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ABSTRACT
Transformer-based language models such as BERT and its variants
are primarily developed with compute-heavy servers in mind.
Despite the great performance of BERT models across various NLP
tasks, their large size and numerous parameters pose substantial
obstacles to offline computation on embedded systems. Lighter
replacements of such language models (e.g., DistilBERT and
TinyBERT) often sacrifice accuracy, particularly for complex NLP
tasks. Until now, it is still unclear (a) whether the state-of-the-art
language models, viz., BERT and its variants are deployable
on embedded systems with a limited processor, memory, and
battery power and (b) if they do, what are the “right” set of
configurations and parameters to choose for a given NLP task. This
paper presents a performance study of transformer language models
under different hardware configurations and accuracy requirements
and derives empirical observations about these resource/accuracy
trade-offs. In particular, we study how the most commonly used
BERT-based language models (viz., BERT, RoBERTa, DistilBERT,
and TinyBERT) perform on embedded systems. We tested them
on four off-the-shelf embedded platforms (Raspberry Pi, Jetson,
UP2, and UDOO) with 2 GB and 4 GB memory (i.e., a total of
eight hardware configurations) and four datasets (i.e., HuRIC,
GoEmotion, CoNLL, WNUT17) running various NLP tasks. Our
study finds that executing complex NLP tasks (such as “sentiment”
classification) on embedded systems is feasible even without any
GPUs (e.g., Raspberry Pi with 2 GB of RAM). Our findings can
help designers understand the deployability and performance of
transformer language models, especially those based on BERT
architectures.

∗Both authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’24, May 7–11, 2024, London, United Kingdom.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0444-4/24/05.
https://doi.org/10.1145/3629526.3645054

CCS CONCEPTS
• Computing methodologies → Natural language processing;
• Computer systems organization → Embedded hardware.

KEYWORDS
Transformers; Embedded Systems; NLP; Language Models

ACM Reference Format:
Souvika Sarkar, Mohammad Fakhruddin Babar, Md Mahadi Hassan,
Monowar Hasan, and Shubhra Kanti Karmaker Santu. 2024. Processing
Natural Language on Embedded Devices: HowWell Do Transformer Models
Perform?. In Proceedings of the 15th ACM/SPEC Conference on Performance
Engineering (ICPE ’24), May 7–11, 2024, London, United Kingdom. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3629526.3645054

1 INTRODUCTION
The natural language processing (NLP) domain and the emergence
of large language models rapidly transform how we interact with
technology. With the proliferation of IoT-specific applications,
the demand for voice-controlled services that can perform tasks
by responding to spoken commands is growing. Use cases of
NLP applications, especially those that need embedded and
mobile systems, include home automation, healthcare, industrial
control, and automotive infotainment. To design a dialogue-based
interaction system for a target device, we need models that are
feasible to (a) run on the hardware and (b) meet the desired level
of accuracy. Although some services such as digital assistants (e.g.,
Alexa, Siri, Cortana) may leverage cloud resources for processing
human voices, there exist applications (e.g., offline home/industrial
robots, automotive infotainment, battlefield/military equipment)
that may not have network connectivity, thus require to synthesize
NLP tasks on the embedded device itself. The challenge is
understanding the feasibility of running a large language model on
resource-limited devices.

Transformer-based architectures [1], especially BERT-based
models [2], have established themselves as popular state-of-the-art
baselines for many NLP tasks, including Intent Classification (IC),
Sentiment Classification (SC), and Named Entity Recognition (NER).
However, a well-known criticism of BERT-based architectures
is that they are data-hungry and consume a lot of memory
and energy; therefore, deploying them in embedded systems is
challenging. In fact, due to their excessive size (431 MB) and
parameters (110 M), deploying a pre-trained BERT model (called
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𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 ) in resource-constrained embedded devices is often
impractical, especially at the production level with certainminimum
accuracy/performance requirements. Lighter versions of BERT
(e.g., DistilBERT [3] and TinyBERT [4]) often result in accuracy
losses. The degree of degradation in performance depends on the
difficulty of the task, especially since those models often cannot
perform well on complex NLP tasks, including emerging entity [5]
or mixed emotion detection [6]. Therefore, designers must make an
inevitable trade-off between an accurate model and one that can run
smoothly in a resource-constrained environment. Unfortunately,
developers often have little idea about this trade-off and have
to spend a lot of time conducting trial-and-error experiments
to find a suitable architecture that is feasible for the target
(resource-constrained) hardware and meets a desired level of
accuracy.

From a developer’s perspective, it is still unclear what is the
“right” BERT-based architecture to use for a given NLP task that
can strike a suitable trade-off between the resources available and the
minimum accuracy desired by the user. Due to the staggering size of
the 𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 model, we experiment with different “distilled” BERT
models (e.g., DistilBERT and TinyBERT) for IC, SC, and NER tasks.
However, existing ready-to-use distilled models perform poorly
on some SC and NER datasets (Sec. 4). Hence, there is a need to
explore other models that can better optimize the efficiency/accuracy
trade-offs.

This research performs an exploratory study of BERT-based
models1 under different resource constraints and accuracy budgets to
derive empirical data about these resource/accuracy trade-offs. We
aim to answer the following questions: (a) how can we determine
the suitable BERT architecture that runs on a target hardware and
meets user-defined performance requirements (accuracy, inference
time)? (b) what are the trade-offs between accuracy and model
size as we perform optimizations (such as pruning) to run them
on limited embedded device memory? and (c) what are the
implications of performing pruning on accuracy and corresponding
resource usage, including memory, inference time, and energy
consumption? In answer to those questions, we observe the
overhead of running various BERT architectures on four different
hardware (viz., Raspberry Pi [9], Jetson Nano [10], UP2 [11], and
UDOO [12]). Our experiments suggest that some BERT models
(specifically those that are “distilled”) failed to achieve desired
performance goals (e.g., F1 score) for various NLP tasks. Further,
although pruning can reduce model size, it does not significantly
help in energy efficiency.
Contributions. Our study fills the gap between simulation-
based studies and real-world scenarios, as no prior work has
deployed these models on embedded platforms. The findings of
this work can help designers choose alternative BERT-based archi-
tectures under given resource constraints, thus saving development
time and hassle. To ensure reproducibility, our implementation and
related documentation is publicly available [13].

We made the following contributions in this paper.

1Note: there exist other large language models, such as GPT [7] from OpenAI and
LaMDA [8] from Google. However, they are even more resource-hungry than BERT
(thus less suitable for embedded deployment), and some are close-sourced. Hence, our
initial study limits on BERT-based architectures.

