that p(n)

k = l. Let K = S +D denote the
total number of underlay transmitters. The achievable data rate of an underlay UE uk with
the corresponding transmitter k is written as

Ruk
=

N∑
n=1

L∑
l=1

x
(n,l)
k BRB log2

(
1 + γ(n)

uk

)
. (1.4)

The aggregated interference experienced on RB n is given by I(n) =
K∑
k=1

L∑
l=1

x
(n,l)
k g

(n)
k,m∗k

p
(n)
k ,

wherem∗k = argmax
m

g
(n)
k,m, ∀m ∈ Um. In order to calculate the aggregated interference I(n)

on RB n we use the concept of reference user [25]. For any RB n, the interference caused
by the underlay transmitter k is determined by the highest gains between the transmitter
k and MUEs, e.g., the MUE m∗k who is the mostly affected UE by the transmitter k.
Satisfying the interference constraints considering the gain with reference user will also
satisfy the interference constraints for other MUEs. As mentioned in Section 1.3.1, an
underlay transmitter is allowed to use a particular transmission alignment only when it does
not violate the interference threshold to the MUEs, i.e., I(n) < I

(n)
max, ∀n. Mathematically,

the resource allocation problem can be expressed by using the following optimization
formulation:

(P1.1)
max

x
(n,l)
k , p

(n)
k

K∑
k=1

N∑
n=1

L∑
l=1

x
(n,l)
k BRB log2

(
1 + γ(n)

uk

)
subject to:

K∑
k=1

L∑
l=1

x
(n,l)
k g

(n)
k,m∗k

p
(n)
k < I(n)

max, ∀n ∈ N (1.5a)

N∑
n=1

L∑
l=1

x
(n,l)
k ≤ 1, ∀k ∈ KT (1.5b)

x
(n,l)
k ∈ {0, 1}, ∀k ∈ KT, ∀n ∈ N , ∀l ∈ L (1.5c)

where

γ(n)
uk

=
g

(n)
k,uk

p
(n)
k

g
(n)
M,uk

p
(n)
M +

K∑
k′∈KT,
k′ 6=k

L∑
l′=1

x
(n,l′)
j g

(n)
k′,uk

p
(n)
k′ + σ2

. (1.6)
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The objective of the resource allocation problem P1.1 is to maximize the data rate of
the SUEs and DUEs subject to the set of constraints given by Equations (1.5a)-(1.5c). With
the constraint in Equation (1.5a), the aggregated interference caused to the MUEs by the
underlay transmitters on each RB is limited by a predefined threshold. The constraint in
Equation (1.5b) indicates that the number of RB selected by each underlay transmitter should
be at most one and each transmitter can only select one power level at each RB. The binary
indicator variable for transmission alignment selection is represented by the constraint in
Equation (1.5c).

Corollary 1.3.1 The resource allocation problem P1.1 is a combinatorial non-convex non-
linear optimization problem and the centralized solution of the above problem is strongly
NP-hard especially for the large set of U , N , and L.

The complexity to solve the above problem using exhaustive search is of O
(

(NL)
K
)

.
As an example, when N = 6, L = 3, and K = 3 + 2 = 5, the decision set (e.g., search
space) contains 1889568 possible transmission alignments. Considering the computational
overhead, it not feasible to solve the resource allocation problem by a single central controller
(e.g., MBS) in a practical system; and such centralized solution approach requires all the
channel state information (CSI) available to the MBS.

Due to mathematical intractability of solving the above resource allocation problem, in
the following we present three distributed heuristic solution approaches, namely, stable
matching, factor graph based message passing, and distributed auction-based approaches.
The distributed solutions are developed under the assumption that the system is feasible, i.e.,
given the resources and parameters (e.g., size of the network, interference thresholds etc.), it
is possible to obtain an allocation that satisfies all the constraints of the original optimization
problem.

1.4 Resource Allocation Using Stable Matching
The resource allocation approach using stable matching involves multiple decision-making
agents, i.e., the available radio resources (transmission alignments) and the underlay
transmitters; and the solutions (i.e., matching between transmission alignments and
transmitters) are produced by individual actions of the agents. The actions, i.e., matching
requests and confirmation or rejection are determined by the given preference profiles, i.e.,
the agents hold lists of preferred matches over the opposite set each. The matching outcome
yields mutually beneficial assignments between the transmitters and available resources that
are individually conducted by such preference lists. In our model, the preference could based
on CSI parameters and achievable SINR. Stability in matching implies that, with regard to
their initial preferences, neither the underlay transmitters nor the MBS (e.g., transmission
alignments) have an incentive to alter the allocation.

1.4.1 Concept of Matching

A matching (i.e., allocation) is given as an assignment of transmission alignment to the
underlay transmitters forming the set {k, n, l} ∈ KT ×N × L. According to our system
model, each underlay transmitter is assigned to only one RB; however, multiple transmitters
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can transmit on the same RB to improve spectrum utilization. This scheme corresponds to a
many-to-one matching in the theory of stable matching. More formally the matching can be
defined as follows [26]:

Definition 1.4.1 A matching µ is defined as a function, i.e., µ : KT ×N × L → KT ×N ×
L such that

i) µ(k) ∈ N × L and |µl(n)| ∈ {0, 1} and
ii) µ(n) ∈

{
KT × L

}
∪ {∅} and |µ(n)| ∈ {1, 2, . . . ,K}

where µ(k) = {n, l} ⇔ µ(n) = {k, l} for ∀k ∈ KT,∀n ∈ N ,∀l ∈ L, and |µ(·)| denotes the
cardinality of matching outcome µ(·).

The above Definition 1.4.1 implies that µ is a one-to-one matching if the input to the
function is an underlay transmitter. On the other hand, µ is a one-to-many function, i.e.,
µl(n) is not unique if the input to the function is an RB. The interpretation of µ(n) = ∅
implies that for some RB n ∈ N the corresponding RB is unused by any underlay transmitter
under the matching µ. The outcome of the matching determines the RB allocation vector and
corresponding power level, e.g., µ ≡ X, where

X =
[
x

(1,1)
1 , · · · , x(1,L)

1 , · · · , x(N,L)
1 , · · · , x(N,L)

K

]T
. (1.7)

1.4.2 Utility Function and Preference Profile

Let the parameter Γ
(n,l)
uk , γ

(n)
uk |p(n)

k =l
denote the achievable SINR of the UE uk over RB

n using power level l (e.g., p(n)
k = l) where γ(n)

uk is given by Equation (1.6). We express
the data rate as a function of SINR. In particular, let R

(
Γ

(n,l)
uk

)
= BRB log2

(
1 + Γ

(n,l)
uk

)
denote the achievable data rate for the transmitter k over RB n using power level l. The
utility of an underlay transmitter for a particular transmission alignment is determined by
two factors, i.e., the achievable data rate for a given RB power level combination, and an
additional cost function that represents the aggregated interference caused to the MUEs on
that RB. In particular, the utility of the underlay transmitter k for a given RB n and power
level l is given by

U
(n,l)
k = w1R

(
Γ(n,l)
uk

)
− w2

(
I(n) − I(n)

max

)
(1.8)

where w1 and w2 are the biasing factors and can be selected based on which network tier
(i.e., macro-tier or underlay-tier) should be given priority for resource allocation [23]. As
mentioned earlier each underlay transmitter and RB hold a list of preferred matches. The
preference profile of an underlay transmitter k ∈ KT over the set of available RBs N and
power levelsL is defined as a vector of linear order Pk(N ,L) =

[
U

(n,l)
k

]
n∈N ,l∈L

. We denote

by {n1, l1} �k {n2, l2} that the transmitter k prefers the transmission alignment {n1, l1} to
{n2, l2}, and consequently, U(n1,l1)

k > U
(n2,l2)
k . Similarly, the each RB holds the preference

over the underlay transmitters and power levels given by Pn(KT,L) =
[
U

(n,l)
k

]
k∈KT,l∈L

.
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Algorithm 1.1 Assignment of transmission alignments using stable matching
Input: The preference profiles Pk(N ,L), ∀k ∈ KT and Pn(KT,L), ∀n ∈ N .

