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ABSTRACT The growing use of deep neural networks (DNNs) in various applications has raised
concerns about the security and privacy of model parameters and runtime execution. To address these
concerns, researchers have proposed using trusted execution environments (TEEs) to build trustworthy
neural network execution. This paper comprehensively surveys the literature on trusted neural networks,
viz., answering how to efficiently execute neural models inside trusted enclaves. We review the various
TEE architectures and techniques employed to achieve secure neural network execution and provide a
classification of existing work. Additionally, we discuss the challenges and present a few open issues.
We intend that this review will assist researchers and practitioners in understanding the state-of-the-art
and identifying research problems.

INDEX TERMS Neural Network, DNN, Trusted Execution, TEE, TrustZone, SGX.

I. INTRODUCTION
In recent years, machine learning architectures have been
widely adopted in various domains, including medical and
financial applications, sports analysis, telecommunications,
cyber-physical systems, and augmented/virtual reality. Many
learning models are based on neural network architectures,
particularly deep neural network (DNN)-based models.
The data used for training models often use large-scale
privacy-sensitive information. Hence, failure to maintain the
confidentiality and trustworthiness of computation can lead
to leaking sensitive information (e.g., health and financial
records, personally identifiable information, intellectual
property) and have serious consequences. Hence, protecting
models and data from adversarial manipulation is crucial
to ensure trustworthy learning-based automation. Input data,
weight values, and intermediate results determine the output
of neural network algorithms. Any manipulation of these
parameters may lead to misclassification, as shown in recent
attacks [1]–[3]. Further, data used during training can be
leaked through the output inference result [4], [5]. Hence,
there is a need to design techniques for the trustworthy
execution of training/inference tasks that do not leak critical
information.

One way to ensure the secure execution of machine
learning tasks is to run them inside a “trusted enclave”
protected from external adversarial access. Researchers
explore various techniques to adapt off-the-shelf trusted
computation ideas to enable trustworthy neural network

execution. One promising approach is to leverage commod-
ity trusted execution environments (TEEs) [6], [7] such as
Intel SGX [8] and ARM TrustZone [9]. However, existing
TEE technologies are not designed to execute large-scale,
resource-hungry neural network models. Generally, TEEs
are equipped with a smaller memory footprint and slower
computing units, often insufficient to support neural network
training/inference. Retrofitting existing TEEs (or designing
a custom one) for secure neural network computation is
challenging.

Researchers proposed various techniques to adapt existing
TEE technology for executing resource-heavy learning
models inside resource-constrained TEEs. While there has
been some work understanding solutions in protecting
the confidentiality of the learning models and data
during computation [10]–[14], there exists no prior work
that systematically summarizes trusted neural network1

execution. In this survey, we provide an in-depth review
of existing trustworthy neural network execution techniques
that use off-the-shelf TEEs (viz., SGX and TrustZone).
We systematically identify the adversarial threats to enable
secure neural network processing. We also provide a
taxonomy and classify existing work.

Methodology & Contributions. We thoroughly studied the
last 25 years of literature (1998-2023) and shortlisted 16

1We use the term neural network and deep neural network (DNN)
interchangeably in this paper.
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papers for this survey that are relevant to our topic. The
selected papers cover current state-of-the-art techniques on
trusted neural network execution. We crawled the articles
related to secure neural network execution in cloud systems,
embedded/mobile devices, and edge/IoT applications from
the major systems, networking, and security venues. We
also manually searched the papers from the websites of
the researchers/industry labs that we know of working on
similar topics. We primarily use the search keywords “TEE”,
“Neural Network Security”, “Trustworthy DNN”, “DNN
using TrustZone”, “DNN using SGX”, among others. We
do not include generic machine learning, mobile/cloud/edge
computing, and embedded/cyber-physical/control-system
papers that do not consider TEE-based security solutions.
We exclude TEE security aspects that do not consider
trusted neural network integration. We also exclude papers
related to general-purpose machine learning security, trusted
distributed/federated learning techniques, and those that do
not consider neural network architectures.

In summary, this paper makes the following contributions:
• Identification of attack vectors and correlate them with

existing mitigation techniques (Section III).
• An in-depth summary and classification (taxonomy)

of state-of-the-art trusted neural network execution
techniques, in particular those based on SGX and
TrustZone technology (Section IV).

• A qualitative comparison among current literature and
identification of research gaps (Section V).

We will present the state-of-the-art techniques in later
sections but let us now start with the background (Section II)
and potential threats to neural network models (Section III).

II. BACKGROUND
We now start with an overview of the TEE (Section II-A)
and present background on neural network architectures
(Section II-B).

A. TRUSTED EXECUTION ENVIRONMENT
Trusted execution environments (TEEs) [6] complement
traditional security measures. TEE is a hardware/software-
based security architecture that runs alongside but is isolated
from the device’s main operating system [7]. TEEs aims to
provide an isolated, secure runtime environment to provide
confidentiality and integrity for the code and data that
can not be exploited even if the host (i.e., main) OS2 is
compromised. This, in turn, excludes the salient components
(e.g., OS and security-critical applications) from the trusted
computing base (TCB) to reduce the attack surface. TEEs
also provide secure storage features where sensitive code
and data are stored securely in protected memory blocks.
TEEs provide the following functionalities [9]: (a) an
isolated environment for code execution that cannot be

2In literature, the main OS components (i.e., OS kernel, device drivers,
libraries, untrusted applications) are often referred to as rich execution
environment (REE).

accessed or manipulated by other software running on the
same platform; (b) a remote attestation mechanism that
ensures the integrity of code loaded into TEE; and (c) a
tamper-resistant design to ensure that data used inside of
the TEE cannot be accessed or manipulated externally and
that data never leaves the TEE without being encrypted.
The major components of a TEE-enabled system are listed
below [6].