• Our study systematically investigates the performance of
BERT-based languagemodels on four off-the-shelf embedded
platforms (Raspberry Pi, Jetson, UP2, and UDOO) with two
different memory variants (2 GB and 4 GB RAMs). We
analyzed the trade-offs between complexity and accuracy
across multiple NLP tasks. (Sec. 3-Sec. 4).

• We explore the feasibility of deploying complex NLP
tasks on embedded systems and analyze them under three
metrics: (a) inference time, (b) memory usage, and (c)
energy consumption. We developed a lookup table through
empirical observations that will be useful for system
designers to decide suitable model configurations for the
target platform (Sec. 4).

Our key findings. The observations from executing the NLP
tasks on our test platforms are as follows: (a) simpler NLP tasks
such as IC can result in a relatively high (90%+) F1 score; (b) the
time required to perform inference proportional to the size of the
trained model and trimming them result in some accuracy loss (e.g.,
60% of reduction in model size could reduce the accuracy by 50%);
(c) the energy consumption on our test hardware remains relatively
consistent, whether we prune the model or not; and (d) while GPUs
play a role in decreasing inference time, the unavailability of GPUs
can be compensated by faster CPUs.

We now start with the problem statement and present selected
datasets (Sec. 2). Section 3 describes our experiment setup before
we discuss our findings in Sec. 4.

2 PROBLEM STATEMENT & DATASETS
We aim to study how language models can be optimally deployed
to accomplish dialog processing in embedded devices. The core
technical challenge of any dialog system is to accurately understand
and interpret user “utterances” and perform the right “action”
accordingly. At a fundamental level, user utterance understanding
relies on the following three basic NLP tasks2: (a) Intent classification
(IC)— to understand the need of the user, (b) Sentiment Classification
(SC) — to understand user emotions, and (c) Named-entity
Recognition (NER) — to extract related entities such as persons
or objects.

Figure 1 presents the workflow of the dialogue-based systems
considered in this work. The user initiates the interaction by
providing a spoken command to the voice-controlled device
(marker 1○ in Fig. 1). The device employs existing automatic
speech recognition techniques [14, 15] to convert the user’s speech
into texts as most language models take textual input ( 2○). The
system then runs an “intent classifier” (Sec. 2.1.1) and analyzes the
extracted text to determine the user’s intention ( 3○). The classifier
identifies the relevant user intentions for the given command
( 4○). For instance, the intents for the given command “Can you
please go to my study room and turn off the lights?” could be
identified as “Motion” and “Change operational state,” as it instructed
the device to move from its current position. Simultaneously, a
“sentiment classifier”(Sec. 2.1.2) is employed to extract the user
sentiment ( 5○). In this case, the extracted sentiment is “Neutral”

2Section 2.1 formally presents these three NLP tasks.
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Figure 1: Utterance processing steps of a voice-controlled embedded device.

as the command does not express any emotion ( 6○). Sentiment
classification helps the voice-controlled device grasp the emotional
context behind user utterances, enabling it to respond appropriately.
In addition, the dialog system utilizes a “named entity recognizer”
(Sec. 2.1.3) to identify specific “entities” ( 7○- 8○). NER is crucial
for accurately identifying user-specified entities like locations and
objects, ensuring precise execution of commands in this scenario.
For example, the entities, in this case, are “study room” (location)
and “lights” (object). Once the user’s intention and relevant entities
are identified ( 9○), the control application running on the embedded
device carries out the specified task and sends a response back to
the user. In this paper, we focus on understanding how the language
models perform on embedded platforms for IC, SC, and NER tasks
(e.g., steps 3○- 8○).

2.1 NLP Tasks under Consideration
Recall from our earlier discussion that intent/sentiment classifi-
cation and named-entity recognition are fundamental NLP tasks
for any voice-controlled interactive system, chatbots, and virtual
assistants. We now formally introduce IC, SC, and NER tasks.

2.1.1 Intent Classification. To produce an accurate response,
reduce backtracking, and minimize user frustration, Intent
Classification (IC) is needed to identify which subsequent action a
robot needs to perform depending on the user’s utterance. A formal
definition of IC can be given as follows:

Definition 1. Given a collection of user utterances 𝑈 =

{𝑢1, 𝑢2, ..., 𝑢𝑛}, and a set of intent labels 𝐼𝑥 = {𝑖1, 𝑖2, ..., 𝑖𝑚}, classify
each utterance 𝑢 𝑗 𝜖 𝑈 with one to more intents labels from 𝐼𝑥 .

Importantly, a user might have more than one intent while
speaking to a robot and understanding the implicit or explicit intent
expressed in a statement is essential to capturing the user’s needs.
For example, consider the following command: “Can you please
go to my study room and turn off the lights?” The command wants

the robot to turn off the lights in the study room; the relevant
intent here is “Change Operational State”. However, the statement
also expressed another intent related to “Motion”, as the command
requires the robot to change location. Without identifying all the
underlying intents, the system cannot perform the right next step.
Hence, recognizing and understanding all types of intents stated
in an utterance is crucial for accomplishing the eventual goal.

2.1.2 Sentiment Classification. Sentiment analysis is regarded as
an important task for accurate user modeling in natural dialog-
based interactions, where user utterances are usually classified into
multiple emotion/sentiment labels. A formal definition can be given
as follows:

Definition 2. Given a collection of user utterances 𝑈 =

{𝑢1, 𝑢2, ..., 𝑢𝑛}, and a set of sentiment labels 𝑆𝑥 = {𝑠1, 𝑠2, ..., 𝑠𝑚},
classify each expression 𝑢 𝑗 𝜖 𝑈 with one to more sentiment labels
from 𝑆𝑥 .

For example, the following user utterance, “OMG, yep!!! That
is the final answer. Thank you so much!” will be classified with
sentiment labels “gratitude” and, “approval”. Similarly, statements
such as “This caught me off guard for real. I’m actually off my bed
laughing” will be labeled as “surprise” and “amusement.”

2.1.3 Named-entity Recognition. Named entity recognition (NER)
— often referred to as entity chunking, extraction, or identification
— is a sub-task of information extraction that seeks to locate
and classify named entities mentioned in unstructured text. An
entity can be expressed by a single word or a series of words that
consistently refer to the same thing. Each detected entity is further
classified into a predetermined category. The formal definition of
the NER task can be given as follows:

Definition 3. Given a collection of statements/texts 𝑆 =

{𝑠1, 𝑠2, ..., 𝑠𝑛}, and a set of entity labels 𝐸𝑥 = {𝑒1, 𝑒2, ..., 𝑒𝑚}, all the
words/tokens in the text will be classified with an entity label 𝑒𝑖 𝜖 𝐸𝑥 .
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NER can be framed as a sequence labelling task that is performed
in two steps, first, detecting the entities from the text, and
second, classifying them into different categories. A named entity
recognizer model classifies each word/phrase representing an entity
into one of the four types: (a) persons (PER), (b) objects (OBJ), (c)
locations (LOC), and (d) miscellaneous names (MISC).