Output: The transmission alignment indicator X =
[
x

(1,1)
1 , · · · , x(1,L)

1 , · · · , x(N,L)
1 , · · · , x(N,L)

K

]T
.

1: Initialize X := 0.
2: while some transmitter k is unassigned and Pk(N ,L) is non-empty do
3: {nmp, lmp} := most preferred RB with power level lmp from the profile Pk(N ,L).

4: Set x(nmp,lmp)
k := 1. /* Temporarily assign the RB and power level to the transmitter k */

5: I(nmp) := g
(nmp)

k,m∗
k
lmp +

∑
k′∈KT,
k′ 6=k

L∑
l′=1

x
(nmp,l

′)
k′ g

(nmp)

k′,m∗
k′
p

(nmp)

k′ . /* Estimate interference of nmp */

6: if I(nmp) ≥ I(mp)
max then

7: repeat
8: {klp, llp} := least preferred transmitter with power level llp assigned to nmp.

9: Set x(nmp,llp)
klp

:= 0. /* Revoke assignment due to interference threshold violation */

10: I(nmp) :=
K∑

k′=1,

L∑
l′=1

x
(nmp,l

′)
k′ g

(nmp)

k′,m∗
k′
p

(nmp)

k′ . /* Update interference level */

/* Update preference profiles */
11: for each successor {k̂lp, l̂lp} of {klp, llp} on profile Pnmp(KT,L) do
12: remove {k̂lp, l̂lp} from Pnmp(KT,L).
13: remove {nmp, lmp} from Pk̂lp

(N ,L).
14: end for
15: until I(nmp) < I

(nmp)
max

16: end if
17: end while

1.4.3 Algorithm Development

The matching between transmission alignments to the transmitters is performed in an iterative
manner as presented in Algorithm 1.1. While a transmitter is unallocated and has a non-
empty preference list, the transmitter is temporarily assigned to its first preference over
transmission alignments, e.g., the pair of RB and power level, {n, l}. If the allocation to
the RB n does not violate the tolerable interference limit I(n)

max, the allocation will persist.
Otherwise, until the aggregated interference on the RB n is below threshold, the worst
preferred transmitter(s) from the preference list of RB n will be removed even though it
was allocated previously. The process terminates when no more transmitters are unallocated.
Since the iterative process dynamically updates the preference lists, the procedure above ends
up with a local stable matching [27].

The overall stable matching-based resource allocation approach is summarized in
Algorithm 1.2. Note that Algorithm 1.1 is executed repeatedly. The convergence of
Algorithm 1.2 occurs when the outcome of two consecutive local matching is similar, e.g.,

X(t) = X(t− 1) and as a consequenceR(t) = R(t− 1), whereR(t) =
K∑
k=1

Ruk
(t) denotes

the achievable sum rate of the underlay-tier at iteration t.
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Algorithm 1.2 Stable matching-based resource allocation
Initialization:

1: Estimate the CSI parameters from previous time slot.
2: Each underlay transmitter k ∈ KT randomly selects a transmission alignment and the MBS

broadcasts the aggregated interference of each RB using pilot signals.
3: Each underlay transmitter k ∈ KT builds the preference profile Pk(N ,L) from the CSI

estimations and the utility function given by Equation (1.8).
4: For each n ∈ N , the MBS builds the preference profiles Pn(KT,L).
5: Initialize number of iterations t := 1.

Update:
6: while X(t) 6= X(t− 1) and t is less than some predefined threshold Tmax do
7: MBS obtains a local stable matching X(t) using Algorithm 1.1, calculates the aggregated

interference I(n)(t) for ∀n and informs the transmitters.
8: Each underlay transmitter k ∈ KT updates the preference profile Pk(N ,L) based on current

allocation vector X(t) and interference level I(n)(t).
9: MBS updates the preference profile Pn(KT,L) for ∀n ∈ N using X(t) and I(n)(t).

10: Update t := t+ 1.
11: end while

Transmission:
12: Use the resources (e.g., the RB and power levels) allocated in the final stage of update phase for

data transmission.

1.4.4 Stability, Optimality, and Complexity of the Solution

In this section, we analyze the solution obtained by stable matching approach. The stability,
optimality, and the complexity of the algorithm are discussed in the following.

Stability

The notion of stability in the matching µ means that none of the agents (e.g., either underlay
transmitters or the resources) prefers to change the allocation obtained by µ. Hence, the
matching µ is stable if no transmitter and no resource who are not allocated to each other, as
given in µ, prefer each other to their allocation in µ. The transmitters and resources are said
to be acceptable if the agents (e.g., transmitters and resources) prefer each other to remain
unallocated. In addition, a matching µ is called individually rational if no agent ̃ prefers
unallocation to the matching in µ(̃). Before formally defining the stability of matching, we
introduce the term blocking pair which is defined as

Definition 1.4.2 A matching µ is blocked by a pair of agent (i, j) if they prefer each other to
the matching obtain by µ, i.e., i �j µ(j) and j �i µ(i).

Using the above definition, the stability of the matching can be defined as follows [28,
Chapter 5]:

Definition 1.4.3 A matching µ is stable if it is individually rational and there is no tuple
(k, n, l) within the set of acceptable agents such that k prefers {n, l} to µ(k) and n prefers
{k, l} to µ(n), i.e., not blocked by any pair of agents.
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The following theorem shows that the solution obtained by the matching algorithm is
stable.

Theorem 1.4.4 The assignment performed in Algorithm 1.1 leads to a stable allocation.

Proof. We proof the theorem by contradiction. Let µ be a matching obtained by Algorithm
1.1. Let us assume that the resource {n, l} is not allocated to the transmitter k, but it belongs
to a higher order in the preference list. According to this assumption, the tuple (k, n, l) will
block µ. Since the position of the resource {n, l} in the preference profile of k is higher
compared to any resource {n̂, l̂} that is matched by µ, i.e., {n, l} �k µ(k), transmitter k must
select {n, l} before the algorithm terminates. Note that, the resource {n, l} is not assigned to
transmitter k in the matching outcome µ. This implies that k is unassigned with the resource
{n, l} (e.g., line 9 in Algorithm 1.1) and (k, n̂, l̂) is a better assignment. As a result, the tuple
(k, n, l) will not block µ, which contradicts our assumption. The proof concludes since no
blocking pair exists, and therefore, the matching outcome µ leads to a stable matching.

It is worth mentioning that the assignment is stable at each iteration of Algorithm 1.1.
Since after evaluation of the utility, the preference profiles are updated and the matching
subroutine is repeated, a stable allocation is obtained at each iteration.

Optimality

The optimality property of the stable matching approach can be observed using the definition
of weak Pareto optimality. LetRµ denote the sum-rate obtained by matching µ. A matching
µ is weak Pareto optimal if there is no other matching µ̂ that can achieve a better sum-rate,
i.e.,Rµ̂ ≥ Rµ [26].

Theorem 1.4.5 The stable matching-based resource allocation algorithm is weak Pareto
optimal.

Proof. Let us consider µ to be the stable allocation obtained by Algorithm 1.1. For
instance, let µ̂ be an arbitrary stable outcome better that µ, i.e., µ̂ can achieve a better sum-
rate. Since the allocation µ̂ is better than µ, there exists atleast one resource {n̂, l̂} allocated to
transmitter k in µ̂, and k is allocated to the resource {n, l} in µ. According to our assumption,
k prefers {n̂, l̂} to {n, l}, and let {n̂, l̂} be allocated to transmitter k̂ in µ. It is obvious
that resource {n̂, l̂} is better than {n, l} to transmitter k and {k, l} is better than {k̂, l̂} to
resource n̂, i.e., {n̂, l̂} �k {n, l} and {k, l} �n̂ {k̂, l̂}. By the definition of blocking pair, µ
is blocked by (k, n̂, l̂) and hence µ is unstable. This contradicts our assumption that µ is a
stable allocation. Since there is no stable outcome µ̂ which is better that µ, by definition µ is
an optimal allocation.

Complexity

It is possible to show that the stable matching algorithm will iterate for finite number of times.

