A Comparative Evaluation of Imputation Models for Agricultural
Weather Networks

Awanish Khanal
Washington State University
Pullman, WA, USA
awanish.khanal@wsu.edu

Abstract

High-resolution weather data are essential for irrigation scheduling,
frost protection, and pest and disease risk modeling. However,
weather stations frequently experience multi-hour to multi-day
outages, leading to substantial downtime for weather-driven
decision-making. To mitigate this, stakeholders often rely on
“imputation” models to reconstruct missing data. Despite the
existence of many statistical and machine-learning models, it
remains unclear which imputation methods are most suitable for
operational agricultural settings. This paper evaluates twelve
imputation methods—statistical models, classical machine learning
algorithms, and deep neural networks—to identify the most suitable
model for agricultural applications. We tested the models using
data from five meteorological towers (three in Jena, Germany, and
two in Sunnyside, Washington, USA). We perform a thorough
performance-engineering study: in addition to accuracy, we
evaluate runtime, inference throughput, peak memory usage, GPU
usage, energy consumption, and monetary cost. Our findings are
surprising: among all complex and advanced (neural network)
models, a properly tuned Random Forest (RF) model consistently
outperforms them across multiple evaluation categories (e.g.,
accuracy, latency, throughput, and cost). Specifically, an RF achieves
competitive error with no GPU dependencies, modest memory
usage, and substantially lower energy expenditure than deep
learning baselines. Our research shows that classical machine
learning models remain a compelling choice for scalable, cost-aware
weather data imputation in agricultural decision-support systems.

CCS Concepts

« Applied computing — Agriculture; - Computing method-
ologies — Machine learning; « Information systems — Data
analytics.

Keywords

Weather Data Imputation, Performance Evaluation, Energy and
Cost Efficiency, Machine Learning, Spatio-temporal Modeling

ACM Reference Format:

Awanish Khanal and Monowar Hasan. 2026. A Comparative Evaluation of
Imputation Models for Agricultural Weather Networks. In Proceedings of the
17th ACM/SPEC International Conference on Performance Engineering (ICPE

990¢9

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

ICPE ’26, Florence, Italy

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2325-4/2026/05

https://doi.org/10.1145/3777884.3797006

Monowar Hasan
Washington State University
Pullman, WA, USA
monowar.hasan@wsu.edu

’26), May 04-08, 2026, Florence, Italy. ACM, New York, NY, USA, 12 pages.
https://doi.org/lo.l145/3777884.3797006

1 Introduction

High-resolution weather measurements have become essential for
almost every modern agricultural decision. Accurate observations
of temperature, humidity, wind speed, solar radiation, and other
meteorological parameters enable farmers to make informed and
timely decisions. These metrics are crucial for predicting critical
agricultural events, such as pest outbreaks, the ideal timing for
irrigation based on plant water stress, the risk of frost damage,
and the likelihood of disease occurrences [7, 18, 36]. Agriculture
stakeholders (e.g., growers, suppliers) can effectively anticipate
potential problems and respond proactively when they have reliable
data. For instance, growers can optimize irrigation schedules to
use water more efficiently, apply protective measures such as frost
fans precisely when needed to safeguard crops, or strategically
time pesticide applications to manage pests effectively. These data-
driven decisions power modern digital agriculture and underpin
agricultural efficiency and profitability in recent years.

However, weather stations are not immune to occasional data
loss and anomalies. For instance, antennas drop their telemetry link
when a cell tower reboots, radiation shields clog with dust or snow,
or sensors that look fine in the field get rejected minutes later by
automated quality-control flags [22]. These interruptions usually
last for several hours to more than a day. However, even a short gap
of a few hours can jeopardize critical agricultural workflows [36].
For example, if the temperature falls below freezing during the
gap, wind machines or overhead sprinklers may spin up too late,
leaving tender blossoms ice-burned. The opposite happens on a hot
summer afternoon: evapotranspiration models fed by incomplete
data overestimate crop water use, so growers pump thousands of
gallons more than they need. Hence, a missing record is not a benign
statistical artifact; it is a potential source of immediate economic
loss that can destroy yields and tighten already-thin profit margins
in agriculture.

One remedy is to impute missing weather samples before they
reach downstream tools. A large body of work has explored methods
ranging from simple climatological averages and Kalman filters
to tree ensembles and deep sequence models with attention or
generative structure. Most studies report only forecast accuracy
(e.g., MAE, RMSE) under idealized outage patterns. However, a
comparative evaluation of state-of-the-art imputation models is
lacking. Besides, there is a little discussion of the systems cost of
deploying these imputers in real networks. For instance, (a) how
much CPU/GPU time do they require? (b) how much energy do they
consume per million gap fills? (c) can they be retrained overnight
across dozens of towers, or do they demand dedicated GPU servers?

https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.1145/3777884.3797006
https://doi.org/10.1145/3777884.3797006

ICPE 26, May 04-08, 2026, Florence, Italy

These questions are central to the operation of regional weather
networks but are not explicitly evaluated in the literature.

This paper explores weather-gap imputation as a performance-
engineering problem. Using more than a decade of high-quality
10-minute observations from three towers near Jena, Germany [29],
and two semi-arid agricultural stations from the AgWeatherNet
network in Washington State, USA [41], we benchmark 12
imputation methods spanning statistical, classical machine learning,
and deep learning families. In addition to accuracy, we measure
runtime, throughput, peak memory, GPU usage, energy, and
monetary cost on a realistic cloud hardware configuration. We
further study whether lightweight spatio-temporal representations
(e.g., GraphSAGE-GRU embeddings [16, 25]) provide enough benefit
to justify their extra GPU budget. Our results show that (a) a tuned
RF model still delivers the best overall trade-off between accuracy and
resource usage, and (b) more complex deep sequence models offer only
modest gains at substantially higher compute cost.

1.1 The Context and Our Research

Imputing missing values is the most direct way to repair the
weather data streams before they enter the downstream agricultural
decision tools. A wide range of imputation techniques exists
across the time-series literature: simple statistical approaches such
as climatological means and Kalman smoothers [20, 24, 30, 31],
distance-weighted KNN and spline interpolation [15, 26, 39],
tree-ensemble imputers such as MissForest [8, 37], and modern
deep-learning models, including BRITS/LSTM, GAIN, and attention
transformers like TFT [10, 12-14, 17, 21, 43]. What remains unclear,
however, is which of these families is most reliable under the types of
short, irregular outages that occur in agricultural weather networks.

Lightweight statistical models are fast and easy to deploy,
but tend to degrade sharply during abrupt weather transitions,
sensor drift, or clustered outages [22, 26, 27, 31]. Classical
machine-learning regressors often perform well on clean datasets,
but struggle to capture nonlinear meteorological dynamics or
tail regimes such as heatwaves, high radiation, or high-wind
conditions [1, 6, 11, 28, 32, 38, 40]. Deep sequence models offer
greater representational capacity, but their substantial training
and inference cost raises the question of whether their additional
complexity is justified for sub-day gaps in high-frequency weather
records.

These considerations motivate our first research question:

For realistic multi-hour outages in agricultural weather
streams, which imputation family provides the best
balance of accuracy, robustness, and computational
cost?

A second challenge is that weather stations rarely operate
as isolated sensors. Towers within the same region often
share synoptic forcing, radiative conditions, and boundary-layer
structures. This raises a natural question: can imputers exploit
spatial and short-term temporal context to improve gap filling
without excessively increasing model complexity? To examine
this, we introduce a lightweight spatio-temporal encoder
(GraphSAGE-GRU) that learns cross-tower representations and
exposes them as frozen auxiliary features to the downstream
imputers.

Awanish Khanal and Monowar Hasan

This leads to our second research question:

Do simple, learned spatio-temporal embeddings mea-
surably improve imputation accuracy, and is the gain
worth the additional GPU budget?

To answer these questions, we assemble a unified performance
benchmark across two independent datasets: three long-record Jena
towers and two semi-arid AgWeatherNet towers. We evaluate 12
imputers spanning statistical, classical machine learning, and deep
learning families and measure both accuracy and system metrics
(runtime, throughput, energy, and cost). The result is a performance-
grounded assessment of which methods offer the strongest balance
of accuracy and operational practicality for real-world agricultural
deployments.