2.2 Datasets
Our study includes the following datasets: (a) HuRIC (for IC), (b)
GoEmotion (for SC), and (c) CoNLL and WNUT17 (for NER), as we
present below.

2.2.1 Intent Classification: HuRIC. For IC, we use Human Robot
Interaction Corpus (HuRIC) [16], which is the state-of-the-art
single-class classification dataset. The basic idea of HuRIC is to
build a reusable corpus for human-robot interaction in natural
language for a specific application domain, i.e., house service robots.
HuRIC includes a wide range of user utterances given to a robot
representing different situations in a house environment. The
motivation behind selecting HuRIC for our intent classification
task stems from our specific interest in utilizing a dataset that
captures human-robot conversations. The HuRIC dataset allows
us to train and evaluate intent classification models on realistic
dialogues between humans and robots in real-world scenarios.
Table 1 presents some statistics of HuRIC.

Statistic Count
Number of examples 729

Number of intent labels 11
Size of training dataset 583

Size of test dataset 146

Table 1: Statistics of HuRIC dataset.

2.2.2 Sentiment Classification: GoEmotion. We use GoEmotion [6]
dataset from Google AI for the SC task. GoEmotion is a
human-annotated dataset of 58,000 Reddit comments extracted
from popular English-language subreddits and labeled with 27
emotion categories. As the largest fully annotated English language
fine-grained emotion dataset to date, the GoEmotion taxonomy
was designed with both psychology and data applicability in mind
Table 2 presents some statistics of GoEmotion. We chose the
GoEmotion dataset for SC task to ensure rigorous testing of our
models. With its comprehensive emotion coverage and nuanced
labeling, GoEmotion serves as a challenging yet realistic benchmark
for evaluating sentiment detection performance.

2.2.3 Named-entity Recognition: CoNLL & WNUT17. For NER we
consider two datasets, viz., CoNLL [17] and WNUT17 [5].

CoNLL. CoNLL-2003 [17] was released as a part of CoNLL-2003
shared task: language-independent named entity recognition. The
English corpus from this shared task consists of Reuters news stories
between August 1996 and August 1997, each annotated with the
entities associated with them. The data set consists of a training
file, a development file, and a test file. The details of CoNLL-2003
are presented in Table 3.

Statistic Count
Number of labels 27 + Neutral

Maximum sequence length in overall datasets 30
Size of training dataset 43,410

Size of test dataset 5,427
Size of validation dataset 5,426

Table 2: Statistics of GoEmotion dataset.

Statistic Articles Sentences Tokens
Training set 946 14,987 203,621

Development set 216 3,466 51,362
Test set 231 3,684 46,435

Table 3: Statistics of CoNLL dataset.

WNUT17. While the CoNLL corpus is based on news stories, we
wanted to select a dataset that contains user utterances such as
those available on HuRIC. Unfortunately, we could not find such a
NER dataset but discovered a very similar corpus (WNUT2017 [5])
that contains user-generated text. The WNUT2017 dataset’s shared
task focuses on identifying unusual, previously-unseen entities in
the context of emerging discussions. Identifying entities in noisy
text is really challenging, even for human annotators, due to novel
entities and surface forms. In this dataset, user comments were
mined from different social media platforms because they are large,
and samples can be mined along different dimensions, such as texts
from/about geo-specific areas, about home aid, and particular topics
and events. Table 4 summarizes the dataset properties.

Statistic Count
Number of examples 5690

Number of labels 6
Size of training dataset 3394

Size of test dataset 1287
Size of validation dataset 1009

Table 4: Statistics of WNUT17 dataset.

3 EXPERIMENTAL SETUP
We now summarize BERT architectures and configurations used in
our experiments (Sec. 3.1 and Sec. 3.2).We selected four off-the-shelf
platforms from different chip vendors (Intel, AMD, ARM, NVIDIA)
to understand the feasibility of using NLP tasks on a variety of
architectures (Sec. 3.3). To measure the performance of each task
(IC, SC, NER), we use three popular metrics (i.e., Precision, Recall,
and 𝐹1 score). Section 3.4 lists the design questions explored in
our investigation. The blueprints of our implementation, including
related code/documentation, is publicly available for community
use [13].
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BERT RoBERTa DistilBERT TinyBERT
Number of Layers 12 12 6 4
Attention Heads 12 12 12 12
Hidden Layer Size 768 768 768 312
Feed-Forward Layer Size 3072 3072 3072 1200
Vocabulary Size 30522 30522 30522 30522

Table 5: Attributes of the BERT variants used in our study.

3.1 Off-the-Shelf BERT Variants
We use a pre-trained base variant of BERT [18], RoBERTa [19],
DistilBERT [3], TinyBERT [4] model from Huggingface3 and
finetune the models on respective datasets (i.e., HuRIC, GoEmotion,
CoNLL, and WNUT17). Table 5 listed the parameters of the BERT
variants and Table 6 presents the hyper-parameter used in our
experiments.

Hyperparameter NER IC/SC
Number of epochs 3 3
Batch size 64 64
Learning rate [𝑒−6, 𝑒−4] [𝑒−6, 𝑒−4]
Weight decay [0.01, 0.3] [0.01, 0.3]
Optimizer Adam Adam
Adam epsilon 1𝑒−8 1𝑒−8
Max sequence length 64 128

Table 6: Hyperparameter values for finetuning BERT on
IC/SC and NER tasks.

3.2 Pruning and Custom Configurations
We also experiment with custom, smaller BERT configurations.
Due to the resource constraints (e.g., memory and energy limits) of
embedded devices, it is necessary to explore different variants of
BERT-based models that can be optimized to run on the device. We
can reduce the model size on two fronts: (a) by reducing the layer
size and (b) by pruning various attributes.

In our study, we experiment with different layer combinations of
BERT models and test their performance on different hardware
configurations, which are presented in Table 12, and 13. With
two layers of 𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 (instead of 12), the model size reduces
significantly, but so does the accuracy (in terms of 𝐹1 score).
Still, these models give better accuracy than the distilled models
on complex NLP tasks. Also, where 𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 model with 12
layers cannot run on a resource-constrained device, using a lesser
number of layers enable a model to execute on tiny devices with
good accuracy compared to the distilled methods (DistilBERT and
TinyBERT).