Theorem 1.4.6 The RB allocation subroutine terminates after some finite step T ′.
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Proof. Let the finite set X̃ represent the all possible combinations of transmitter-resource
matching where each element x̃(n,l)

k ∈ X̃ denotes the resource {n, l} is allocated to the
transmitter k. Since no transmitter is rejected by the same resource more than once (i.e.,
line 9 in Algorithm 1.1), the finiteness of the set X̃ ensures the termination of the matching
subroutine in finite number of steps.

For each underlay transmitter, the complexity to build the preference profile using
any standard sorting algorithm is O (NL log(NL)) (line 8, Algorithm 1.2). Similarly,
in line 9, the complexity to output the ordered set of preference profile for the RBs is

of O (NKL log(KL)). Let ξ =

K∑
k=1

|Pk(N ,L)|+
N∑
n=1

|Pn(KT,L)| = 2KNL be the total

length of input preferences in Algorithm 1.1, where |Pj(·)| denotes the length of profile
vector Pj(·). From Theorem 1.4.6 and [29, Chapter 1] it can be shown that, if implemented
with suitable data structures, the time complexity of the RB allocation subroutine is linear
in the size of input preference profiles, i.e., O(ξ) = O (KNL). Since the update phase of
Algorithm 1.2 runs at most fixed T < Tmax iterations, the complexity of the stable matching-
based solution is linear in K,N,L.

1.5 Message Passing Approach for Resource Allocation

In the following, we reformulate the resource allocation problem P1.1 in such a way that can
be solved with a message passing (MP) technique. The MP approach involves computation
of the marginals, e.g., the messages exchanged between the nodes of a specific graphical
model. Among different representations of graphical model, we consider factor graph based
MP scheme. A factor graph is made up of two different types of nodes, i.e., function and
variable nodes, and an edge connects a function (e.g., factor) node to a variable node if and
only if the variable appears in the function. Mathematically, this can be expressed as follows
[30]:

Definition 1.5.1 A factor graph can be represented by a V-F bipartite graph where V =
{v1, · · · va} is the set of variable nodes and F = {f1(·), · · · fb(·)} is the set of function (e.g.,
factor) nodes. The connectivity (e.g., edges) of the factor graph can be represented by an
a× b binary matrix E = [Ei,j ] where Ei,j = 1 if the variable node i is connected with the
factor node j and Ei,j = 0, otherwise.

1.5.1 Overview of the MP Scheme

Before presenting the details resource allocation approach for a heterogeneous scenario, we
briefly introduce the generic MP scheme (for the details of factor graph-based MP scheme
refer to [30]). Let us consider the maximization of an arbitrary function f(v1, · · · , vJ)

over all possible values of the argument, i.e., Z = max
v

f(v) where v = [v1, · · · , vJ ]
T.

We denote by max
v

that the maximization is computed over all possible combinations
of the elements of the the vector v. The marginal of Z with respect to variable vj
is given by φj(vj) = max

∼(vj)
f(v) where max

∼(·)
denote the maximization over all variables
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except (·). Let us now decompose f(v) into summation of I functions, i.e.,
I∑
i=1

fi(v̂i)

where v̂i is a subset of the elements of the vector v and let f = [f1(·), · · · , fI(·)]T is
the vector of I functions. In addition, let fj represents subset of functions in f where

the variable vj appears. Hence the marginal can be rewritten as φj(vj) = max
∼(vj)

I∑
i=1

fi(v̂i).

According to the max-sum MP strategy the message passed by any variable node vj to any
generic function node fi(·) is given by δvj→fi(·)(vj) =

∑
i′∈fj ,i′ 6=i

δfi′ (·)→vj (vj). Similarly,

the message from function node fi(·) to variable node vj is given as δfi(·)→vj (vj) =

max
∼(vj)

(
fi(v1, · · · , vJ) +

∑
j′∈v̂i,j′ 6=j

δvj′→fi(·)(vj′)

)
. When the factor graph is cycle free

(e.g., there is a unique path connecting any two nodes), all the variables nodes j =

{1, · · · , J} can compute the marginals as φj(vj) =
I∑
i=1

δfi(·)→vj (vj). Utilizing the general

distributive law (e.g., max
∑

=
∑

max) [31] the maximization therefore can be computed

as Z =
J∑
j=1

max
vj

φj(vj).

1.5.2 Reformulation of the Resource Allocation Problem Utilizing MP
Approach

In order to solve the resource allocation problem P1.1 presented in Section 1.3.3 using
MP, we reformulate it as a utility maximization problem. Let us define the reward functions
Wn(X) and Rk(X) where the transmission alignment vector X is given by Equation (1.7).
With the constraint in Equation (1.5a), we can define Wn(X) as follows:

Wn(X) =

0, if
K∑
k=1

L∑
l=1

x
(n,l)
k g

(n)
k,m∗k

p
(n)
k < I

(n)
max

−∞, otherwise.
(1.9)

Similarly to deal with the constraint in Equation (1.5b) we define Rk(X) as

Rk(X) =


N∑
n=1

L∑
l=1

x
(n,l)
k BRB log2

(
1 + γ

(n)
uk

)
if

N∑
n=1

L∑
l=1

x
(n,l)
k ≤ 1

−∞ otherwise.
(1.10)

The interpretations of the reward functions in Equations (1.9) and (1.10) are straightforward.
Satisfying the interference constraint in Equation (1.5a) does not cost any penalty (e.g., zero
reward) in the function Wn(X), and in the function Rk(X) fulfillment of the RB requirement
constraint in Equation (1.5b) gives the desired data rate. However, both in the functions
Wn(X) and Rk(X), the unfulfilled constraints, respectively, given by in Equations (1.5a)
and (1.5b), result in infinite cost.

From the Equations (1.9) and (1.10), the resource allocation problem P1.1 can be

rewritten as max
X

(
N∑
n=1

Wn(X) +
K∑
k=1

Rk(X)

)
and the optimal transmission allocation
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vector is therefore given by

X∗ = argmax
X

(
N∑
n=1

Wn(X) +

K∑
k=1

Rk(X)

)
. (1.11)

Since our goal is to obtain a distributed solution for the above resource allocation problem,
we focus on a single transmission alignment allocation variable, e.g., x(n,l)

k . From Equation
(1.11) we obtain x(n,l)

k

∗
= argmax

x
(n,l)
k

φ
(n,l)
k

(
x

(n,l)
k

)
where the marginal φ(n,l)

k

(
x

(n,l)
k

)
is given

by

φ
(n,l)
k

(
x

(n,l)
k

)
= max
∼
(
x
(n,l)
k

)
(

N∑
n=1

Wn(X) +

K∑
k=1

Rk(X)

)
. (1.12)

As mentioned in the previous section, max
∼
(
x
(n,l)
k

) denote the maximization over all variables

in X except x(n,l)
k . The marginalization in Equation (1.12) can be computed in a distributed

way where each node conveys the solution of a local problem to one another by passing
information messages according to the max-sum MP strategy. Note that according to our
system model the underlay transmitters and the resources (e.g., transmission alignments) can
form a bipartite graph, e.g., each transmission alignment {n, l} can be assigned to any of the
K transmitters as long as interference to the MUEs on RB n is below threshold. Without
loss of generality, let us consider a generic transmission alignment, e.g., RB-power level pair
{n, l} ∈ N × L and an underlay transmitter k ∈ KT. Using the function in Equation (1.9)
and utilizing the max-sum MP strategy presented in Section 1.5.1, it is possible to show that
the message delivered by the resource {n, l} to the transmitter k can be expressed as [32]

δ{n,l}→k
(
x

(n,l)
k

)
= max

∑
k′∈KT, k′ 6=k

δk′→{n,l}
(
x

(n,l)
k′

)

subject to:
K∑
k=1

L∑
l=1

x
(n,l)
k g

(n)
k,m∗k

p
(n)
k < I(n)

max.