1.2 Our Contributions
This paper makes the following contributions.

e A unified accuracy and systems benchmark for weather-
data imputation. We evaluate twelve representative imputation
methods—four statistical, four classical machine learning, and
four deep sequence models—on two independent data sources
(one from Europe and the other in North America). The weather
streams used in this work are: a 14-year, 10-minute-resolution
archive from three Jena towers (Germany) and a 2-year, 5-minute-
resolution semi-arid agricultural dataset from two AgWeatherNet
stations (Washington, USA). All methods are compared under
identical conditions, synthetic outages, and stress-test regimes.

e A performance-grounded evaluation spanning runtime,
throughput, memory, and energy cost. Beyond MAE/RMSE,
we measure training time, inference latency, CPU/GPU utilization,
energy footprint, and monetary cost on a realistic cloud
configuration (2 vCPUs + NVIDIA T4). This allows us to assess
not only which imputer is most accurate, but which one is most
practical for deployment in regional agricultural networks.

e A lightweight spatio-temporal representation learning
module (GraphSAGE-GRU) and its impact. We introduce
a simple encoder that learns short-range spatial and temporal
context across towers, freezes the resulting embeddings, and
exposes them as auxiliary features to downstream imputers. We
quantify both the accuracy gains and the additional GPU cost.

1.3 Key Findings

Across both datasets and all outage regimes, a clear pattern emerges.
A well-tuned RF provides the best overall balance of accuracy,
robustness, and computational efficiency. We compute errors over
the masked set M (Sec. 3.1), comparing ground truth y; vs. imputed
;. We report MAE (Mean Absolute Error) and RMSE (Root Mean
Square Error) in °C. On the Jena tower, RF reaches 0.46°C MAE,
outperforming all statistical baselines and remaining consistently
ahead of the deep sequence models (TFT, BiLSTM+Attn, SDAE).
On the more volatile AgWeatherNet station, RF again achieves
the lowest error (0.72°C MAE), preserving its margin under
temperature and multivariate extremes.

Deep learning models do offer competitive accuracy, but at
substantially higher runtime and energy cost—often 10-60x
more expensive per million imputations than RF. Meanwhile,
the GraphSAGE-GRU embeddings yield modest but consistent

A Comparative Evaluation of Imputation Models for Agricultural Weather Networks

improvements (0.02-0.08°C), with the largest gains under
stress-regimes, but they require additional GPU training and
storage.

Overall, the benchmark suggests that in operational agricultural
settings where outages are short, retraining budgets are finite, and
imputation must scale across many towers, RF delivers the most
substantial return on compute and accuracy. Deep sequence
models and spatio-temporal embeddings offer incremental gains,
but their higher cost makes them best suited for specialized or
resource-rich deployments rather than routine gap-filling.

2 Evaluation Setup
2.1 Dataset

A robust assessment of imputation methods requires long,
high-quality time series with diverse climatological regimes and
realistic patterns of operational outages. To this end, we assemble
two independent datasets: (a) three meteorological towers located
near Jena, Germany, and (b) two agricultural monitoring towers
situated near Sunnyside in the Yakima Valley region of Washington
State, USA. The Jena towers report 10-minute observations, while
the AgWeatherNet towers report at a 5-minute cadence.

Jena Towers (Germany) [29]. The Jena stations provide a
continuous 2011-2024 archive (~1.4 million 10-minute timestamps),
covering multiple ENSO phases, the 2018 European heatwave,
winter cold-pool episodes, and a broad range of synoptic conditions.
The three towers (WS Saaleaue, WS Beutenberg, and Versuchsbeete)
share nearly identical hardware and metadata formats, making
them well suited for a long-horizon evaluation of outage patterns
and recovery behavior.

Sunnyside Towers (AgWeatherNet, USA) [41]. The two Sunnyside
stations provide a complementary dataset sampled from March 2023
to March 2025. Although the record is shorter than Jena’s, the
AgWeatherNet network covers a semi-arid, irrigated agricultural
environment with steep diurnal temperature cycles, strong radiative
forcing, and sensor-level constraints such as battery fluctuations
and logger temperature drift. These characteristics yield a distinct
failure profile relative to the Jena towers.

2.1.1 Independent Training and Evaluation. All models are trained
and evaluated separately on the Jena and AgWeatherNet datasets.
This prevents information leakage across climates, hardware
configurations, sampling intervals, or temporal coverage. The
Sunnyside towers serve as a short, independent testbed that
allows us to assess whether the model ranking and robustness
trends observed in Jena carry over to a different sensor design,
measurement cadence, and microclimate.

This two-dataset design ensures that all conclusions about
accuracy, runtime, throughput, memory footprint, and energy cost
remain valid across distinct operational settings, not only within a
single long-term tower archive.

2.1.2 Raw Variables. Table 1 summarizes the principal meteorolog-
ical channels available at the Jena and Sunnyside towers. The Jena
stations provide an extensive suite of derived thermodynamic and
radiation measurements, while the AgWeatherNet towers include

ICPE 26, May 04-08, 2026, Florence, Italy

Table 1: Key meteorological variables at Jena and AgWeath-
erNet towers (native 10-min and 5-min data, each aggregated

to a 10-minute grid).

Attributes

Jena towers

AgWeatherNet towers

Air temperature Air temperature (2 m, Air temperature
aspirated)

Humidity / vapour Relative humidity; specific ~ Vapor pressure;
humidity; dew-point vapour-pressure deficit
temperature; saturation (VPD);
vapour pressure; actual Relative-Humi-sensor
vapour pressure; temperature
vapour-pressure deficit;
water-vapour
concentration; air density

Pressure Atmospheric pressure Atmospheric pressure;

reference calibration
pressure

Wind Wind speed (10 m); wind Wind speed; gust speed;
direction (10 m) wind direction

Radiation Short-wave downwelling Solar radiation
radiation; net radiation;
infrared canopy
temperature; sunshine
duration

Precipitation Precipitation Precipitation; maximum
(tipping-bucket) precipitation rate

Soil/canopy Soil temperature (6 depths); ~ Soil temperature; matric
soil moisture (5 depths) potential

additional soil and diagnostic variables typical of agricultural
monitoring systems.

2.1.3 Feature Set. We use the following feature sets.

Core Meteorological Attruibutes. We retain variables with
first-order physical relevance to near-surface air temperature.
For the Jena dataset, this includes Tpot, Tdew, RH, and VPdef
(moisture control) [32]; SWDR and Rn (radiative forcing) [3, 11];
rain (evaporative cooling) [28]; and wv (mechanical mixing) [38].
For the AgWeatherNet dataset, we select the physically analogous
subset: air temperature, vapor pressure, VPD, wind speed and
direction, solar radiation, and precipitation. In both datasets, soil
and diagnostic channels contribute negligible predictive value
(importance < 0.02) and are excluded.

Temporal Encodings. Sine-cosine encodings of hour-of-day and
day-of-year are added to expose diurnal and seasonal structure to
non-sequence models [10, 14].

Lagged Context. Single and double 10-minute lags of air
temperature and relative humidity (T_;, T_2, RH_;) provide
short-term autoregressive memory.

Multi-Tower Alignment. Within each dataset, predictors are
standardized using statistics derived from that dataset’s training
split and aligned to its own 10-minute clock. Native missing
values are preserved so that each imputation method encounters
realistic operational data. When cross-tower encoders (e.g.,
GraphSAGE-GRU) are used, they operate only within a dataset
(i.e., Jena towers form one graph; Sunnyside towers form a separate
graph). Downstream tabular models are always trained within the
same dataset and never transfer parameters across datasets.

ICPE 26, May 04-08, 2026, Florence, Italy

Awanish Khanal and Monowar Hasan

1) Tower graph
Per dataset
Distance-based edges

2) Spatial mixing
GraphSAGE (1 layer)

3) Temporal encoding !
GRU over window L
Aggregate neighbor signals Produce embedding z;;

5) Freeze + cache
Materialize z;;
for all timestamps

Concatenate features
Append z;; to
tabular predictors

4) Self-supervised
training

(training window only)

I
I
I
I
I
I
I
I
! Next-step prediction
I
I
.

GraphSAGE-GRU encoder (trained per dataset)

Figure 1: GraphSAGE-GRU as a lightweight feature generator. The encoder is trained self-supervised per dataset, frozen, and
its embeddings are concatenated to the original tabular features for downstream imputation models.

Target Variable. In all experiments, the 10-minute near-surface
air temperature (T or its AgWeatherNet equivalent) is treated as
the imputation target for each dataset independently.