For further shrinking of the model, pruning can be applied to
weights, neurons, layers, channels, and attention heads, depending
on the heuristic used. In this paper, we focus on pruning attention
heads, which plays an important role in the model’s performance

3https://huggingface.co/.

and contributes a large number of parameters. Although multi-
headed attention is a driving force behind many recent state-of-
the-art models, Michel et al. [20] finds that even if models have
been trained using multiple heads, in practice, a large percentage
of attention heads can be removed without significantly impacting
performance. In fact, in some layers, attention heads can even be
reduced to a single head.

Based on this fact, we experiment with reducing the size
of 𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 by dynamically pruning the attention heads. Each
attention head provides a distribution of attention for the given
input sequence. For each attention head, we calculate the head
importance by calculating the entropy of each head. After that, we
mask all the attention heads with the lowest entropy. This process is
repeated for each layer of the encoder. After masking the heads, we
calculate the overall 𝐹1 score of the masked model and determine
the drop in 𝐹1 score compared to the original unpruned model. If
the drop is less than a predefined threshold, we prune the masked
attention heads. We repeat the process until the drop in 𝐹1 score
reaches the predefined threshold. This pruning procedure reduces
the model size significantly while maintaining the desired model
performance.

3.3 Evaluation Platforms
We evaluate the BERT models on heterogeneous setup, viz., x86
(Intel and AMD) and ARM platforms, including devices with or
without GPU. In particular, we used the following four different
embedded platforms: (a) Raspberry Pi 4 Model B [9], (b) Jetson
Nano [10], (c) UP2 [11], and (d) UDOO Bolt [12]. Table 7 lists the
hardware configurations used in our setup. Among them, only
Jetson board equipped with GPU (128 NVIDIA CUDA cores). We
used 2 GB and 4 GB memory configurations for each of the four
boards. The SoC (System on Chip) of ARM-based boards (Raspberry
Pi and Jetson) configured with soldered memory — hence, we
used two different boards for each with 2 GB and 4 GB RAM
configurations. The x86-based boards (i.e., UP2 and UDOO) are
modular, so we used the same board but two different DDR4 RAMs
(2 GB and 4 GB). Hence, our evaluation setup consists of eight
different hardware configurations running on four ARM and two x86
boards. For energy measurements during the inference steps, we
used UM25C energy meter [21]. We performed all experiments on
Linux kernel 5.15.0. The NLP models were developed using PyTorch
library (version 1.13).

3.4 Design Challenges & Research Questions
We conducted extensive experiments to investigate the following
research questions (RQs).

• RQ1.Given specific user-defined constraints, such as system
resources (processor, memory) and performance budgets
(accuracy, inference time), what is the optimal (if any) BERT-
based architecture satisfying those constraints?

• RQ 2. What is the accuracy vs. model-size trade-off as we
prune the models?

• RQ 3.What are the trade-offs of accuracy and corresponding
resource usage (e.g., memory, inference-time, energy
consumptions) as we perform pruning?

• RQ 4. Does GPU aid in inference time?
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Embedded Platform Architecture CPU GPU Memory

Raspberry Pi ARM Quad-core Cortex-A72 é 2 GB and 4 GB

Jetson Nano ARM Quad-core Cortex-A57 128-core NVIDIA Maxwell 2 GB and 4 GB

UP2 x86 Dual-core Intel Celeron N6210 é 2 GB and 4 GB

UDOO Bolt x86 Quad-core AMD Ryzen V1605B é 2 GB and 4 GB

Table 7: Embedded platforms used in our evaluations: (a) Raspberry Pi [9], (b) Jetson Nano [10], (c) UP2 [11], and (d) UDOO
Bolt [12]. We used 2 GB and 4 GB memory configurations for each board.

• RQ 5. What are the energy consumption differences among
various architectures (x86 and ARM)? Does the presence of
GPUs impact energy usage?

4 RESULTS
In this section, we report our results for the three basic NLP
tasks, i.e., IC, SC, and NER for both existing (e.g., BERT, RoBERTa,
DistilBERT, and TinyBERT) and custom BERT architectures.

4.1 Experience with Existing BERT Variants
Intent Classification (IC). Recall from our earlier discussion

(Sec. 2.2.1) that we used the HuRIC dataset for IC. Table 8 presents
our findings after running IC tasks using the HuRIC dataset on
different hardware. We observed that all the models performed
similarly on this dataset, achieving more than 90% 𝐹1 Score.

Multi-label Sentiment Classification (SC). We next analyze the
performance of multi-label SC tasks on Raspberry Pi, Jetson,
UP2, and UDOO board. As mentioned in Sec. 2.2.2, we used
GoEmotion [6] dataset for this task. GoEmotion includes direct
user-to-user conversation text and labels them with many user
emotions. Table 9 summarizes the performance of all the models
for this task. Interestingly, for this task, DistilBERT and TinyBERT
failed drastically, as they achieved a very low 𝐹1 Score. The failure
of distilled models can be attributed to the difficulty of the task.
Multi-label SC requires each utterance to be classified with more
than one sentiment. Therefore, this dataset is not a straightforward
positive-negative sentiment detection.

Named-entity Recognition (NER). As we mention in Sec. 2.2.3, we
use two different datasets to test the NER task. Table 10 summarizes
the performance over both the NER datasets and shows that for the
CoNLL dataset. In this setup, all models performed comparatively
the same. However, the performance of distilled models dropped
sharply for the WNUT17 dataset (which focuses on identifying
unusual, previously-unseen entities). This drop tends to be due to

the difficulty of analyzing this task, as NER evaluates the ability
to detect and classify novel, emerging, singleton-named entities in
noisy inputs.

In summary, our findings are as follows.

• All models achieved decent F1 scores (>90%) for IC task.
• DistilBERT and TinyBERT struggled with the multi-label SC
task as none achieved an F1 score of more than 15%.

• All BERTmodels excelled in the NER task on the CoNLL dataset
and accurately recognized named entities (resulting in >90% F1
scores).

• Distilled models showed a performance decline for the NER
task on the WNUT17 dataset with the F1 score dropping to less
than 5%, indicating difficulty with dataset intricacies.

4.2 Exploration with Custom Architectures
Based on our experiment results (Tables 8–10), we further explore
different alternative BERT-based architectures by reducing the
layers and pruning the attention heads from the original 𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒
model. For this exploration, we primarily focus on the challenging
tasks, i.e., multi-label SC and NER where off-the-shelf models (e.g.,
DistilBERT and TinyBERT) failed to perform.