(1.13)

Note that the term δk→{n,l}
(
x

(n,l)
k

)
in the above equation denotes the message from

transmitter k to the resource {n, l} which can be written as [32]

δk→{n,l}
(
x

(n,l)
k

)
= x

(n,l)
k R(n,l)

uk
+ max

∑
{n′,l′}∈N×L
n′ 6=n, l′ 6=l

x
(n′,l′)
k R(n′,l′)

uk
+ δ{n′,l′}→k

(
x

(n′,l′)
k

)

subject to:
N∑
n=1

L∑
l=1

x
(n,l)
k ≤ 1

(1.14)
where R(n,l)

uk = BRB log2

(
1 + Γ

(n,l)
k

)
and Γ

(n,l)
k , γ

(n)
uk |p(n)

k =l
.

The interpretation of the Equations (1.13) and (1.14) are as follows: the messages
δ{n,l}→k(1) and δk→{n,l}(1) carry the information relative to the use of the resource {n, l}
by the transmitter k; while the messages δ{n,l}→k(0) and δk→{n,l}(0) carry the information
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relative to the lack of transmission over the resource {n, l} by the transmitter k. In order to
obtain both the messages δ{n,l}→k

(
x

(n,l)
k

)
and δk→{n,l}

(
x

(n,l)
k

)
, it is required to solve the

local optimization problem relative to the allocation variable x(n,l)
k .

Based on the discussions of Section 1.5.1, the link-wise marginal in Equation (1.12) can
be written as [32]

φ
(n,l)
k

(
x

(n,l)
k

)
= δ{n,l}→k

(
x

(n,l)
k

)
+ δk→{n,l}

(
x

(n,l)
k

)
(1.15)

and hence the transmission allocation variable is given by

x
(n,l)
k

∗
= argmax

x
(n,l)
k

φ
(n,l)
k

(
x

(n,l)
k

)
. (1.16)

At each iteration of the MP-based resource allocation algorithm, at most one message passes
through the edge of any given direction (e.g., from transmitters to resources or from resources
to transmitters); and each iteration the messages are updated by replacing the previous
message sent on the same edge in the same direction [32]. When both the messages given
by Equations (1.13) and (1.14) are available, the marginal can be computed using Equation
(1.15) and the transmission allocation variable is obtained by Equation (1.16).

1.5.3 Effective Implementation of MP Scheme in a Practical
Heterogeneous Network

It is worth noting that, sending messages from resources to transmitters (and vice versa)
requires actual transmission on the radio channel. In a practical LTE-A-based 5G system,
since the exchange of messages actually involves effective transmissions over the channel,
the MP scheme described in the preceding section might be limited by the signaling overhead
due to transfer of messages between the transmitters and resources. In the following, we
observe that the amount of message signaling can be significantly reduced by some algebraic
manipulations. Since the messages carry the information regarding whether any resource is
used by any underlay transmitter, each transmitter k actually delivers a real valued vector
with two element, i.e., δk→{n,l} =

[
δk→{n,l}(1), δk→{n,l}(0)

]T
and each resource {n, l}

delivers the vector δ{n,l}→k =
[
δ{n,l}→k(1), δ{n,l}→k(0)

]T
. Let us now rewrite the message

δk→{n,l}
(
x

(n,l)
k

)
using the utility function introduced in Equation (1.8) as follows:

δk→{n,l}
(
x

(n,l)
k

)
= x

(n,l)
k U

(n,l)
k + max

∑
{n′,l′}∈N×L
n′ 6=n, l′ 6=l

x
(n′,l′)
k U

(n′,l′)
k + δ{n′,l′}→k

(
x

(n′,l′)
k

)
.

(1.17)
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By subtracting the constant term
∑

{n′,l′}∈N×L
n′ 6=n, l′ 6=l

δ{n′,l′}→k(0) from the both sides of Equation

(1.17) we can obtain the following:

δk→{n,l}
(
x

(n,l)
k

)
−

∑
{n′,l′}∈N×L
n′ 6=n, l′ 6=l

δ{n′,l′}→k(0) = x
(n,l)
k U

(n,l)
k +

max
∑

{n′,l′}∈N×L
n′ 6=n, l′ 6=l

x
(n′,l′)
k U

(n′,l′)
k + δ{n′,l′}→k

(
x

(n′,l′)
k

)
− δ{n′,l′}→k(0).

(1.18)

Let us now introduce the parameter ψ{n,l}→k = δ{n,l}→k(1)− δ{n,l}→k(0) defined as the
normalized message. For instance, consider the vector

Ψk =
[
U

(1,1)
k + ψ{1,1}→k, · · · ,U

(1,L)
k + ψ{1,L}→k, · · · ,U

(N,L)
k + ψ{N,L}→k

]T
and let us denote by

〈
υ{n′,l′}→k

〉
∼{n,l} the maximal entry of the vector Ψk without

considering the term U
(n,l)
k + ψ{n,l}→k. It can be noted that the terms within the summation

in Equation (1.18) are either 0 (e.g., when x(n,l)
k = 0) or U(n′,l′)

k + ψ{n′,l′}→k (e.g., when
x

(n,l)
k = 1). Since each transmitter requires only a single transmission alignment, when the

variable x(n,l)
k = 0, only one term in the summation of Equation (1.18) is non-zero. For the

case x(n,l)
k = 1, no term within the summation of Equation (1.18) is non-zero. Consequently,

for x(n,l)
k = 0, the maximum rate will be achieved if

δk→{n,l}(0)−
∑

{n′,l′}∈N×L
n′ 6=n, l′ 6=l

δ{n′,l′}→k(0) =
〈
υ{n′,l′}→k

〉
∼{n,l} . (1.19)

Similarly, when x(n,l)
k = 1, the maximum is given by

δk→{n,l}(1)−
∑

{n′,l′}∈N×L
n′ 6=n, l′ 6=l

δ{n′,l′}→k(0) = U
(n,l)
k . (1.20)

Since by definition ψk→{n,l} = δk→{n,l}(1)− δk→{n,l}(0), from the Equations (1.19) and
(1.20), the normalized messages from the transmitter k to the resource {n, l} can be derived
as

ψk→{n,l} = U
(n,l)
k −

〈
υ{n′,l′}→k

〉
∼{n,l}

= U
(n,l)
k −

〈
U

(n′,l′)
k + ψ{n′,l′}→k

〉
∼{n,l}

. (1.21)

Likewise, from [32], it can be shown that the normalized message sent from the resource
{n, l} to the transmitter k becomes

ψ{n,l}→k = δ{n,l}→k(1)− δ{n,l}→k(0) = − max
k′∈KT,k′ 6=k

ψk′→{n,l}. (1.22)
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For any arbitrary graph, the allocation variables may keep oscillating and might not converge
to any fixed point, and the MP scheme may require some heuristic approach to terminate.
However, in the context of loopy graphical models, by introducing a suitable weight, the
messages given by Equations (1.21) and (1.22) perturb to a fixed point [32, 33]. Accordingly,
Equations (1.21) and (1.22) can be rewritten as [32]

ψk→{n,l} = U
(n,l)
k − ω

〈
U

(n′,l′)
k + ψ{n′,l′}→k

〉
∼{n,l}

− (1− ω)
(
U

(n,l)
k + ψ{n,l}→k

)
(1.23)

ψ{n,l}→k = −ω max
k′∈KT,k′ 6=k

ψk′→{n,l} − (1− ω) ψk→{n,l} (1.24)

where ω ∈ (0, 1] denotes the weighting factor for each edge. Notice that when ω = 1, the
messages given by Equations (1.23) and (1.24) reduce to the original formulation, e.g.,
Equations (1.21) and (1.22), respectively. Given the normalized messages ψk→{n,l} and
ψ{n,l}→k for ∀k, n, l, the node marginals for the normalized messages can be calculated as
τ

(n,l)
k = ψk→{n,l} + ψ{n,l}→k and hence from Equation (1.16) the transmission alignment

allocation can be obtained as

x
(n,l)
k

∗
=

{
1 if τ (n,l)

k > 0 and I(n) < I
(n)
max

0 otherwise.
(1.25)

1.5.4 Algorithm Development

In line with our discussions and from the expressions derived in Section 1.5.3, the MP-based
resource allocation approach is outlined in Algorithm 1.3. The underlay transmitters and
the resources (e.g., MBS) exchange the messages in an iterative manner. The MBS assigns
the resource to the transmitters considering the node marginals, as well as the interference
experienced on the RBs. The algorithm terminates when the sum data rate is reached to a
steady value, i.e., the allocation vector X remains the same in successive iterations.