2.2 Spatio-Temporal Representation Learning
with GraphSAGE-GRU

The five-tower benchmark exhibits meaningful spatial and temporal
structure: nearby towers often share synoptic forcing, radiative
conditions, and boundary-layer dynamics. To examine whether
such a structure yields informative representations for downstream
imputation, we introduce a lightweight encoder that combines
spatial graph aggregation with temporal recurrence. The encoder
is trained separately on each dataset (three Jena towers and two

AgWeatherNet towers), and no cross-dataset parameters are shared.

Overview (How the Encoder Is Used). We use GraphSAGE-GRU
only as a lightweight feature generator:

(1) Build a small tower graph within each dataset, with edge
weights based on inter-tower distance (Eq. (1)).

(2) At each time t, apply a one-layer GraphSAGE operator to
mix tower i’s features with a weighted summary of other
towers (Eq. (2)).

(3) Feed each tower’s sequence through a GRU over a short
history window to obtain z;; (Eq. (3)-(6)).

(4) Train the encoder via next-step prediction on the training
window.

(5) Freeze the encoder, materialize z,; for all timestamps,
and concatenate z;; to the original tabular features for
downstream imputers (Eq. (7)).

Figure 1 summarizes the GraphSAGE-GRU feature-generation
pipeline.

Spatial Graph Construction. Within each dataset, we construct a
fully connected undirected graph G = (V, E) where eachnode i € V
corresponds to a tower reporting at time ¢. Edges are weighted by
a radial basis kernel of the inter-tower distance:

dz
ij . .
wij :exp(—ﬁ), i#j. (1)

We tune o per dataset via a small sweep 0 € {a -
median({d;j}i<;) : a € {0.5,1,2}} and select the value
minimizing validation MAE for the encoder’s self-supervised
next-step prediction task.

Let x;; € RF be the feature vector of tower i at time ¢ (as defined
in Sec. 2.1.3). We use a single-layer GraphSAGE operator to obtain
a spatial embedding:

hei = o(Wixe; | Wo AGG{ wijx.; : j € N(i)}), (2)

where || denotes concatenation, ¢ is a nonlinear activation
(ReLU [33]), Wy, W, are learnable matrices, and AGG(-) is mean
aggregation weighted by w;;. Because each dataset has at most
three towers (Jena) or two towers (Sunnyside), the spatial
operator remains intentionally minimal while still capturing shared
mesoscale variability.

Temporal Encoding. To summarize recent evolution, each spatial
embedding sequence {h;_r+1 ..., hs;} is passed through a Gated
Recurrent unit (GRU) [16]:

ry = O'(VVrht,i + Uth—l,i), (3)
Uy = O'(Wuht,i + UuZt—l,i)s (4)
Z; = tanh(Whh,’i + Up(r; © zt_l,i)), (5)
2i = U Oz + (1—u) ©Z, (6)

where z;; is the resulting temporal embedding for tower i at
time t, u; and r; are update and reset gates, and W, U. are
learned parameters. The final representation z,; € R? provides
a compact summary of short-term temperature, humidity, and
radiation dynamics conditioned on local spatial context.

Frozen Embeddings for Downstream Models. After training, the
encoder is frozen and applied across the full timeline to generate a
representation sequence {z;;} for each tower. These embeddings
are appended to that tower’s tabular feature vector:

Xppended = [T) 2,)

where XZ ;lgmal denotes the predictors from Sec. 2.1.3. The
downstream imputation models (Sec. 2.3) are trained separately on
the Jena and AgWeatherNet datasets using these extended features.
This design allows us to test whether learned spatio-temporal
structure improves imputation accuracy over purely tabular
features, without altering model capacity or violating dataset
isolation.

Scope. The encoder is used solely to produce auxiliary features;
all primary imputation models remain unchanged. We use the
encoder to examine whether spatial-temporal structure, even in a

A Comparative Evaluation of Imputation Models for Agricultural Weather Networks

small multi-tower setting, yields embeddings that classical models
(e.g., RF) can exploit. A performance-oriented analysis (runtime,
throughput, memory, and energy) is discussed in Sec. 3.

2.3 Models: Twelve Ways to Impute

With more than a decade of weather observations in hand (see
Sec. 2), the next step is to select a diverse yet manageable line of
imputation techniques that span the statistical to deep spectrum.
Table 2 details the type/category of the various imputation models
employed in the study. We also list the selected hyperparameters
for each model. We use Adam optimizer (= 107%) and batch size
256 for training.

2.3.1 Why These Twelve Models? We select these 12 models as
they satisfy the following criteria.

(C1) Distinct Inductive Bias. Our chosen set of models represents
every major modeling paradigm: linear regression, kernel
method, tree ensemble, autoencoder, recurrent sequence
model, GAN, and attention transformer, so any single family
does not dominate the roster.

(C2) Field Relevance. The algorithms are heavily used in prior
time-series imputation literature, so there is evidence that
practitioners or researchers already trust them.

(C3) Hardware Requirements. The set spans the full compute
ladder: light statistical baselines that run easily on
general-purpose computers or even embedded boards; tree
ensembles and KNN that fit comfortably on a laptop CPU
(including RF); and GPU-accelerated deep learners (e.g., TFT)
for machines with dedicated hardware. We deliberately aim
to reflect real-world deployments, ranging from low-power
edge devices in field stations to high-power GPU servers or
clusters, so that every practitioner can find a feasible option.

Applying (C1)-(C3) produces the twelve-model suite as listed in
Table 2: four statistical baselines, four classical machine learning
models, and four deep-learning sequence models. Together, this
set of models helps us study if the added representational capacity
translates into better imputation of high-frequency weather data
and, more importantly, how much any extra accuracy translates
into agronomic benefit.

2.3.2 Training Process. All models ingest the same feature
matrix from Sec. 2.1.3. Continuous predictors are z-score
standardized. After hyperparameter tuning, see Table 2 for the
final hyperparameter settings.

Thus far, the imputation methods introduced range from linear
baselines to GPU-hungry Transformers, and they were trained on
a common feature set. The following section (see Sec. 3) presents
an evaluation of these methods to answer a performance-centric
question: which model offers the best trade-off between imputation
accuracy and resource usage (runtime, throughput, memory, and
energy cost)?

ICPE 26, May 04-08, 2026, Florence, Italy

3 Experiments and Discussion

3.1 Hyperparameter Tuning and Test Set
Construction

Because the Jena network provides a long archive (2011-2024),
we perform full hyperparameter tuning on 2011-2022 and reserve
2023-2024 as unseen test years. In contrast, the AgWeatherNet
stations provide only two years of data (March 2023-March 2025),
which is insufficient for rolling cross-validation. For AgWeatherNet,
we therefore use a fixed one-year calibration window (March 2023-
March 2024) for training and hold out the final twelve months
(March 2024-March 2025) as the test set.

Rolling-Origin Cross-Validation for Hyperparameters (Jena). To
tune hyperparameters in a time-series-consistent way, we adopt
a rolling-origin strategy inside the 2011-2022 training window.
Rather than validating on every individual year (which would
be both expensive and highly autocorrelated), we select four
representative validation years spaced across the archive. Each
fold trains on an expanding prefix and validates on the immediately
following year.

For a given configuration 8, we compute the cross-validation

MAE:

4
cv (o) = i Z MAE® (9),)
k=1

where MAE(%) (0) is the MAE on the validation year of fold k. The
configuration 6* minimizing this score is selected. Each model
is then retrained on the full 2011-2022 window using 6* before
moving on to the test years.

Training Protocol for AgWeatherNet. Because AgWeatherNet
provides only two years of data, cross-validation is not statistically
meaningful. Hyperparameters for AWN are therefore kept fixed at
the Jena-selected settings except for minor adjustments that depend
on input dimensionality (e.g., channel subsets and scale differences).
All AgWeatherNet models are trained on March 2023-March 2024
and evaluated on March 2024-March 2025.

Synthetic Outage Protocol. The raw archives for 2011-2024
contain too few natural outages for a controlled comparison across
methods, so we inject synthetic gaps that mimic operational
weather-station failures. The same protocol is used during
cross-validation (on the validation year in each fold) and during
final testing (on 2023-2024), and all models see identical masks for
a given tower.

We divide each year into four seasons (winter: DJF, spring: MAM,
summer: JJA, autumn: SON) and generate two types of outages:

e Micro-gaps. For each season s in year y, we draw the number
of short outages n,; ~ Poisson(Amicro = 8). For each event,
the duration L ~ Gamma(k=2, 0=2h), which yields a median
of ~ 4 h and keeps 90 % of events below ~ 9 h. Start times
are drawn uniformly within the season, and events are
constrained not to overlap.

e Macro-gaps. Each year receives three longer outages with a
length U ~ Uniform[24, 72] h, representing maintenance or
hardware replacement windows. These are placed to avoid
overlap with micro-gaps.