Table 11–Table 13 present our exploration findings.4 We discuss
our observations in Sec. 4.2.3 and provide answers to the research
questions posed in Sec. 3.4. Before we proceed with the discussion,
we present a brief overview of the attributes and metrics used in
our evaluation.

4.2.1 Model Attributes. In the evaluation, we vary the following
model attributes.
• 𝐹1 Threshold (𝜃 ): The 𝜃 -cells represents what percentage of the
𝐹1 score (with respect to 𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 ) is retained by the models. In
our experiment, we varied 𝜃 between 50% to 90% and reported

4Note:We omit the results for IC on custom BERT architectures as existing models
suffice to perform this task.
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Intent Classification Task (Dataset: HuRIC)
BERT RoBERTa DistilBERT TinyBERT

Precision Recall 𝑭1 Precision Recall 𝑭1 Precision Recall 𝑭1 Precision Recall 𝑭1
0.943 0.985 0.961 0.975 0.952 0.962 0.951 0.903 0.927 0.912 0.897 0.902

Table 8: Performance of BERT, RoBERTa, DistilBERT, and TinyBERT for the IC task.

Multi-label Sentiment Detection Task (Dataset: GoEmotion)
BERT RoBERTa DistilBERT TinyBERT

Precision Recall 𝑭1 Precision Recall 𝑭1 Precision Recall 𝑭1 Precision Recall 𝑭1
0.77 0.37 0.490 0.731 0.452 0.567 0.174 0.121 0.134 0.060 0.030 0.031

Table 9: Performance of BERT, RoBERTa, DistilBERT, and TinyBERT for the SC task.

Named-entity Recognition Task
Dataset: CoNLL

BERT RoBERTa DistilBERT TinyBERT
Precision Recall 𝑭1 Precision Recall 𝑭1 Precision Recall 𝑭1 Precision Recall 𝑭1

0.891 0.963 0.926 0.882 0.955 0.917 0.906 0.967 0.935 0.872 0.958 0.911
Dataset: WNUT17

BERT RoBERTa DistilBERT TinyBERT
Precision Recall 𝑭1 Precision Recall 𝑭1 Precision Recall 𝑭1 Precision Recall 𝑭1

0.671 0.295 0.410 0.537 0.315 0.397 0.316 0.014 0.028 0.0 0.0 0.0

Table 10: Performance of BERT, RoBERTa, DistilBERT, and TinyBERT for the NER task.

Task Metrics 𝑭 1 Score Threshold (𝜽 )
𝜽 50 𝜽 60 𝜽 70 𝜃80 𝜃90

IC

Layer
MS

Params
Pruning

2 4 6 8
144.3 N/A N/A N/A
35.1
68%

2 4 6 8
148.3 N/A N/A N/A
37.1
66%

2 4 6 8
N/A 195.6 N/A 282.2

48.9 70.5
56% 36%

2 4 6 8
154.2 198.7 246 N/A
38.6 49.7 61.5
65% 55% 44%

2 4 6 8
N/A 211.3 268 303.5

52.8 67 75.9
52% 39% 31%

NER

Layer
MS

Params
Pruning

2 4 6 8
136.4 N/A N/A N/A
34.1
67%

2 4 6 8
147.4 N/A N/A N/A
36.9
65%

2 4 6 8
N/A 185.2 233.3 N/A

46.3 58.3
57% 45%

2 4 6 8
N/A 201 249.8 268

46.3 62.4 67
45% 57% 38%

2 4 6 8
N/A N/A 260.8 289.2

65.2 72.3
39% 32%

Table 11: Performance of SC and NER tasks for the GoEmotion and WNUT17 datasets on various configurations. In metrics
column, MS= Model Size (MB), Params= Parameters (Million).

the model details in respective columns. For example, 𝜃 set to
80% implies the 𝜃80 column.

• Platform: Indicates thememory capacity of the different hardware
we used in our exploration.

• Layer : Represents the number of layers retained.
• Model Size: The size of the saved model after training. We stored
the saved model on the disk which is then loaded on the memory
for inference.

• Parameters: This metric indicates the total number of parameters
in the saved model. We obtained the model parameters using the
model.parameters() method in PyTorch [22].

• Pruning: Pruning percentage represents the reduction in size
from the 𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 model. For example, a pruning percentage of
70% implies that the pruned model is 70% smaller than 𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 .

4.2.2 Performance Metrics. We consider the three metrics to
benchmark the NLP models: (a) inference time, (b) memory usage,
and (c) energy consumption, as we present below.

• Memory Consumption: Maximum memory usage (in megabytes)
of the corresponding NLP task running on different boards during
the inference time. We used Python memory_profiler for each
input to get the memory usage.

• Inference Time: Depending on the specific task, the 95th percentile
time required for the model to infer the appropriate Intent,
Sentiment or Entity from a given command.

• Energy Consumption: The average energy consumed (in watts) by
the different hardware during the inference of a given command.
We measured both the rest time (i.e., when the system is idle) and
inference time energy consumption.
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Plat. Metrics 𝑭 1 Score Threshold (𝜽 )
𝜽 50 𝜽 60 𝜽 70 𝜃80 𝜃90