1.5.5 Convergence, Optimality, and Complexity of the Solution

The convergence, optimality, and complexity of the message passing approach is analyzed in
the following subsections.

Convergence and Optimality

As presented in the following theorem, the message passing algorithm converges to fixed
messages within fixed number of iterations.

Theorem 1.5.2 The marginals and the allocation in Algorithm 1.3 converge to a fixed point.

Proof. The proof is constructed by utilizing the concept of contraction mapping
[34, Chapter 3]. Let the vector ψ(t) =

[
ψ1→{1,1}(t), · · · , ψk→{n,l}(t), · · ·ψK→{N,L}(t)

]T
represent all the messages exchanged between the transmitters and the resources (e.g., MBS)
at iteration t. Let us consider the messages are translated into the mapping ψ(t+ 1) =
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Algorithm 1.3 Resource allocation using message passing
Initialization:

1: Estimate the CSI parameters from previous time slot.
2: Each underlay transmitter k ∈ KT selects a transmission alignment randomly and reports to MBS.
3: Initialize t := 1, ψk→{n,l}(0) := 0, ψ{n,l}→k(0) := 0 for ∀k, n, l.

Update:
4: while X(t) 6= X(t− 1) and t less than some predefined threshold Tmax do
5: Each underlay transmitter k ∈ KT sends the message

ψk→{n,l}(t) = U
(n,l)
k (t− 1)− ω

〈
U

(n′,l′)
k (t− 1) + ψ{n′,l′}→k(t− 1)

〉
∼{n,l}

− (1− ω)
(
U

(n,l)
k (t− 1) + ψ{n,l}→k(t− 1)

)
for ∀{n, l} ∈ N × L to the MBS.

6: For all the resource ∀{n, l} ∈ N × L, MBS sends messages

ψ{n,l}→k(t) = −ω max
k′∈KT,k′ 6=k

ψk′→{n,l}(t− 1)− (1− ω) ψk→{n,l}(t− 1)

to each underlay transmitter k ∈ KT.
7: Each underlay transmitter k ∈ KT computes the marginals as τ

(n,l)
k (t) = ψk→{n,l}(t) +

ψ{n,l}→k(t) for ∀{n, l} ∈ N × L and reports to the MBS.
/* MBS calculates the allocation vector according to Equation (1.25) */

8: Set x(n,l)
k := 0 for ∀k, n, l /* Initialize the variable to obtain final allocation */

9: for each k ∈ KT and {n, l} ∈ N × L do
10: if τ (n,l)

k (t) > 0 then
11: Set x(n,l)

k := 1. /* Assign the resource to the transmitter */

12: I(n) :=
K∑

k′=1

L∑
l′=1

x
(n,l′)
k′ g

(n)

k′,m∗
k′
p

(n)

k′ . /* Calculate interference in RB n */

13: if I(n) ≥ I(n)
max then

14: repeat
15: {k̂, l̂} := argmax

k′∈KT,l′∈L
x

(n,l′)
k′ g

(n)

k′,m∗
k′
p

(n)

k′ /* Most interfering transmitter k̂ with p(n)

k̂
= l̂ */

16: Set x(n,l̂)

k̂
:= 0. /* Unassigned due to interference threshold violation */

17: I(n) :=
K∑

k′=1

L∑
l′=1

x
(n,l′)
k′ g

(n)

k′,m∗
k′
p

(n)

k′ . /* Update interference level */

18: until I(n) < I
(n)
max

19: end if
20: end if
21: end for
22: MBS calculates the transmission alignment allocation vector X(t) =

[
x

(n,l)
k

]
∀k,n,l

for the

iteration t.
23: Update t := t+ 1.
24: end while

Transmission:
25: Use the allocated transmission alignments (e.g., the RB and power levels) for data transmission.

T (ψ(t)) =
[
T(1,1)

1 (ψ(t)) , · · · ,T(N,L)
K (ψ(t))

]T
. From the Equations (1.23) and (1.24) we
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can obtain ψk→{n,l}(t+ 1) = T(n,l)
k (ψ(t)) as follows:

T(n,l)
k (ψ(t)) = ω

(
U

(n,l)
k (t)− U

(n′,l′)
k (t)

)
+

ω

(
ω max
k′∈KT,k′ 6=k

ψk′→{n′,l′}(t) + (1− ω)ψk→{n′,l′}(t)

)
+

(1− ω)

(
ω max
k′∈KT,k′ 6=k

ψk′→{n,l}(t) + (1− ω)ψk→{n,l}(t)

)
. (1.26)

For any vector u and v, any generic mapping T is a contraction if ‖ T(u)− T(v) ‖∞ ≤
ε‖ u− v ‖∞, where ε < 1 is the modulus of the mapping [34, Chapter 3]. From [33], it
can be shown that the mapping T : RKNF → RKNF is a contraction under the maximum
norm, e.g., ‖ T (ψ) ‖∞ = max

k∈KT,n∈N ,l∈L
|T(n,l)
k (ψ) |. Since the contraction mappings have

a unique fixed point convergence property for any initial vector, the proof concludes with
that fact that message passing algorithm converges to a fixed marginal and hence to a fixed
allocation vector X.

The following theorem presents the fixed convergence point of the message passing
algorithm is an optimal solution of the original resource allocation problem.

Theorem 1.5.3 The allocation obtained by message passing algorithm converges to the
optimal solution of resource allocation problem P1.1.

Proof. The theorem is proved by contradiction. Let us consider that the solution X̃
obtained by message passing algorithm is not optimal and let X∗ be the optimal solution
obtained by solving P1.1. Let us further assume that there are χ ≤ |X| entries (e.g.,
allocations) that differ between X̃ and X∗. In addition, let Ñ × L̃ ⊆ N × L denote the
subset of resources for which two allocations differ. For each {ñ, l̃} ∈ Ñ × L̃ there is a
transmitter κ{ñ,l̃} such that x̃(ñ,l̃)

κ{ñ,l̃}
= 1 and x∗(ñ,l̃)κ{ñ,l̃}

= 0, and a transmitter κ̈{ñ,l̃} 6= κ{ñ,l̃}

such that x̃(ñ,l̃)
κ̈{ñ,l̃}

= 0 and x∗(ñ,l̃)κ̈{ñ,l̃}
= 1. Hence, the assignment of resource {ñ, l̃} to transmitter

κ{ñ,l̃} implies that the marginal τ (ñ,l̃)
κ̈{ñ,l̃}

< 0 and the following set of inequalities hold for each

{ñ, l̃} ∈ Ñ × L̃:

τ
(ñ,l̃)
κ̈{ñ,l̃}

= ω
[(

U
(ñ,l̃)
κ̈{ñ,l̃}

+ ψ{ñ,l̃}→κ̈{ñ,l̃}

)
−
(
U

(n′,l′)
κ̈{ñ,l̃}

+ ψ{n′,l′}→κ̈{ñ,l̃}

)]
< 0 (1.27)

where {n′, l′} is the resource as represented in Equation (1.21). According to our assumption,
the resource {n′, l′} also belongs to Ñ × L̃. Hence,

∑
{ñ,l̃}∈Ñ×L̃

τ
(ñ,l̃)
κ̈{ñ,l̃}

= ω (∆U + ∆ψ)

where

∆U =
∑

{ñ,l̃}∈Ñ×L̃

(
U

(ñ,l̃)
κ̈{ñ,l̃}

− U(ñ,l̃)
κ{ñ,l̃}

)

=

K∑
k=1

N∑
N=1

L∑
l=1

x
∗(n,l)
k U

(n,l)
k −

K∑
k=1

N∑
N=1

L∑
l=1

x̃
(n,l)
k U

(n,l)
k (1.28)
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and ∆ψ =
∑

{ñ,l̃}∈Ñ×L̃

(
ψ{ñ,l̃}→κ̈{ñ,l̃}

− ψ{ñ,l̃}→κ{ñ,l̃}

)
. After some algebraic manipulations

(for details refer to [33]) we can obtain 2(1−ω)
ω

∑
{ñ,l̃}∈Ñ×L̃

τ
(ñ,l̃)
κ̈{ñ,l̃}

≤ ∆U. Since 0 < ω < 1 and

both the variables
∑

{ñ,l̃}∈Ñ×L̃
τ

(ñ,l̃)
κ̈{ñ,l̃}

and ∆U are positive, our assumption that X̃ is not

optimal is contradicted and the proof follows.