ICPE 26, May 04-08, 2026, Florence, Italy

Awanish Khanal and Monowar Hasan

Table 2: Imputation method and tuned hyperparameters.

Family/Model Key hyperparameters

Statistical
Multiple Linear Regression ~ N/A
ARIMA Auto-p, d, g via AIC (max p, ¢ = 3); re-fit monthly
Cubic Spline Natural spline, shape « = 0.5, knots at nearest obs.

Kalman Smoother

Local-level ETS; process noise 62, = 0.15, measurement 62 = 0.05 (learned by EM on 2011-2012)

Classic Machine Learning

KNN Imputer k = 10, inverse Euclidean weights;
RF 200 trees, max_depth 20, min_samples_leaf 10
SVR (lin/poly) C =1,e = 0.1, degree 3 for polynomial kernel
Deep Learning
SDAE 3 layers 128-64-32, corruption drop 0.2, £, = 107>
GAIN Generator 128-128, Discriminator 128; hint rate 0.9

Bi-LSTM+Attn

2 layers, 64 hidden, Bahdanau attention, dropout 0.1

TFT dmodel = 64, 4 heads, hidden 128, dropout 0.1

Table 3: Rolling-origin cross-validation used for hyperpa-
rameter tuning.

Fold Training Period Validation Period

1 2011-2014 2015
2 2011-2016 2017
3 2011-2019 2020
4 2011-2021 2022

For every selected outage interval, we blank the target channel(s).

Stress-Test Slices. Randomly placed outages provide a useful
average-case benchmark, but the most demanding conditions for
imputation often arise during extreme meteorological regimes or
when hardware begins to degrade. To probe robustness in such
settings, we define stress slices based on empirical quantiles of key
variables, computed from the respective training periods of two
datasets.

Let q,(X) denote the p-th quantile of variable X for a given
tower. We define:

o Temperature extremes: Toxt = {t : Ty > qo.80(T) or Ty < qo.20(T) },
capturing heatwaves, cold-pool episodes, and strong inversions.

o Multivariate extremes: Xext = {t : WS; > qos0(WS) vV RH; >
qoso(RH) VvV SWDR; > qos(SWDR)}, representing high
wind (turbulent mixing), high humidity (fog/saturation), or high
shortwave radiation (midday forcing).

o Sensor-stress regime (AgWeatherNet only): Dgtress =
{t : Battery, < qo2(Battery) Vv LoggerTemp, <
qo.20(LoggerTemp) }, covering periods when hardware is near
thermal or power limits.

Unified Test Set and Evaluation. All evaluations use a single
comprehensive test set per tower, where we intentionally mask
the target temperature at both randomly sampled outage periods
and at all predefined stress conditions.

Let Manda denote the set of timestamps selected by the
synthetic outage protocol (micro-gaps and macro-gaps) described
above. Let Text, Xext, and Dyyress denote the sets of timestamps
falling into temperature extremes, multivariate extremes, and
(for AgWeatherNet) sensor-stress regimes as defined by the
training-period quantiles, respectively. For the test years, we mask
the target temperature at the union

M=Miand U Text U Xext U Dstress (AgWeatherNet only), (9)

while leaving all predictor variables intact. Thus, the final evaluation
set includes both realistic random outages and deliberately
constructed gaps at all extreme regimes.

For analysis, we report MAE and RMSE on: (a) the full
masked test set M (All Outages), (b) the subset of masked
timestamps in temperature extremes 7oy (Temp-Extreme), (c)
the subset in multivariate extremes X (Multi-Extreme), and
(d) for AgWeatherNet, the subset in sensor-stress conditions
Distress (Sensor-Stress). By construction, the “All Outages” metric
summarizes overall performance across both random and
stress-driven gaps, while the three slices isolate how much accuracy
degrades when the imputer is forced to reconstruct the most
challenging points (e.g., heatwaves, high winds, or high-radiation
periods, and degraded hardware states).

3.2 Accuracy and Robustness Across Datasets

With hyperparameters fixed via the rolling-origin procedure
(Sec. 3.1), we now evaluate all imputers on the unified 2023-2024
test sets for both networks: the three 10-minute-resolution towers
near Jena and the two 5-minute-resolution AgWeatherNet towers.
Each model is trained strictly within its own network—2011-2022
for Jena, and March 2023-March 2024 for AWN—so no cross-site
information is shared. This design isolates performance under
distinct climates, sensor hardware, and archive lengths.

Table 4 reports results for the WS Saaleaue tower, while Table 5
summarizes performance for the Sunnyside-In AWN station. The

A Comparative Evaluation of Imputation Models for Agricultural Weather Networks

Table 4: Jena (WS Saaleaue): Accuracy on unified 2023-2024
test set. Values shown as MAE/RMSE (°C).

Class Model All T-Ext X-Ext
MLR 1.56/1.67 1.81/1.98 2.06/2.18
Stat. ARIMA 2.31/2.44 2.65/2.79 2.80/2.94
Kalman 2.44/2.68 2.66/2.81 2.81/2.97
Spline 2.80/2.98 2.98/3.16 3.17/3.32
KNN 0.82/0.94 1.06/1.20 1.22/1.33
ML RF 0.46/0.57 0.71/0.84 0.82/0.93
SVM-lin 1.21/1.34 1.56/1.67 1.70/1.91
SVM-poly 1.04/1.18 1.39/1.51 1.53/1.66
TFT 0.68/0.79 0.92/1.06 1.15/1.26
DL BiLSTM+Att 0.76/0.82 1.07/1.18 1.29/1.42
SDAE 0.88/0.95 1.18/1.30 1.38/1.53
GAIN 0.93/1.02 1.31/1.45 1.52/1.69

Table 5: AgWeatherNet (Sunnyside-In tower): imputation
accuracy on the unified test set. Values shown as MAE / RMSE
(°C).

Class Model All T-Ext S-Stress X-Ext
MLR 1.80/1.95 2.11/2.33 2.24/2.40 2.36/2.55
Stat ARIMA 2.42/2.55 2.72/2.93 2.82/3.08 2.94/3.16
ar Kalman 2.56/2.70 2.79/3.03 2.91/3.14 3.06/3.24
Spline 2.86/3.04 3.11/3.32 3.19/3.42 3.36/3.55
KNN 1.10/1.22 1.35/1.50 1.46/1.60 1.60/1.76
ML RF 0.72/0.84 0.90/1.03 0.98/1.10 1.08/1.22
SVM-lin 1.40/1.55 1.68/1.84 1.78/1.94 1.92/2.10
SVM-poly 1.30/1.44 1.58/1.74 1.68/1.84 1.82/1.98
TFT 0.88/1.00 1.08/1.22 1.18/1.32 1.30/1.46
DL BiLSTM+Att 0.94/1.06 1.15/1.30 1.26/1.40 1.38/1.54
SDAE 1.05/1.18 1.28/1.42 1.38/1.52 1.50/1.66
GAIN 1.22/1.36 1.49/1.64 1.60/1.75 1.74/1.90

results of other towers are qualitatively similar, but are excluded
for brevity.

Key Observations Across Jena and AgWeatherNet. Across both
datasets, several consistent patterns emerge:

o RF remains the top performer. In Jena, RF attains an MAE
of 0.46°C on the unified test set, rising only modestly under
temperature (0.71°C) and multivariate extremes (0.82°C). Despite
having barely two years of training data and a more volatile
semi-arid climate, RF is still the most accurate model in AWN
(MAE 0.72°C), preserving a clear margin over all alternatives.

o Deep sequence models outperform statistical baselines,
but are less robust. TFT and BiLSTM+Attention consistently
improve over all statistical models, yet remain 0.20-0.30°C
behind RF on every slice. Their degradation under stress is
sharper: for example, in AWN, the TFT error grows from
0.88°C (All) to 1.30°C (X-Ext), reflecting sensitivity to sparse
tail distributions in wind, humidity, and radiation.

e KNN is a viable low-compute baseline but struggles in
extremes. KNN performs reasonably in both networks and is

ICPE 26, May 04-08, 2026, Florence, Italy

attractive for edge deployment. However, its neighbour-based
structure makes it vulnerable when temperature or radiation lies
in the upper tail, where historical analogues are scarce. This leads
to larger degradation in the X-Ext slices.

e Multivariate extremes (X-Ext) are the most difficult
regime. Across all towers and methods, X-Ext yields the
largest errors. These conditions—high wind, high humidity,
or high solar radiation—correspond to rapid transitions in
temperature tendencies, reducing the predictive value of diurnal
and autoregressive structure. Sensor-stress periods in AWN also
degrade performance, but less severely than X-Ext.