Pi
2 GB

Layer
EC
MC
IT

2 4 6 8
4.24 N/A N/A N/A
394.3
0.52

2 4 6 8
4.28 N/A N/A N/A
391.5
0.51

2 4 6 8
N/A 4.32 N/A 4.37

440.4 563
1.1 2.17

2 4 6 8
4.35 4.3 4.48 N/A
401.9 446.2 497.3
0.54 1.01 1.69

2 4 6 8
N/A 3.91 4.45 4.34

462.9 521.5 559.4
1.3 1.81 2.35

Pi
4 GB

Layer
EC
MC
IT

2 4 6 8
4.91 N/A N/A N/A
397.5
0.44

2 4 6 8
5.05 N/A N/A N/A
401
0.44

2 4 6 8
N/A 4.67 N/A 5.09

446.3 569.2
0.82 1.5

2 4 6 8
4.98 4.72 4.8 N/A
404.2 453.2 507.7
0.5 0.81 1.21

N/A 4 6 8
4.77 4.78 4.95
464.6 528.8 563.4
1.00 1.46 1.55

Jetson
2 GB

Layer
EC
MC
IT

2 4 6 8
5.87 N/A N/A N/A
299.2
0.29

2 4 6 8
5.96 N/A N/A N/A
320.1
0.26

2 4 6 8
N/A 6.01 N/A 6.28

345.4 478.5
0.49 0.88

2 4 6 8
5.87 6.14 6.26 N/A
329.7 352.6 415
0.30 0.51 0.68

2 4 6 8
N/A 6.13 6.22 6.24

367.5 429.8 463.9
0.56 .797 1.02

Jetson
4 GB

Layer
EC
MC
IT

2 4 6 8
6.27 N/A N/A N/A
355.5
0.27

2 4 6 8
6.25 N/A N/A N/A
359.7
0.27

2 4 6 8
N/A 6.21 N/A 6.43

410.1 532.9
0.45 0.86

2 4 6 8
6.27 6.31 6.36 N/A
366 408.8 459.4
0.30 0.46 0.66

2 4 6 8
N/A 6.39 6.4 6.47

423 488.4 524
0.50 0.76 0.87

UP2
2 GB

Layer
EC
MC
IT

2 4 6 8
10.897 N/A N/A N/A
670.9
0.12

2 4 6 8
10.9 N/A N/A N/A
708.6
0.12

2 4 6 8
N/A 10.94 N/A 10.79

606.8 741.7
0.21 0.39

2 4 6 8
10.96 11.05 10.78 N/A
696.8 693 742.6
0.13 0.21 0.30

2 4 6 8
N/A 10.81 10.73 10.76

741.1 707.4 782.1
0.23 0.31 0.42

UP2
4 GB

Layer
EC
MC
IT

2 4 6 8
10.17 N/A N/A N/A
738.3
0.12

2 4 6 8
11.05 N/A N/A N/A
653.2
0.12

2 4 6 8
N/A 10.04 N/A 11.51

715.7 870
0.21 0.40

2 4 6 8
10.99 11.20 11.38 N/A
736.8 753.4 792.9
0.13 0.22 0.30

2 4 6 8
N/A 11.01 11.38 11.16

736.2 798.3 875.3
0.24 0.30 0.41

UDOO
2 GB

Layer
EC
MC
IT

2 4 6 8
23.08 N/A N/A N/A
379.3
0.06

2 4 6 8
23.12 N/A N/A N/A
424.6
0.06

2 4 6 8
N/A 23.43 N/A 23.64

361.5 422
0.10 0.12

2 4 6 8
23.28 23.38 23.62 N/A
377.9 348.1 461
0.06 0.09 0.13

2 4 6 8
N/A 23.57 23.56 23.46

360.9 468.2 453.1
0.10 0.14 0.17

UDOO
4 GB

Layer
EC
MC
IT

2 4 6 8
23.076 N/A N/A N/A
450.1
0.07

2 4 6 8
23.12 N/A N/A N/A
445.4
0.07

2 4 6 8
N/A 22.78 N/A 23.18

487.3 596.8
0.11 0.16

2 4 6 8
22.98 23.05 22.99 N/A
443.8 505.9 547.8
0.08 0.11 0.15

2 4 6 8
N/A 23.13 22.96 23.15

505.7 544.7 601.9
0.12 0.16 0.16

Table 12: Performance of SC task for the GoEmotion dataset on various configurations. In metrics column, EC=Energy
Consumption (W), MC= Memory (MB), and IT= Inference Time (s). The gray cells highlight the best-case scenario for each 𝐹1
threshold (𝜃 ).

4.2.3 Observations. We now discuss our major observations and
address the research questions introduced in Sec. 3.4.

Selecting “suitable” model subject to given constraints [RQ
1]. We can address this specific research question by inspecting
Table 12 and 13. Note that Table 12 and 13 provide information on
the model size, performance, parameters, and pruning for the SC
and NER tasks, respectively. Let us assume a system designer is
looking for suitable NER models for a 2 GB embedded platform that
maintains approximately 70% of BERT’s accuracy (𝜃70). In this case,
we can (a) scan through the NER performance metrics (i.e., Table
13), and (b) observe from Pi 2 GB Platform row and 𝜃70 column
that a six-layered and pruned (45% reduced) BERT model can run
on a Pi 2 GB platform and attain 70% of 𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 ’s original 𝐹1
score. Hence, our exploration (and similar experiments along this
line) can aid the designers to select appropriate models with desired
performance guarantees.

Accuracy andmodel-size trade-offs for pruned architectures
[RQ 2]. Table 12 and Table 13 further provide insights on the
pruning vs. 𝐹1 score trade-off. For example, in Table 12, the Pi 2 GB
Platform row shows a set of models that can run on that system. The
same row and 𝜃80 (80% 𝐹1 score threshold) column show that even
pruning 55% of a 𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 model with four layers can retain 80% of

original 𝐹1 score of 𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 , while the model size can be reduced
to 198.7 MB from 441.55 MB. Tables 12 and 13 indicate that although
pruning has only a minor impact on memory consumption, it does
not have a significant effect on energy consumption. Furthermore,
our analysis of Table 12 suggests that inference time is directly
proportional to the size of the model, implying that decreasing the
model size leads to a decrease in inference time.

Accuracy vs. system resource trade-offs for pruned
architectures [RQ 3]. If a user has precise requirements for
inference time and memory consumption for a given hardware,
one can scan Table 12 and 13 to pick the optimum model that meets
those requirements. For instance, if we want to find NER models
that can make inferences in less than 0.56 seconds on Raspberry Pi
that has 4 GB of memory, the corresponding Platform row Pi (4 GB)
in Table 13, shows us the model parameters that can satisfy this
requirement(e.g., two-layered, four-layered). Since both of them are
feasible for the chosen platform, designers can choose any of them
based on the required application performance. As an example, if
we pick a two-layered BERT model, the accuracy is 60%, and the
memory consumption is 698.3 MB. In contrast, if we select the
four-layered BERT model, it can achieve 80% accuracy, with a cost
of higher memory consumption of 699.1 MB. Hence, at the expense
of slightly higher memory consumption, it is possible to get 20%
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Plat. Metrics 𝑭 1 Score Threshold (𝜽 )
𝜽 50 𝜽 60 𝜽 70 𝜃80 𝜃90