Complexity

If the message passing algorithm requires T < Tmax iterations to converge, it is
straightforward to verify that the time complexity at each MBS is of O (TKNL). Similarly,
considering a standard sorting algorithm that outputs the term

〈
U

(n′,l′)
k + ψ{n′,l′}→k

〉
∼{n,l}

in order to generate the message ψk→{n,l} with worst-case complexity ofO (NL log (NL)),

the overall time complexity at each underlay transmitter is of O
(
T (NL)

2
log (NL)

)
.

1.6 Auction-Based Resource Allocation
Our final solution approach for the resource allocation is the distributed auction algorithm.
The allocation using auction is based on the bidding procedure, where the agents (i.e.,
underlay transmitters) bid for the resources (e.g., RB and power level). The transmitters
select the bid for the resources based on the costs (e.g., the interference caused to the
MUEs) of using the resource. The desired assignment relies on the appropriate selection
of the bids. The unassigned transmitters raise the cost of using resource and bid for the
resources simultaneously. Once the bids from all the transmitters are available, the resources
are assigned to the highest bidder. An overview of auction approach is presented in the
following.

1.6.1 Overview of the Auction Approach

In a generic auction-based assignment model, every resource j associated with a cost cj and
each agent i can get the benefit Bij from the resource j. Given the benefit Bij , every agent i
who wishes to be assigned with the resource j, needs to pay the cost cj . The net value (e.g.,
utility) that an agent i can get from the resource j is given byBij − cj . The auction procedure
involves the assignment of agent iwith the resource j′ which provides the maximal net value,
i.e.,

Bij′ − cj′ = max
j
{Bij − cj} . (1.29)

If the condition given in Equation (1.29) is satisfied for all the agents i, the assignment and
the set of costs are referred to as equilibrium [35]. However, in many practical problems,
obtaining an equilibrium assignment is not straightforward due to the possibility of cycles.
In particular, there may be cases where the agents contend for a small number of equally
desirable resources without increasing the cost, which creates cycle (e.g., infinite loop) in the
auction process. To avoid this difficulty, the notion of almost equilibrium is introduced in the
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literature. The assignment and the set of costs are said to be almost equilibrium when the
net value for assigning each agent i with the resource j′ is within a constant ε > 0 of being
maximal. Hence, in order to be an almost equilibrium assignment, the following condition
needs to be satisfied for all the agents [35]:

Bij′ − cj′ ≥ max
j
{Bij − cj} − ε. (1.30)

The condition in Equation (1.30) is known as ε-complementary slackness. When ε = 0,
Equation (1.30) reduces to ordinary complementary slackness given by Equation (1.29).

For instance, let the variable Θi = j denote that agent i is assigned with the resource j. In
addition, let cij denote the cost that agent i incurs in order to be assigned with resource j and
bij is the bidding information (i.e., highest bidder) available to the agent i about resource j.
The auction procedure evolves in an iterative manner. Given the the assignment Θi, the set
of costs [cij ]∀ij , and the set of largest bidders [bij ]∀ij of previous iteration, the agents locally
update the costs and the highest bidders for current iteration. In particular, the costs cij(t)
and bidding information bij(t) available to the agent i about resource j for iteration t are
updated from the previous iteration as follows [36]:

cij(t) = max
i′,i′ 6=i

{cij(t− 1), ci′j(t− 1)} (1.31)

bij(t) = max
i∗∈ argmax

i′,i′ 6=i
{cij(t−1),ci′j(t−1)}

{bi∗j(t− 1)} . (1.32)

The above update equations ensure that the agents will have the updated maximum cost of
the resource j (i.e., cj , max

i
{cij}) and the corresponding highest bidder for that resource.

Once the update cost and bidding information are available, agent i checks whether the
cost of the resource currently assigned to agent i, e.g., ciΘi(t−1) has been increased by
any other agents. If so, the current assignment obtained from previous iteration may not
be at (almost) equilibrium and the agent needs to select a new assignment, e.g., Θi(t) =
argmax

j
{Bij(t)− cij(t)}. In order to update the cost for new assignment (e.g., Θi(t)) for

any iteration t, the agent will use the following cost update rule [36]:

cij(t) = cij(t− 1) + ∆i(t− 1) (1.33)

where ∆i is given by

∆i(t− 1) = max
j
{Bij(t− 1)− cij(t− 1)} − max

j′ 6=Θi(t)
{Bij′(t− 1)− cij′(t− 1)}+ ε.

(1.34)
The variable max

j
{Bij(t− 1)− cij(t− 1)} and max

j′ 6=Θi(t)
{Bij′(t− 1)− cij′(t− 1)} denote

the maximum and second maximum net utility, respectively. Note that ∆i is
always greater than zero as ε > 0 and by definition max

j
{Bij(t− 1)− cij(t− 1)} >

max
j′ 6=Θi(t)

{Bij′(t− 1)− cij′(t− 1)}. Since ciΘi(t)(t) is the highest cost for iteration t, agent

i can also update the bidding information, e.g., biΘi(t)(t) = i. Accordingly, the cost update
rule using ∆i as given in Equation (1.33) ensures that the assignment and the set of costs are
almost at equilibrium [36].
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1.6.2 Auction for Radio Resource Allocation

Based on the discussion provided in the preceding section, in the following, we present the
auction-based resource allocation scheme. We present the cost model and use the concept of
auction to develop the resource allocation algorithm in our considered heterogeneous network
setup.

Cost Function

Let us consider the utility function given by Equation (1.8). Recall that the term
w2

(
I(n) − I(n)

max

)
in Equation (1.8) represents the cost (e.g., interference caused by underlay

transmitters to the MUE) of using the RB n. In particular, when the transmitter k is
transmitting with power level l, the cost of using RB n can be represented by

c
(n,l)
k = w2

(
I(n) − I(n)

max

)
= w2

(
K∑
k′=1

L∑
l′=1

x
(n,l′)
k′ g

(n)
k′,m∗

k′
p

(n)
k′ − I

(n)
max

)

= w2

g(n)
k,m∗k

l +
∑

k′∈KT,k′ 6=k

L∑
l′=1

x
(n,l′)
k′ g

(n)
k′,m∗

k′
p

(n)
k′ − I

(n)
max

 . (1.35)

Let the parameter C(n,l)
k = max{0, c(n,l)k } and accordingly the cost C(n,l)

k = 0 only if
I(n) ≤ I(n)

max. Notice that using the cost term we can represent Equation (1.8) as

U
(n,l)
k = w1R

(
Γ(n,l)
uk

)
− w2

(
I(n) − I(n)

max

)
= B

(n,l)
k − c(n,l)k = B

(n,l)
k − C(n,l)

k

where B(n,l)
k = w1R

(
Γ

(n,l)
uk

)
, and c(n,l)k is given by Equation (1.35). The variable B(n,l)

k is
proportional to the data rate achieved by transmitter k using resource {n, l}. Analogous to
the discussion of previous section, U(n,l)

k represents the net benefit that transmitter k obtains
from the resource {n, l}.

Let b(n,l)
k denote the local bidding information available to transmitter k for the resource

{n, l}. For notational convenience, let us assume that Θ : [k]k=1,··· ,K → [{n, l}]n=1,··· ,N
l=1,··· ,L

denotes the mapping between the transmitters and the resources, i.e., Θk = {n, l} represents
the assignment of resource {n, l} to transmitter k. Hence we represent by CΘk

k the cost of
using the resource {n, l} obtained by the assignment Θk = {n, l}. Similarly, given Θk =

{n, l} the variable bΘk

k ≡ b
(n,l)
k denotes the local bidding information about the resource

{n, l} available to the transmitter k. Note that Θk = {n, l} also implies x(n,l)
k = 1. In other

words, Θk = {n, l} denote the non-zero entry of the vector xk =
[
x

(n,l)
k

]
∀n,l

. Since each

underlay transmitter k selects only one resource {n, l}, only a single entry in the vector xk
is non-zero.