Summary. Despite differences in climate, hardware, sampling
frequency, and archive length, the relative ordering of models is
remarkably stable:

RF > TFT > BILSTM > KNN > SDAE > GAIN,

and this hierarchy persists even when we force models to
reconstruct the hardest conditions in the record. A couple of reasons
stand out why RF outperforms all other models in Table 4 and
Table 5, even the powerful deep learning models. RFs exploit strong,
low-order nonlinearities [9, 19] (for example, interactions between
hour-of-day X day-of-year X relative humidity). On the other hand,
deep learning sequence models use much of their representational
capacity to model multi-day dynamics that are rarely needed when
the outage times are less than a day [4]. Secondly, RF averages many
weak learners, so a few bad data anomalies or spiky sensor noise do
not propagate [9]. However, with deep learning models, even with
dropout, there are chances of outliers amplifying during back-prop
and may need careful clipping [23]. Third, it is also important to
note that RF did not require an extensive hyperparameter search.
The performance saturated once the ensemble reached about 200
trees with depth < 20. In contrast, deep learning methods typically
expose 5-10 free parameters (learning-rate schedules, layer widths,
attention heads, dropout rates, etc.). Given a finite GPU budget,
the hyperparameter search grid had to be limited. Hence, Tables 4
and 5 reflect not only differences in model capacity but also how
efficiently each method can be tuned under realistic resource
constraints.

Finally, we note that in this section each imputer operates per
tower independently, using only local features. Spatio-temporal
embeddings that explicitly couple towers are introduced and
evaluated separately in Sec. 3.4.

3.3 Runtime, Training Cost, and Energy
Footprint

Beyond accuracy, an operational imputation system must be fast,
memory-efficient, and inexpensive to run at scale. In this section,
we treat imputation as a performance-engineering problem and
benchmark both (a) the training-time cost of fitting each model
and (b) the inference-time cost of deploying it to fill gaps in
operational streams. We report runtime, throughput, memory usage,
and energy/monetary footprint for representative models from each
family. We focus on WS Saaleaue as the primary Jena tower; the
qualitative conclusions are similar for the other towers and for
AgWeatherNet.

ICPE 26, May 04-08, 2026, Florence, Italy

Hardware and Measurement Protocol. All measurements are
collected on a cloud instance comparable to a Google Colab runtime:
two virtual CPU cores at 2.3 GHz, 13 GB of host RAM, and one
NVIDIA T4 GPU with 16 GB GDDR6 memory and a 70 W board
power limit. Statistical and classical machine-learning methods
(MLR, ARIMA, Kalman, Spline, KNN, SVM, RF) are executed on
CPU with the GPU disabled. Deep learning models (SDAE, GAIN,
BiLSTM+Attention, TFT) use the T4 for both training and inference.

For each tower, we consider the unified test mask M defined in
Sec. 3.1, which contains both synthetic outages and stress slices.
For WS Saaleaue, this corresponds to a masked subset on the order
of M| ~ 10* timestamps (i.e., a constant fraction of the two-year
10-minute timeline). For each model m, we measure

o the total training wall-clock time required to fit the model
on the training window (2011-2022 for Jena), and

o the inference wall-clock time required to impute all points
in M for the 2023-2024 test years.

Each inference measurement is preceded by a warm-up pass on
a separate batch (10,000 rows) whose timings are discarded. We
repeat inference measurements five times and report the mean;
run-to-run variation is below 5% for all models.

Inference Metrics. Let Tu(:f'g denote the measured wall-clock time
(in seconds) required for model m to impute N = |M| masked
temperatures in the test set. We normalize this to a per-1000 sample
inference time

(m)

T.
tl(g;()) = mTfer -1000 [seconds/1000 records]. (10)
The corresponding throughput (records per second) is
1000
(m) _ -
Q = [records/s]. (11)

1000

For energy, we distinguish between CPU- and GPU-backed
models. During each timed run, we sample device power once
per second: for CPU-backed models, we read the CPU package
power via RAPL; for deep models we query the T4 board power via
nvidia-smi. Let P™) denote the resulting average device power
in watts. The energy required to impute 1000 records is then

m _ Pt
m 100
Eloo = 3e00 [Wh/1000 records]. (12)

In our setup, CPU-only methods have P(™) on the order of 20-30 W,
while T4-backed models have P™ on the order of 70 W under
inference load.

Monetary cost for inference is derived from a realistic cloud
pricing. We assume an on-demand general-purpose CPU VM at a
rate ccpy ~ $0.11/h (roughly a small 2-vCPU instance) and a T4
GPU at ct4 = $0.35/h. CPU-only models are charged at ccpy, while
GPU-backed models incur the combined rate ccpy,T4 = copy+cT4 =
$0.46/h. The effective inference cost per 10° imputations is

(m) 10° oo 6
Costygbiuter = Tooo " 3600 C . [/10° records]. (13)
where ¢™ = ccpy for CPU-only models and ¢(™ = ccpy, 4 for
GPU-backed models.

Awanish Khanal and Monowar Hasan

Training Metrics. Let 115:2 denote the total wall-clock time
required to train model m on the Jena training window (2011-2022).
This captures everything from reading the training matrix to the
final fitted parameters (or checkpoint). As a coarse summary of

training-time energy, we use

p(m) - (m)

P T
E(m) — train ~train [Wh], (14)
train 3600

where Pt(r:'ir)] is the average device power during training (on the
order of 20-30 W for CPU-only models and = 100 W for GPU-
backed models when CPU and T4 are both active).
The one-time monetary cost of training is
Cost!™ = 32_08 cem 8], (15)

with the same ¢(™ convention as in Eq. (13).

Representative Models. To keep the discussion focused, we report
both training and inference cost metrics for one representative from
each family: Cubic Spline (statistical baseline), KNN Imputer and
RF (classical machine learning), and three deep learners (SDAE,
BiLSTM+Attention, TFT). Accuracy for these models on the Jena
tower is summarized in Table 4; here we reproduce the “All Outages”
MAE so that the cost can be visually compared to the error.

Table 6 reports inference-time metrics for imputing the WS
Saaleaue test set, while Table 7 summarizes training-time cost
on the 2011-2022 Jena archive. Energy values are reported in
milliwatt-hours (mWh) per 1000 imputed records for inference,
and in Wh for training. All values are rounded and intended to
reflect order-of-magnitude behaviour; exact numbers will vary
across implementations and hyperparameter choices.

3.3.1 Discussion. Several trends stand out. First, classical ML
models offer an extremely favorable inference-time accuracy—cost
trade-off. RF achieves the lowest MAE on WS Saaleaue (0.46°C)
while imputing 1000 records in roughly 2x 10~% s. This corresponds
to a throughput on the order of 5 x 10? records per second and an
energy usage of only ~ 0.14 mWh per 1000 records. On a modest
CPU-only instance, one million imputations from RF cost on the
order of 107 dollars.

Second, deep learners are substantially more expensive per
imputation. The Temporal Fusion Transformer is roughly an order
of magnitude slower per 1000 records than RF and consumes about
40-50x% the energy per 1000 records. Consequently, its effective
inference cost per million imputations is ~ 60X higher (on the order
of $4 x 1072 versus $6 X 10~%). BILSTM+Attention and SDAE sit in
between: they reduce error relative to purely statistical baselines but
remain slower and more power-hungry than RF on this workload.

Third, training-time costs show a similar pattern but with
different stakes. Training RF on twelve years of Jena data takes
on the order of a few minutes and costs only a few thousandths of a
dollar on this hardware, whereas TFT training can take roughly an
hour and a half per tower, and costs on the order of tens of cents. On
a single tower, this difference is modest, but for regional networks
with dozens of towers and frequent retraining, deep models can
accumulate substantial GPU-hours.