Pi
2 GB

Layer
EC
MC
IT

2 4 6 8
4.28 N/A N/A N/A
676.3
0.55

2 4 6 8
4.36 N/A N/A N/A
709
0.55

2 4 6 8
N/A 4.3 4.51 N/A

721.3 678.4
1.08 0.61

2 4 6 8
N/A 3.95 4.35 4.51

736.8 700.3 678.4
1.19 0.61 0.61

2 4 6 8
N/A N/A 4.38 4.53

704.7 692.2
0.56 0.65

Pi
4 GB

Layer
EC
MC
IT

2 4 6 8
4.48 N/A N/A N/A
675
0.49

2 4 6 8
4.53 N/A N/A N/A
698.3
0.516

2 4 6 8
N/A 4.62 4.63 N/A

683.6 698.9
0.57 0.57

2 4 6 8
N/A 4.59 4.85 4.82

699.1 706 686
0.55 0.57 0.63

2 4 6 8
N/A N/A 4.9 4.88

706.6 709
0.60 0.65

Jetson
2 GB

Layer
EC
MC
IT

2 4 6 8
5.74 N/A N/A N/A
314.6
0.29

2 4 6 8
5.8 N/A N/A N/A
348.2
0.29

2 4 6 8
N/A 5.96 5.7 N/A

388.7 357.7
0.45 0.29

2 4 6 8
N/A 6.05 5.77 5.7

392.4 359 362.7
0.50 0.31 0.29

2 4 6 8
N/A N/A 5.8 5.71

362.3 368.9
0.33 0.29

Jetson
4 GB

Layer
EC
MC
IT

2 4 6 8
5.74 N/A N/A N/A
368.3
0.29

2 4 6 8
5.76 N/A N/A N/A
365.8
0.27

2 4 6 8
N/A 6.23 5.95 N/A

418.5 368.7
0.497 0.29

2 4 6 8
N/A 6.04 6.12 6.04

424.4 365.5 361.7
0.45 0.33 0.29

2 4 6 8
N/A N/A 6.05 6.08

363.5 366.6
0.32 0.30

UP2
2 GB

Layer
EC
MC
IT

2 4 6 8
11.108 N/A N/A N/A
512.5
0.13

2 4 6 8
11.2 N/A N/A N/A
597.6
0.12

2 4 6 8
N/A 11.18 11.44 N/A

652.9 574
0.19 0.18

2 4 6 8
N/A 11.21 10.77 10.72

650.8 601.8 603.5
0.20 0.12 0.12

2 4 6 8
N/A N/A 10.63 10.7

591.3 591.1
0.12 0.13

UP2
4 GB

Layer
EC
MC
IT

2 4 6 8
10.99 N/A N/A N/A
599.8
0.12

2 4 6 8
11.21 N/A N/A N/A
601.8
0.11

2 4 6 8
N/A 11.36 11.33 N/A

651.4 658.1
0.19 0.20

2 4 6 8
N/A 11.32 11.40 11.35

653.7 652.7 657.7
0.19 0.19 0.22

2 4 6 8
N/A N/A 11.16 11.3

657.7 652.9
0.22 0.21

UDOO
2 GB

Layer
EC
MC
IT

2 4 6 8
24.02 N/A N/A N/A
437.8
0.07

2 4 6 8
24.08 N/A N/A N/A
438.6
0.05

2 4 6 8
N/A 24.09 24.07 N/A

491.2 490.8
0.09 0.09

2 4 6 8
N/A 24.14 24.06 24.02

490.9 490.5 503.4
0.09 0.09 0.09

2 4 6 8
N/A N/A 24.11 24.07

490.3 492.4
0.09 0.08

UDOO
4 GB

Layer
EC
MC
IT

2 4 6 8
22.79
445.6
0.06

2 4 6 8
22.86
443
0.05

2 4 6 8
23.07 23.57
500.1 496.4
0.08 0.09

2 4 6 8
23.09 23.49 23.39
497.5 499.5 510.1
0.09 0.08 0.09

2 4 6 8
23.58 23.50
495.2 499.8
0.08 0.08

Table 13: Performance of NER task for the WNUT17 dataset on various configurations. In metrics column, MS= Model Size
(MB), Params= Parameters (Million), EC=Energy Consumption (Watt), MC= Memory (MB), and IT= Inference Time (s). The gray
cells highlight the best-case scenario for each 𝐹1 threshold (𝜃 ).

more accuracy. Such a lookup-based approach allows the designers
to perform a desired cost-benefit analysis.

The case for GPUs [RQ 4]. Intuitively, GPUs aid in any learning-
enabled tasks. We used one GPU-enabled hardware (Jetson Nano)
in our design space exploration. As Table 12 and Table 13 illustrate
Jetson reduces inference time compared to the Raspberry Pi board
(no GPU). However, GPUs alone cannot provide faster inference.
For instance, x86 boards (UP2 and UDOO) do not have GPUs but
are equipped with a faster processor, and hence result in better
inference times (i.e., took less time to process the queries). Systems
with better hardware (CPU/GPU/memory) can output inference
decisions faster, which may increase power consumption, as we
discuss next.

Energy consumption on various architectures and model
configurations [RQ 5]. Since many embedded platforms used
for NLP tasks (e.g., voice-controlled robots, voice assistants, IoT
devices) are battery-operated, energy consumption for inferring
user commands is a crucial parameter. Hence, we also analyze the
energy usage of the NLP tasks. For any selected BERT model, one
can find the system energy consumption from Table 12 and 13,
for two different tasks, respectively. As the table shows, (for a
given hardware) during the inference of a given command, energy
consumption does not vary significantly for various models.

Pi 2 GB
Pi 4 GB

Jetson 2 GB

Jetson 4 GB
UP2  2 GB

UP2  4 GB

UDOO 2 GB

UDOO 4 GB
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Figure 2: Energy consumption during rest mode and
inference period. ARM devices use less energy compared
to x86 systems.

To understand the energy usage of the various NLP tasks on
our test platforms, we also measured the energy consumption of
each board during rest mode and inference period (see Fig. 2).
We obtained the rest mode energy usage by idling the device
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for 10 minutes and took the average value. For inference energy
consumption, we testedwith 40 SC and 40 NER queries and repeated
each of them 100 times (i.e., a total of 2 × 40 × 100 = 8000 samples.
We report the maximum (lighter gray) bar and minimum (darker
gray) energy consumption values of the 8000 trials.

As Fig. 2 shows, the inference energy consumption increases by a
factor of 1.73 to 4.89 times compared to the rest mode energy usage.
Besides, ARM architectures (Raspberry Pi and Jetson) consume
less energy than the x86 architectures (UP2 and UDOO). Another
interesting observation is that even though Jetson boards use GPU,
they are more power efficient for performing NLP tasks compared
to some CPU-only x86 systems. Our experiments show that the
AMD Ryzen platform (UDOO) performs poorly in terms of energy
usage. However, as Table 12 and Table 13 indicate, UDOO boards
output faster inference time (since they have relatively faster CPU
than the others). Hence, there exists a trade-off between inference
time and energy usage.

4.2.4 Summary of Findings. Our key findings for custom BERT
architectures are listed below.

Model Size & Pruning.
• Pruning helps in reduction in size (upto 67%) while maintaining
at least 50% of 𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 ’s F1 score.

• The time required for inference is directly related to the size
of the model, i.e., a smaller model size results in a reduction in
inference time.