Update of Cost and Bidder Information

In order to obtain the updated cost and bidding information, we utilize similar concept
given by Equations (1.31)-(1.34). At the beginning of the auction procedure, each underlay
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transmitter updates the cost as C(n,l)
k (t) = max

k′∈KT,k′ 6=k

{
C

(n,l)
k (t− 1), C

(n,l)
k′ (t− 1)

}
. In

addition, as described by Equation (1.32), the information of maximum bidder is obtained by
b

(n,l)
k (t) = b

(n,l)
k∗ (t− 1) where k∗ = argmax

k′∈KT,k′ 6=k

{
C

(n,l)
k (t− 1), C

(n,l)
k′ (t− 1)

}
. When the

transmitter k needs to select a new assignment, i.e., Θk = {n̂, l̂}, the transmitter increases
the cost of using the resource, e.g., C(n̂,l̂)

k (t) = C
(n̂,l̂)
k (t− 1) + ∆k(t− 1), and ∆k(t− 1) is

given by

∆k(t− 1) = max
{n′,l′}∈N×L

U
(n′,l′)
k (t− 1)− max

{n′,l′}∈N×L
n′ 6=n̂,l′ 6=l̂

U
(n′,l′)
k (t− 1) + ε (1.36)

where ε > 0 indicates the minimum bid requirement parameter. Similar to Equation (1.34),
the term max

{n′,l′}∈N×L
U

(n′,l′)
k (t− 1)− max

{n′,l′}∈N×L
n′ 6=n̂,l′ 6=l̂

U
(n′,l′)
k (t− 1) denotes the difference

between the maximum and the second to the maximum utility value. In the case when
the transmitter k does not prefer to be assigned with a new resource, the allocation from
the previous iteration will remain unchanged, i.e., Θk(t) = Θk(t− 1), and consequently,
xk(t) = xk(t− 1).

1.6.3 Algorithm Development

Algorithm 1.5 outlines the auction-based resource allocation approach. Each transmitter
locally executes Algorithm 1.4 and obtains a temporary allocation. When the execution
of Algorithm 1.4 is finished, each underlay transmitter k reports to the MBS the local
information, e.g., choices for the resources, xk =

[
x

(n,l)
k

]
∀n,l

. Once the information (e.g.,

output parameters from Algorithm 1.4) from all the transmitters are available to the MBS,
the necessary parameters (e.g., input arguments required by Algorithm 1.4) are calculated
and broadcast by the MBS. Algorithm 1.4 repeated iteratively until the allocation variable

X = [xk]∀k =
[
x

(1,1)
1 , · · · , x(1,L)

1 , · · · , x(N,L)
1 , · · · , x(N,L)

K

]T
for two successive iterations

becomes similar.

1.6.4 Convergence, Complexity, and Optimality of the Auction Approach

In the following subsections we analyze the convergence, complexity, and optimality of the
solution obtained by auction algorithm.

Convergence and Complexity

For any arbitrary fixed ε > 0, the auction approach is guaranteed to converge to a fixed
assignment. The following theorem shows that the auction process terminates within a fixed
number of iterations.

Theorem 1.6.1 The auction process terminates in a finite number of iterations.
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Algorithm 1.4 Auction method for any underlay transmitter k
Input: Parameters from previous iteration: an assignment X(t− 1) = [x1(t− 1), · · ·xK(t− 1)]T,

aggregated interference I(n)(t− 1) for ∀n, cost of using resources C(t− 1) =[
C

(n,l)
k (t− 1)

]
∀k,n,l

and the highest bidders of the resources B(t− 1) = [Bk(t− 1)]∀k

where Bk(·) =
[
b

(n,l)
k (·)

]
∀n,l

.

Output: The allocation variable xk(t) =
[
x

(n,l)
k

]
∀n,l

, updated costs Ck(t) =
[
C

(n,l)
k (t)

]
∀n,l

, and

bidding information Bk(t) =
[
b

(n,l)
k (t)

]
∀n,l

at current iteration t for the transmitter k.

1: Initialize xk(t) := 0.
2: For all the resources {n, l} ∈ N × L,

• Obtain the transmitter k∗ := argmax
k′∈KT,k′ 6=k

{
C

(n,l)
k (t− 1), C

(n,l)

k′ (t− 1)
}

and update the

highest bidder as b(n,l)
k (t) := b

(n,l)
k∗ (t− 1).

• Update the cost as C(n,l)
k (t) := max

k′∈KT,k′ 6=k

{
C

(n,l)
k (t− 1), C

(n,l)

k′ (t− 1)
}

.

/* Let Θk(t− 1) denote the assignment of transmitter k at previous iteration t− 1, i.e., Θk(t− 1) represents
the non-zero entry in the vector xk(t− 1). Since each transmitter uses only one transmission alignment, only a
single entry in the vector xk(t− 1) is non-zero. When cost is greater than previous iteration and the transmitter
k is not the highest bidder, update the assignment */

3: if CΘk(t−1)
k (t) ≥ CΘk(t−1)

k (t− 1) and b
Θk(t−1)
k (t) 6= k then

4: {n̂, l̂} := argmax
{n′,l′}∈N×L

U
(n′,l′)
k (t). /* Obtain the best resource for transmitter k */

5: I(n̂) := g
(n̂)
k,m∗

k
l̂ + I(n̂). /* Calculate additional interference caused by transmitter k for using RB n̂ */

6: if I(n̂) < I
(n̂)
max then

7: Set x(n̂,l̂)
k := 1. /* e.g., Θk(t) = {n̂, l̂} */

8: Update the highest bidder for the resource {n̂, l̂} as b(n̂,l̂)
k (t) := k.

9: Increase the cost for the resource {n̂, l̂} as C(n̂,l̂)
k (t) = C

(n̂,l̂)
k (t− 1) + ∆k(t− 1) where

∆k(t− 1) is given by Equation (1.36).
10: else
11: Keep the assignment unchanged from previous iteration, i.e., xk(t) := xk(t− 1).
12: end if
13: else
14: Keep the assignment unchanged from previous iteration, i.e., xk(t) := xk(t− 1).
15: end if

Proof. According to our system model, each underlay transmitter selects only one
transmission alignment. Hence, once each resource receives at least one bid (which implies
that each transmitter is assigned to a resource), the auction process must terminate. Now if
any resource {n, l} receives a bid in t̂ iterations, the cost must be greater than the initial price
by t̂ε. As a result, the resource {n, l} becomes costly to be assigned when compared to any
resource {n′, l′} that has not received any bid yet. The argument follows that there are two
possibilities, e.g., i) the auction process terminates in a finite iterations with each transmitter
assigned to a resource, regardless of every resource receives a bid; or ii) the auction process
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Algorithm 1.5 Auction-based resource allocation
Initialization:

1: Estimate the CSI parameters from the previous time slot.
2: Each underlay transmitter k ∈ KT randomly selects a transmission alignment and reports to the

MBS.
3: MBS broadcasts the assignment of all transmitters, aggregated interference of each RB, the costs

and the highest bidders using pilot signals.
4: Initialize number of iterations t := 1.

Update:
5: while X(t) 6= X(t− 1) and t is less than some predefined threshold Tmax do
6: Each underlay transmitter k ∈ KT locally runs the Algorithm 1.4 and reports the assignment

xk(t), the cost Ck(t) and the bidding information Bk(t) to the MBS.
7: MBS calculates the aggregated interference I(n)(t) for ∀n, the allocation variable X(t),

information about highest bidders B(t), the cost C(t), and broadcast to the underlay
transmitters.

8: Update t := t+ 1.
9: end while

Transmission:
10: Use the resources (e.g., the RB and power levels) allocated in the final stage of update phase for

data transmission.

continues for a finite number of iterations and each resource will receive at least one bid,
therefore, the algorithm terminates.

At termination, the solution (e.g., allocation) obtained is almost at equilibrium, e.g., the
condition in Equation (1.30) is satisfied for all the underlay transmitters. Since the algorithm
terminates after a finite number of iterations, we can show that the algorithm converges to a
fixed allocation and the complexity at each transmitter is linear to the number of resources.