Finally, memory usage is modest for all methods. On our
hardware, RF and KNN each fit comfortably within 1GB of

A Comparative Evaluation of Imputation Models for Agricultural Weather Networks

ICPE 26, May 04-08, 2026, Florence, Italy

Table 6: Inference-time runtime, throughput, and energy/cost footprint of representative imputers on the WS Saaleaue test set
(|M| on the order of 10* masked timestamps). MAE is the “All Outages” metric from Table 4. Throughput Q™ and energy Eigg%

are derived via Eq. (11)—(12), inference cost via Eq. (13).

Model MAE [°C] Time/1k [s] Throughput [rec/s] Energy/1k [mWh] Cost/10° [$]
Cubic Spline (CPU) 2.80 0.01 1.0 x 10° 0.07 0.0003
KNN Imputer (CPU) 0.82 0.20 5.0 X 10° 1.39 0.0061
RF (CPU) 0.46 0.02 5.0 X 10* 0.14 0.0006
SDAE (T4 GPU) 0.88 0.10 1.0 x 10 1.94 0.0128
BiLSTM+Attn (T4 GPU) 0.76 0.15 6.7 X 10% 2.92 0.0192
TFT (T4 GPU) 0.68 0.30 3.3 x 10° 5.83 0.0383

Table 7: Training-time wall-clock cost on the Jena training window (2011-2022) for representative imputers. Values reflect
the order of magnitude observed on a 2-vCPU + T4 instance: classical models train in seconds to a few minutes, whereas deep
sequence models can require tens of minutes to about an hour per tower.

Model Train Time [min] Train Energy [Wh] Train Cost [$]
Cubic Spline (CPU) ~ 0.1 ~ 0.04 ~ 0.0002
KNN Imputer (CPU) ~ 0.3 ~0.13 ~ 0.0006
RF (CPU) ~7 ~ 2.9 ~ 0.013
SDAE (T4 GPU) ~ 20 ~33 ~0.15
BiLSTM+Attn (T4 GPU) =~ 40 ~ 67 ~ 0.31
TFT (T4 GPU) 90 ~ 150 ~0.69

host RAM. Among deep models, BILSTM+Attention peaks at
approximately 2 GB of GPU memory, while TFT is the largest with
roughly 4 GB—well below the 16 GB available on the T4. Thus, the
memory is not a limiting factor for any of the models studied here;
the dominant differentiators are latency, training time, and energy
per imputed sample.

Taken together, these measurements reinforce the conclusion of
Sec. 3.2: in this setting, a well-tuned RF provides the best overall
compromise between accuracy, runtime, and compute cost. Deep
sequence models do offer respectable accuracy, but their higher
training and inference footprint make them harder to justify for
large-scale.

3.4 Ablation: Effect of Spatio-Temporal
Embeddings (GraphSAGE-GRU)

3.4.1 Training and Feature Construction. To test whether explicit
spatio-temporal structure improves imputation, we add the
GraphSAGE-GRU encoder from Sec. 2.2 on top of the multi-tower
data. We train one encoder per network: three towers for Jena
and two towers for AgWeatherNet. Each encoder takes aligned
tower features on the 10-minute grid, applies a single GraphSAGE
aggregation layer, and then a GRU with hidden size d = 32 over a
short history window (e.g., the last L = 12 timestamps).

The encoder is trained in a self-supervised next-step prediction
setup (predict T;4+; from the previous L steps) using mean squared
error and Adam (1073). After convergence we freeze the weights
and generate a 32-dimensional embedding z; ; for every tower i and
timestamp ¢ in the training and test windows. These embeddings
are then concatenated to the original tabular features as in Eq. (7),

Xpyented = [XP] 2,

Table 8: Effect of GraphSAGE-GRU embeddings on imputa-
tion accuracy. AMAE=MAE(+Emb)-MAE(Base); negative is
better.

Dataset Model MAE Base MAE+Emb AMAE
Jena RF 0.46 0.39 -0.07
(WS Saaleaue) SDAE 0.88 0.83 —0.05
BiLSTM+Attn 0.76 0.72 —0.04
TFT 0.68 0.60 -0.08
AWN RF 0.72 0.70 —0.02
(Sunnyside-In) SDAE 1.05 1.02 —0.03
BiLSTM+Attn 0.94 0.90 —0.04
TFT 0.88 0.83 —0.05

and the downstream imputers (RF, SDAE, BiLSTM+Attn, TFT) are
retrained with no other changes. In all ablations, the encoder is
treated as a one-time preprocessing step: once embeddings are
materialized, later experiments reuse them without retraining
GraphSAGE-GRU.

3.4.2 Accuracy Gains. Table 8 compares baseline models (local
features only) with their embedding-augmented variants on the
unified “All Outages” MAE.

On both networks, all four models benefit slightly from
embeddings. These improvements are real but small compared
to the gap between statistical baselines and RF / deep methods in
Tables 4 and 5.

3.4.3 Performance Cost. The extra accuracy comes with additional
cost from (a) GraphSAGE-GRU pretraining, (b) storing embeddings,

ICPE 26, May 04-08, 2026, Florence, Italy

Table 9: Approximate GraphSAGE-GRU pretraining cost vs.
MAE improvement. “Cost per 0.01°C” is Pretrain Cost/(|A
MAE|/0.01). Inference overhead from the larger feature
vectors is small compared to the one-off pretraining cost.

Pretrain Cost per

Dataset Model AMAE[°C
atase ode el Cost[$] 0.01°C [$]
Jena RF —-0.07 ~ 0.20 ~ 0.03
TFT —-0.08 ~ 0.20 ~ 0.03
AWN RF —-0.02 ~ 0.09 ~ 0.05
TFT -0.05 ~ 0.09 ~ 0.02

and (c) a small increase in inference time due to higher feature
dimensionality.

Pretraining and Storage. On Jena, training GraphSAGE-GRU for
~ 15 epochs on a T4 takes on the order of 30 minutes (~ 0.5 GPU-
hours); on AWN, the shorter archive converges in ~ 10-15 minutes.
At the CPU+T4 rate of ~ $0.46/h (Sec. 3.3), this corresponds to
a one-off cost of roughly $0.20 (Jena) and $0.09 (AWN). Storing
32-float embeddings for all timestamps adds O(10®) floats across
both networks, i.e., a few hundred megabytes—minor on our cloud
instance but non-trivial for low-memory edge nodes.

Inference Overhead and Cost-per-Improvement. Assuming em-
beddings are precomputed, inference overhead is modest. For RF,
Time/1k increases from ~ 0.02s to ~ 0.023s; for deep models,
the increase is about 10-15% in Time/1k. The dominant cost is
therefore the one-time encoder training, which can be amortized
over all models that consume the embeddings.

Table 9 summarizes an effective cost-per-improvement by
dividing the pretraining cost by the observed MAE reduction. We
include RF and TFT as representatives for classical and deep models;
SDAE and BiLSTM+Attn fall in the same range because they share
the same encoder.

Even on this small benchmark, the cost per 0.01°C of MAE
improvement is on the order of a few cents. For larger archives or
many towers, total GPU-hours for spatio-temporal pretraining can
therefore grow quickly.

3.4.4 Discussion. Overall, the ablation shows a clear but modest
pattern: GraphSAGE-GRU embeddings yield small accuracy gains
(0.01-0.03°C) at a non-trivial additional cost (extra GPU training,
extra storage, slight inference slowdown). For our main use case—
gap-filling for operational farm networks where RF already delivers
sub-degree MAE with excellent CPU-only performance—this trade-
off is hard to justify, especially on edge deployments.

We see the embeddings as most defensible when (a) the station
network is very sparse, (b) key predictors are missing at some
towers, or (c) the downstream task is extremely sensitive to
tail errors. In typical agricultural weather-imputation workloads,
however, a well-tuned RF with purely local features remains the
simplest and most cost-effective option.

4 Related Work

Early weather-station archives were often patched using cli-
matological normals or long-term averages [24, 42] or simple

Awanish Khanal and Monowar Hasan

persistence rules that carry the last valid observation forward
[22]. Classical state-space approaches, including Kalman filters
[20, 31] and spline-based smoothers [26], have proved effective
for smooth, low-frequency gaps in hourly or daily data. However,
these techniques can struggle with the non-stationarity and sub-day
spikes typical of real field deployments [22, 27].

Spatial interpolators can exploit neighbouring stations when a
dense network exists. KNN schemes [15, 39] and related spatial
methods have been used to fill daily meteorological fields, while
regression on recent extrema or radiation inputs can impute daily
Tmax and Tin and growing-degree-day accumulations for crop
models [2, 3, 5, 18, 35]. Yet accuracy typically degrades when
outages exceed one to two days, or when terrain and land use
create sharp microclimatic gradients [11, 32, 38].