• Pruning of attention heads does not reduce memory usage.
• Pruning attention heads does not improve energy consumption
significantly.

System Artifacts.
• Faster x86 (Intel and AMD) platforms outperform ARM SoCs
(e.g., Pi and Jetson boards) wrt. inference time, but their energy
consumption is significantly higher (e.g., at least 2.60 times)
than ARM counterparts.

• GPUs aid in performance (e.g., inference times are approx. 2-
times faster in Jetson than Raspberry Pi) but GPUs alone in
Jetson boards cannot outperform a relatively faster CPU (i.e.,
those used in UP2 and UDOO boards).

• Powerful processor can decrease inference time (as expected)
but comes with a cost (increased power consumption: 2.60-5.90
times higher).

5 DISCUSSION
We explore different custom architectures of BERT-based language
models and test their deployment feasibility in low-power em-
bedded devices. We conducted extensive performance evaluations
on four embedded platforms from various vendors with varying
computing capabilities to cover a wide range of application
scenarios. We show that it is not always feasible to shrink the
size of “finetuned” 𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 model that can satisfy specific
user-defined accuracy/performance budgets. We also report which
models are deployable to resource-constrained devices with given
user requirements. We believe our empirical findings will help
the developers quickly narrow down the plausible BERT-based
architecture for target applications, thus saving development

time and effort. While we tested the NLP models on four
embedded platforms (a total of 8 hardware configurations) in
a Linux environment, they can be ported to other systems,
such as smartphones/tablets running different OSes (such as
Android). Thus our empirical study is applicable in broader
human-centric application domains, including chatbots [23–25],
virtual assistants [26, 27], and language translation [28, 29].

Our study is limited to BERT-based models for four existing
datasets (i.e., may not generalize to other language models and
datasets). However, our evaluation framework is modular and
can be retrofitted to other architectures/datasets without loss
of generality. While shrinking models have made it possible to
deploy them on resource-constrained embedded devices, their
performance on new datasets or tasks is often limited. One potential
solution to mitigate this issue is to utilize continual learning
techniques [30, 31], as they allow models to continuously learn and
evolve based on increasing data input while retaining previously
acquired knowledge. Our future work will explore the feasibility of
employing continual learning for embedded devices.

One of the challenges to figuring out the optimal BERT-based
architecture is the lack of application-specific (viz., voice-controlled
robots for home automation) datasets. Existing datasets either (a)
do not have enough examples for training deep learning models or
(b) do not provide complex, practical queries to test the robustness
of a given model. Building suitable datasets for IoT-specific
human-centric applications such as voice-control home/industrial
automation is an interesting open research problem.

6 RELATED WORK
We discuss related research on two fronts: (a) BERT-based models
and their efficient variants and (b) using NLP on embedded devices.

6.1 BERT-based Models and their Variants
The performance of BERT comes at a high computation and
memory cost, which makes on-device inference really challenging.
To mitigate this issue, researchers have proposed knowledge
distillation approaches from the original BERT model, for example,
(a) “finetune” the BERT model to improve task-specific knowledge
distillation [32, 33], (b) use Bi-LSTM models [34] for knowledge
distillation from BERT, (c) leverage single-task models to teach
a multi-task model [35], (d) distillation of knowledge from an
ensemble of BERT into a single BERT [36], (e) TinyBERT [4] uses a
layer-wise distillation strategy for BERT in both the pre-training
and fine-tuning stages, and (f) DistilBERT [3] halves the depth of
the BERT model through knowledge distillation in the pre-training
stage and an optional fine-tuning stage. On a different direction, the
Patient Knowledge Distillation approach [37] compresses an original
largemodel (“teacher”) into an equally-effective lightweight shallow
network (“student”). Other BERT models (e.g., SqueezeBERT [38],
MobileBERT [39], Q8BERT [40], ALBERT [41]) can also reduce
resource consumption than the vanilla BERT. EdgeBERT [42], an
algorithm-hardware co-design approach, performs latency-aware
energy optimizations for multi-task NLP problems. However, unlike
ours, EdgeBERT (a) does not apply attention heads pruning, and
(b) does not report scores on downstream NLP tasks on real-world
embedded systems.
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6.2 NLP for Embedded Platforms
Researchers have explored NLP techniques to facilitate natural
communication between humans and embedded devices, especially
in the context of voice-controlled cognitive robots. For example,
Megalingam et al. [43] presents a voice recognition tool that
compares the user’s input commands with the stored data. Zhang
et al. [44] propose a ROS-based robot that analyzes commands
using an offline grammar recognition library. Megalingam et al. [45]
propose a cost-efficient speech processing module running on ROS
that can provide natural language responses to the user. There also
exists ROS-integrated independent speech recognition packages [46,
47] as well as Arduino-based [48] and custom [49] voice-control
robot platforms. House et al. [50] a voice-controlled robotic arm
(named VoiceBot) for individuals with motor impairments [51].
However, most of these works focused on rule-based approaches,
and we note that transformer architectures are still under-explored
in terms of their practical deployment challenges in real-world
embedded and robotic devices, which is the focus of this study.

6.3 Uniqueness of Our Work
While existing work can reduce the size of BERT models through
distillation and pruning, from a system design perspective, it is
still difficult and tedious for a developer to find out the “right”
BERT-based architecture to use in an embedded platform. To date, it
is also unclear which lighter version of BERTwould find the optimal
balance between the resources available in an embedded device
(e.g., CPU, GPU, memory) and the minimum accuracy desired. We
used four off-the-shelf platforms widely used by developers for
various IoT and embedded applications and benchmarked state-of-
the-art BERT architectures. Our empirical evaluation and design
space exploration on heterogeneous platforms (e.g., x86 and ARM,
with or without GPU) can help the system and machine learning
engineers to pick suitable architectures depending on target system
configuration and performance constraints (e.g., accuracy, 𝐹1 score).
To the best of our knowledge, this work is one of the first efforts to
study the feasibility of deploying BERT-based models in real-world
resource-constrained embedded platforms.

7 CONCLUSION
This paper presents an empirical study of BERT-based neural
architectures in terms of the feasibility of deploying them on
resource-constrained systems, which have become ubiquitous
nowadays. Our performance evaluation results will assist
developers of multiple ubiquitous computing domains, such
as voice-controlled home and industrial automation, precision
agriculture, and medical robots to determine the deployability
of NLP models in their target platform. By using our benchmark
data, designers of ubiquitous systems will now be able to select
the “right” hardware, architecture, and parameters depending on
the resource constraints and performance requirements. This will
also save time on the developer’s end, as they can make informed
choices regarding which BERT-based architecture to use during
development based on their NLP application scenario and the
available hardware.
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