Theorem 1.6.2 The auction algorithm converges to a fixed allocation with the number of

iterations of O

(
TKNL

⌈
max
k,n,l

B
(n,l)
k −min

k,n,l
B

(n,l)
k

ε

⌉)
.

Proof. The proof follows from the similar argument presented in Theorem 1.6.1. In the
worst case, the total number of iterations in which a resource can receive a bid is no more

than Υ =

⌈
max
k,n,l

B
(n,l)
k −min

k,n,l
B

(n,l)
k

ε

⌉
[36]. Since each bid requires O (NL) iterations, and each

iteration involves a bid by a single transmitter, the total number of iterations in Algorithm
1.5 is of O (KNLΥ). For the convergence, the allocation variable X needs to be unchanged
for at least T ≥ 2 consecutive iterations. Hence, the overall running time of the algorithm is
O (TKNLΥ).

Note that for any transmitter node k ∈ KT, the complexity of the auction process given by
Algorithm 1.4 is linear with number of resources for each of the iterations.
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Optimality

In the following we show that the data rate obtained by the auction algorithm is within Kε of
the maximum data rate obtained by solving the original optimization problem P1.1.

Theorem 1.6.3 The data rate obtained by the distributed auction algorithm is within Kε of
the optimal solution.

Proof. We construct the proof by using an approach similar to that presented in [36]. The
data rate obtained by any assignment will satisfy the following condition:

K∑
k=1

Ruk
≤

∑
{n,l}∈N×L

Ĉ(n,l) +

K∑
k=1

max
{n,l}∈N×L

{
B

(n,l)
k − Ĉ(n,l)

}
(1.37)

where Ĉ(n,l) = max
k′∈KT

C
(n,l)
k′ , B(n,l)

k = w1R
(

Γ
(n,l)
uk

)
and Ruk

is given by Equation (1.4).

The inequality given by Equation (1.37) is satisfied since the first term in the right side of

the inequality, e.g.,
∑

{n,l}∈N×L
Ĉ(n,l) is equal to

K∑
k=1

N∑
n=1

L∑
l=1

x
(n,l)
k C

(n,l)
k and the second term

is not less than
K∑
k=1

N∑
n=1

L∑
l=1

x
(n,l)
k

(
B

(n,l)
k − Ĉ(n,l)

)
. Let the variable A∗ , max

X

K∑
k=1

Ruk
=

K∑
k=1

N∑
n=1

L∑
l=1

x
(n,l)
k BRB log2

(
1 + γ

(n)
uk

)
denote the optimal achievable data rate. In addition,

let the variable D∗ be defined as

D∗ , min
Ĉ(n,l)

{n,l}∈N×L

 ∑
{n,l}∈N×L

Ĉ(n,l) +

K∑
k=1

max
{n,l}∈N×L

{
B

(n,l)
k − Ĉ(n,l)

} . (1.38)

Hence from Equation (1.37), we can write A∗ ≤ D∗. Since the final assignment
and the set of costs are almost at equilibrium, for any underlay transmitter k, the

condition
N∑
n=1

L∑
l=1

x
(n,l)
k

(
B

(n,l)
k − Ĉ(n,l)

)
≥ max
{n,l}∈N×L

{
B

(n,l)
k − Ĉ(n,l)

}
− ε will hold.

Consequently, we can obtain the following inequality:

D∗ ≤
K∑
k=1

(
N∑
n=1

L∑
l=1

x
(n,l)
k Ĉ(n,l) + max

{n,l}∈N×L

{
B

(n,l)
k − Ĉ(n,l)

})

≤
K∑
k=1

N∑
n=1

L∑
l=1

x
(n,l)
k B

(n,l)
k +Kε ≤

K∑
k=1

Ruk
+Kε ≤ A∗ +Kε. (1.39)

Since A∗ ≤ D∗, the data rate achieved by the auction algorithm is within Kε of the optimal
data rate A∗ and the proof follows.

1.7 Qualitative Comparison Among the Resource Allocation Schemes
In this section, we compare the different resource allocation schemes discussed above based
on several criteria (e.g., flow of algorithm execution, information requirement and algorithm
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Table 1.2 Comparison among different resource allocation approaches

Criterion Schemes
COS Stable matching Message passing Auction method

Type of the
solution

Centralized Distributed Distributed Distributed

Algorithm
execution

MBS solves
the resource
optimization
problem (e.g.,
P1.1)

MBS and underlay
transmitters
locally update
the preference
profiles, MBS
runs the matching
subroutine

MBS and underlay
transmitters
alliteratively
exchange the
messages, MBS
computes the
marginals and
selects allocation

Each underlay
transmitters
locally runs the
auction subroutine,
MBS collects the
parameters from all
the transmitters and
broadcast required
parameters needed
for the auction
subroutine

Optimality Optimal Weak Pareto
optimal

Optimal subject to
the weight ω

Within Kε to the
optimal

Complexity O
(

(NL)K
)

at the
MBS

O (TNL log(NL))
at the transmitters,
O(TKNL) at the
MBS

O
(
T (NL)2 log (NL)

)
at the transmitters,
O (TKNL) at the
MBS

For each iteration
linear with N,L
at the transmitters,
overall running time
O (TKNLΥ)

Convergence
behavior

N/A Converges to a
stable matching
and hence to a fixed
allocation

Converges to a fixed
marginal and to a
fixed allocation

Converges to a fixed
allocation within
Kε of the optimal

Information
required by
the MBS

Channel gains (e.g.,
CSI parameters)
between all the
links of the network

The preference
profiles and
the channel
gains G(n)

k =[
g

(n)
k,m∗

k

]
∀k,n

The messages[
ψk→{n,l}

]
∀k,n,l

and the channel
gains G(n)

k =[
g

(n)
k,m∗

k

]
∀k,n

The channel
gains G(n)

k =[
g

(n)
k,m∗

k

]
∀k,n

,

local assignments
xk , the cost Ck ,
and the bidding
information Bk for
∀k

Algorithm
overhead

High (exponential)
computational
complexity,
requirement of
all CSI parameters
of the network

Build the preference
profiles, exchange
information to
update preference
profiles, execution
of matching
subroutine

Calculation
and exchange
of messages,
computation of
the marginals

Computation and
exchange of the
parameters, e.g.,
I(n) for ∀n, the
allocation vector X,
information about
highest bidders B,
the cost vector C

overhead, complexity and optimality of the solution, convergence behavior etc.). We term
the centralize solution (which can be obtained by solving the optimization problem P1.1)
as COS (centralized optimal scheme) and compare it with the distributed solutions. A
comparison among the resource allocation schemes is presented in Table 1.2.
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1.8 Chapter Summary and Conclusion
We have presented three comprehensive distributed solution approaches for the future 5G
cellular mobile communication systems. Considering a heterogeneous multi-tier 5G network,
we have developed distributed radio resource allocation algorithms using three different
mathematical models (e.g., stable matching, message passing, and auction method). The
properties (e.g., convergence, complexity, optimality) of these distributed solutions are also
briefly analyzed. To this end, a qualitative comparison of these schemes is illustrated.

The solution tools presented in this chapter can also be applicable to address the
resource allocation problems in other enabling technologies for 5G systems. In particular,
the mathematical tools presented in this chapter open up new opportunities to investigate
other network models, such as resource allocation problems for wireless virtualization [37]
and cloud-based radio access networks [38]. In such systems, these modeling tools need to
be customized accordingly based on the objective and constraints required for the resource
allocation problem.

In addition to the presented solutions, there are few game theoretical models which have
not been covered in this chapter. However, these game models can also be considered
as potential distributed solution tools. Different from traditional cooperative and non-
cooperative games, the game models (such as mean field games [39], [40], evolutionary
games [41] etc.) are scalable by nature, and hence applicable to model such large
heterogeneous 5G networks. Utilizing those advanced game models for the resource
allocation problems and analyzing the performance (e.g., data rate, spectrum and energy
efficiency etc.) of 5G systems could be an interesting area of research.
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