On the machine learning side, MissForest [37] popularised
Random-Forest-based imputation on mixed-type tabular data and
has since been applied to the environmental and atmospheric
series. More recently, Boomgard-Zagrodnik and Brown [8] used
a network-scale RF to fill 15-minute temperature gaps across a
mesonet, demonstrating that tree ensembles can capture local
feature interactions and seasonal structure in dense agricultural
networks. However, these studies typically focus on a single model
family and do not compare RFs against modern deep architectures
under a shared, long-term benchmark.

Deep-learning imputers have progressed rapidly in other
domains. GRU- and LSTM-based models for sequences with
missing values [12, 13], variational-autoencoder approaches for
incomplete heterogeneous data [34], and GAN-based imputers
such as GAIN [43] report strong results on clinical, sensor, and
finance benchmarks. TFT [10] further combines attention, gating,
and static covariates for multi-horizon forecasting and has been
adopted as a powerful baseline for time-series tasks. Graph-based
and diffusion-style imputers extend these ideas to spatio-temporal
networks, learning over sensor or road graphs [17, 21]. Most such
evaluations rely on hourly or daily data, synthetic MCAR masks,
and standard machine learning metrics such as MSE, MAE, or
RMSE. They rarely incorporate realistic outage patterns calibrated
to sensor failures or measure runtime, throughput, and energy cost.
In addition, large-scale cross-family comparisons remain scarce.
Classical time-series work has focused on forecasting rather than
imputation per se, and often uses cross-validation protocols that are
not fully aligned with operational deployment constraints [6, 30].

Uniqueness of Our Work. To our knowledge, there is no prior
study that jointly:
(1) explores statistical, classical machine learning, and deep
models on 10-minute meteorological records;
(2) uses outage masks and stress slices calibrated to realistic
station-failure behavior; and
(3) evaluates both accuracy and systems-level metrics such
as runtime, throughput, and energy/monetary cost on a
common hardware platform.
Besides, no prior study isolates the marginal benefit of augmenting
tabular imputers with lightweight spatio-temporal embeddings.
This research complements the existing literature by providing
a head-to-head benchmark across 12 imputation methods on 2
independent agricultural weather networks. Unlike prior work,

A Comparative Evaluation of Imputation Models for Agricultural Weather Networks

we: (a) operate under outage masks designed to mimic real
sensor-failure statistics; (b) report accuracy alongside training time,
inference latency, throughput, energy footprint, and monetary cost;
and (c) introduce a lightweight spatio-temporal encoder whose
embeddings are reused across models, allowing us to quantify
the marginal accuracy gains versus the additional GPU budget.
Our results show that a CPU-only RF model often matches or
outperforms complex architectures while using one to two orders of
magnitude less computation, and that spatio-temporal embeddings
provide measurable but incremental improvements at a small, but
non-zero, additional cost.

5 Discussion

Our results over two networks are encouraging, but open issues
remain. It is unclear whether the same model ranking and cost
profile will persist in denser mesonets, mountainous terrain,
strongly maritime regimes, or for other key variables (e.g., humidity,
wind, radiation) that feed directly into crop and boundary-layer
models [11, 32, 38].

Another issue concerns the design of the model and
hyperparameters. Deep learners expose many tunable components,
and our protocol is intentionally modest, reflecting the GPU
budget of an operational group rather than a large-scale autoML
effort. More aggressive searches—such as Bayesian optimization
or bandit-style configuration selection—could narrow the accuracy
gap relative to RF, as seen in sequence-model benchmarks [4, 23],
but would require additional GPU-hours and thus higher energy
and monetary cost.

The GraphSAGE-GRU ablation illustrates a similar trade-off. For
our two relatively small networks, the overhead of spatial-temporal
embeddings is modest and can be amortized across multiple
models, but the cost-per-0.01°C improvement is non-negligible.
Such embeddings are therefore most appropriate when spatial
correlations are stronger (e.g., dense networks or complex terrain),
when key predictors are missing at some towers, or when
downstream tasks are susceptible to tail errors.

Operational networks must support streaming telemetry,
multi-tenant workloads, and heterogeneous hardware ranging from
low-power edge loggers to regional data centers. Extending this
work to larger end-to-end pipelines is a natural next step. From a
performance-engineering standpoint, our results suggest a practical
guideline: begin with a tuned, CPU-only RF as the default imputer,
and adopt deep or graph-based architectures only when their
additional accuracy demonstrably improves agronomic decisions
or justifies the extra compute budget.

6 Conclusion

This paper presents a performance-oriented evaluation imputation
methods on two agricultural weather networks. Across a long
temperate archive (Jena) and a shorter semi-arid network
(AgWeatherNet), a tuned CPU-only RF consistently offered the
best trade-off, achieving the lowest imputation error under
realistic outage masks and stress slices while maintaining low
latency, high throughput, and negligible inference cost. Deep
models such as BiLSTM+Attention and TFT provided at most
modest accuracy gains over simpler baselines but required one

ICPE 26, May 04-08, 2026, Florence, Italy

to two orders of magnitude more training and inference compute.
GraphSAGE-GRU embeddings yielded additional MAE reductions
of only a few hundredths of a degree at the cost of extra GPU
pretraining and storage, offering real but incremental benefits over
a purely local RF. Our results point to a pragmatic design rule for
operational weather-data systems: use a well-regularized, CPU-only
tree ensemble as the default imputer, and deploy deep or graph-based
architectures only when their additional accuracy can be justified by
the extra computational, energy, and monetary budget required for
downstream agriculture decision-making tasks.

Acknowledgments

This research is partly supported by the U.S. National Science Foun-
dation Award 2345653. Any findings, opinions, recommendations,
or conclusions expressed in the paper are those of the authors and
do not necessarily reflect the sponsor’s views.

References

[1] Walter Acevedo and Carlos Fitzjarrald. 2003. The Influence of Cloud Cover on
the Wintertime Diurnal Temperature Cycle. Atmospheric Research 66, 3 (2003),
203-222. doi:10.1016/S0169-8095(03)00058-6

[2] Bill Acock and Y. Pachepsky. 2000. Imputing Daily Maximum and Minimum Air
Temperatures. Agricultural and Forest Meteorology 104 (2000), 59-73.

[3] R.G. Allen, L. S. Pereira, D. Raes, and M. Smith. 1998. Crop Evapotranspiration:
Guidelines for Computing Crop Water Requirements (FAO Irrigation and Drainage
Paper 56). Food and Agriculture Organization of the United Nations, Rome.

[4] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. 2018. An Empirical Evaluation of
Generic Convolutional and Recurrent Networks for Sequence Modeling. arXiv
preprint arXiv:1803.01271 (2018).

[5] G.L.Baskerville and P. Emin. 1969. Rapid Estimation of Heat Accumulation
from Maximum and Minimum Temperatures. Ecology 50, 3 (1969), 514-517.
doi:10.2307/1933912

[6] Christoph Bergmeir and Rob J. Hyndman. 2018. A Note on the M4 Competition.
International Journal of Forecasting 34 (2018), 1102-1107.

[7] Christopher H. Bock and Dan E. Auer. 2010. Hourly Leaf Wetness Duration
Thresholds for Predicting Strawberry Powdery Mildew. Plant Disease 94, 6 (2010),
745-750. doi:10.1094/PDIS-94-6-0745

[8] Joseph P. Boomgard-Zagrodnik and David J. Brown. 2023. Machine Learning
Imputation of Missing Mesonet Temperature Observations. Agricultural and
Forest Meteorology 331 (2023), 109394. doi:10.1016/j.agrformet.2023.109394

[9] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (2001), 5-32. doi:10.

1023/A:1010933404324

Sercan O. Arik Bryan Lim, Nicolas Loeff, and Tomas Pfister. 2021. Temporal

Fusion Transformers for Interpretable Multi-Horizon Time Series Forecasting. In

International Journal of Forecasting, Vol. 37. 1748-1764. doi:10.1016/j.ijforecast.

2020.11.001

Gaylon S. Campbell and John M. Norman. 2012. An Introduction to Environmental

Biophysics (3 ed.). Springer, New York.

Wenjie Cao, Dong Wang, Jian Li, and Hongning Wang. 2018. BRITS: Bidirectional

Recurrent Imputation for Time Series. In Advances in Neural Information

Processing Systems (NeurIPS). 6776-6786.

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan

Liu. 2018. Recurrent Neural Networks for Multivariate Time Series With Missing

Values. Scientific Reports 8, 1 (2018).

[14] Lijun Chen, Zheng ya He, Peilin Zhao, Wei Cao, Lei Leong Cheong, and Philip S.

Yu. 2022. SAITS: Self-Attention-based Imputation for Time Series. In Proceedings

of the AAAI Conference on Artificial Intelligence.

Qiong Chen and Meian Liu. 2015. A K-Nearest Neighbour Approach to

Spatial-Temporal Gap Filling for Daily Meteorological Data. Environmental

Modelling & Software 69 (2015), 77-88. do0i:10.1016/j.envsoft.2015.03.005

[16] Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder—-Decoder for Statistical Machine Translation.
arXiv preprint arXiv:1406.1078 (2014).

[17] Andrea Cini and Federico Bonchi. 2022. GRIN: Graph Recurrent Imputation

Networks for Multivariate Time Series. ICLR (2022).

Robert W. Coates, Bruce A. King, and Allen Simmons. 2013. Smart-ET: A Web-

Based Evapotranspiration Scheduling Tool for Precision Irrigation. Computers

and Electronics in Agriculture 96 (2013), 13-22. doi:10.1016/j.compag.2013.04.012

D. Richard Cutler, Thomas C. Edwards, and Kurt H. Beard. 2007. Random Forests

for Classification in Ecology. Ecology 88, 11 (2007), 2783-2792. d0i:10.1890/07-

=
2

—
_

=
&N

=
&

[15

[18

[19

https://doi.org/10.1016/S0169-8095(03)00058-6
https://doi.org/10.2307/1933912
https://doi.org/10.1094/PDIS-94-6-0745
https://doi.org/10.1016/j.agrformet.2023.109394
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.ijforecast.2020.11.001
https://doi.org/10.1016/j.ijforecast.2020.11.001
https://doi.org/10.1016/j.envsoft.2015.03.005
https://doi.org/10.1016/j.compag.2013.04.012
https://doi.org/10.1890/07-0539.1
https://doi.org/10.1890/07-0539.1

ICPE 26, May 04-08, 2026, Florence, Italy

0539.1

[20] James Durbin and Siem Jan Koopman. 2012. Time Series Analysis by State Space
Methods (2 ed.). Oxford University Press.

[21] Zonghan Wu et al. 2023. Diffusion Imputation for Spatiotemporal Data.
arXiv:2305.05540 (2023).

[22] Christopher A. Fiebrich, Gary R. Hall, J. D. Illston, and Michael B. C. Stambaugh.

2006. Quality Assurance Procedures in the Oklahoma Mesonet. Journal of

Atmospheric and Oceanic Technology 23, 7 (2006), 1002-1015. doi:10.1175/

JTECH1909.1

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT

Press. See Chapter 7: “Regularization and Optimization” for clipping/outlier

effects.

Nathan B. Guttman and Robert G. Quayle. 1990. A Historical Perspective of U.S.

Climate Normals: 1895-1984. Monthly Weather Review 118, 3 (1990), 176-187.

doi:10.1175/1520-0493(1990)118<0176:AHPOUC>2.0.CO;2

[25] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation

Learning on Large Graphs. In Proceedings of the 31st International Conference on

Neural Information Processing Systems. 1025-1035.

Michael Hauschild and Jochen Fréhlich. 2019. Spline-Based Gap Filling of High-

Resolution Meteorological Time Series. Theoretical and Applied Climatology 136

(2019), 613-629. doi:10.1007/s00704-018-2496-9

[27] Kenneth G. Hubbard and Xiaomao Lin. 2005. Radiation-Shield and Temperature
Measurement Errors during the Warm Season. Journal of Atmospheric and Oceanic
Technology 22, 11 (2005), 1576-1581. doi:10.1175/JTECH1803.1

[28] Robert A. Houze Jr. 1993. Cloud Dynamics. Academic Press, San Diego.

[29] Olaf Kolle. 2008. Documentation of the weather station on top of the roof of the

institute building of the max-planck-institute for biogeochemistry. Recuperado

de https://www. bgc-jena. mpg. de/wetter (2008).

Roderick J. A. Little and Donald B. Rubin. 2002. Statistical Analysis with Missing

Data (2 ed.). John Wiley & Sons, Hoboken, NJ.

[31] David W. Meek and John L. Hatfield. 1994. Data Quality Checking for Weather
Station Time Series Using Kalman Filtering. Agronomy Journal 86, 6 (1994),
1133-1139. doi:10.2134/agronj1994.00021962008600060003x

[23

[24

[26

[30

Awanish Khanal and Monowar Hasan

[32] John L. Monteith and Mike H. Unsworth. 2013. Principles of Environmental Physics

(4 ed.). Academic Press, Amsterdam.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified Linear Units Improve
Restricted Boltzmann Machines. In Proceedings of the 27th International Conference
on Machine Learning.

Aritz Nazabal, Pablo M. Olmos, Zoubin Ghahramani, and Isabel Valera. 2020.
Handling Incomplete Heterogeneous Data using VAEs. Pattern Recognition (2020).
L. C. Newton and M. R. Goodwin. 2017. Daily Maximum and Minimum Air-
Temperature Estimation from Sparse Hourly Observations. Agricultural and
Forest Meteorology 234 (2017), 182-194. doi:10.1016/j.agrformet.2016.12.012
Richard L. Snyder and Joaquim de Melo-Abreu. 2005. Frost Protection:
Fundamentals, Practice, and Economics. Food and Agriculture Organization of
the United Nations, Rome, Italy.

Daniel J. Stekhoven and Peter Bithlmann. 2012. MissForest—Non-Parametric
Missing Value Imputation for Mixed-Type Data. Bioinformatics 28, 1 (2012),
112-118. doi:10.1093/bioinformatics/btr597

Roland B. Stull. 1988. An Introduction to Boundary Layer Meteorology. Springer,
Dordrecht.

Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Patrick Brown, Trevor Hastie,
Robert Tibshirani, David Botstein, and Ross B. Altman. 2001. Missing Value
Estimation Methods for DNA Microarrays. Bioinformatics 17, 6 (2001), 520-525.
Russell S. Vose, David R. Easterling, and Kyung-Ja Lee. 2005. Diurnal Temperature
Range Over Global Land Areas: An Update. Journal of Climate 18, 8 (2005),
4910-4929. doi:10.1175/JCLI3588.1

Washington State University. [n. d.]. WSU AgWeatherNet (AWN). https://weather.
wsu.edu/.

World Meteorological Organization. 2018. Guide to Climatological Practices (4th
ed.). Number WMO-No. 100. WMO, Geneva, Switzerland. https://library.wmo.
int/doc_num.php?explnum_id=10441

Jinsung Yoon, James Jordon, and Mihaela van der Schaar. 2018. GAIN: Missing
Data Imputation Using Generative Adversarial Nets. In International Conference
on Machine Learning (ICML). 5689-5698.

https://doi.org/10.1890/07-0539.1
https://doi.org/10.1175/JTECH1909.1
https://doi.org/10.1175/JTECH1909.1
https://doi.org/10.1175/1520-0493(1990)118<0176:AHPOUC>2.0.CO;2
https://doi.org/10.1007/s00704-018-2496-9
https://doi.org/10.1175/JTECH1803.1
https://doi.org/10.2134/agronj1994.00021962008600060003x
https://doi.org/10.1016/j.agrformet.2016.12.012
https://doi.org/10.1093/bioinformatics/btr597
https://doi.org/10.1175/JCLI3588.1
https://weather.wsu.edu/
https://weather.wsu.edu/
https://library.wmo.int/doc_num.php?explnum_id=10441
https://library.wmo.int/doc_num.php?explnum_id=10441

	Abstract
	1 Introduction
	1.1 The Context and Our Research
	1.2 Our Contributions
	1.3 Key Findings

	2 Evaluation Setup
	2.1 Dataset
	2.2 Spatio-Temporal Representation Learning with GraphSAGE–GRU
	2.3 Models: Twelve Ways to Impute

	3 Experiments and Discussion
	3.1 Hyperparameter Tuning and Test Set Construction
	3.2 Accuracy and Robustness Across Datasets
	3.3 Runtime, Training Cost, and Energy Footprint
	3.4 Ablation: Effect of Spatio-Temporal Embeddings (GraphSAGE-GRU)

	4 Related Work
	5 Discussion
	6 Conclusion
	Acknowledgments
	References