• Secure Boot: A mechanism to ensure that only a piece
of trusted code should be loaded to boot the device.
Secure boot techniques should prevent starting the
system if a modification is detected.

• Secure Scheduling: A coordination mechanism be-
tween the TEE and the rest of the system to ensure
that the processes running in the TEE do not affect the
responsiveness and intended behavior of the REE.

• Inter-environment Communication: A communication
interface that allows the TEE components to interact
with the rest of the system. Such protocols must
ensure reliability (i.e., memory and temporal isolation),
minimum overhead (i.e., unnecessary data copies and
context switches), and protection of the communication
interfaces (i.e., between REE and TEE).

• Secure Storage: A storage space for critical data,
that only authorized entities can access. TEEs must
ensure the confidentiality, integrity, and freshness
of stored data. Designers use secret keys and
cryptographic mechanisms (such as authenticated
encryption algorithms) to provide secure storage.

• Trusted I/O Channel: A secure communication
interface between TEE and external peripherals (e.g.,
keyboard, display, sensors, actuators) so that input
and output data are protected from being sniffed or
tampered with by malicious applications.

Among various off-the-shelf TEE implementations, Intel
SGX [15] and ARM TrustZone [9] are two widely used
technologies in many IoT/mobile applications and hence are
the focus of this survey. We now present an overview of
SGX (Section II-A1) and TrustZone (Section II-A2). We
also summarize other proprietary or less commonly used
TEEs in Section II-A3.

1) Intel SGX
The Software Guard Extensions (SGX) [15] is a set of
security-related instruction codes designed for modern Intel
processors. SGX enables both user-level and operating
system code to define private regions of memory known
as “enclaves.” The enclaves are validated by a cryptographic
attestation key of the enclave’s contents and a hardware root
of trust generated by the device vendor. Figure 1 depicts
an illustration of SGX architecture. The contents of the
enclaves are protected and cannot be read or saved by any
process outside of the enclave, even if that external process
has more privileges.

SGX operates only on a small amount of data and
code, leaving most memory outside the TCB. In SGX,
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FIGURE 1. Intel SGX Architecture.

a protected memory region, called “processor reserved
memory” (PRM), is safeguarded from any non-enclave
memory accesses by the CPU. The PRM stores the “enclave
page cache” (EPC), which consists of 4 KB pages containing
enclave code and data. The size of PRM is limited to
128 MB, of which 90 MB is reserved for the EPC
and the rest for the meta-data required by the “memory
encryption engine” [16]. The initial code and data of
an enclave are loaded by the untrusted system software
(e.g., rich OS). The CPU cryptographically hashes the
contents of the enclave, and a remote party can verify the
measurement hash through a software attestation process
to confirm that it is communicating with a secure enclave.
Execution can only enter an enclave through special CPU
instructions, and the allocation of EPC pages is delegated
to the OS kernel or hypervisor. To prevent private data
leakage, the CPU does not directly service interrupts, faults,
or VM exits while executing enclave code; instead, it
performs an “asynchronous enclave exit” to switch to a
predefined area outside the enclave before servicing it. SGX
uses cryptographic protections to ensure the confidentiality,
integrity, and freshness of evicted EPC pages while in
untrusted memory. A detailed description of Intel SGX
technology is available in existing literature [8].

2) ARM TrustZone
TrustZone [9] is a hardware/software-based security
feature for ARM devices that leverages TEE technology.
Figure 2 presents a high-level schematic of the TrustZone
architecture.3 TrustZone divides processor execution states
into two main parts: a “normal world” and a “secure
world” (viz., REE). Both normal and secure worlds have
their own memory regions (i.e., kernel and user space).
The normal world hosts a commodity OS (i.e., acts as
REE) and the secure world employs a small, verified,

3The TrustZone variant (also called TrustZone-A) presented here is
for the ARM Cortex-A family of processors which is widely used in
mobile devices. ARM also introduced a TrustZone variant for the Cortex-M
family of processors for microcontrollers and low-power IoT devices
(called TrustZone-M). Since existing TrustZone-based DNN executions are
designed for ARM Cortex-A processors, we exclude the background of
TrustZone-M.
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FIGURE 2. Schematic of ARM TrustZone Architecture.

secure kernel. The normal and secure worlds bridge via
a software module referred to as secure monitor. At any
given point in time, a TrustZone-enabled device can execute
instructions at four exception levels (EL0-EL3) and two
modes (i.e., non-secure mode, secure mode). EL3 (monitor
mode) runs the “ARM Trusted Firmware.” EL2 is used for
the hypervisor, EL1 for the OS kernel, and EL0 is used for
executing the application code. The current processor state
is determined by a specialized bit, known as a non-secure
(NS) bit. The NS bit has two states: NS = 1 for non-secure
execution and NS = 0 for secure execution. TrustZone
uses a customized mechanism called “secure monitor call”
(SMC) for context switching between the two worlds. When
an SMC instruction is invoked from the normal world,
the processor cores perform a context switch from the
normal world to the secure world and freeze their normal
world operation. As a security measure, the normal world
cannot access secure memory, whereas the secure world can
access normal world memory. TrustZone also provisions
to isolate the external peripherals. The TrustZone address
space controller (TZASC) enforces the physical memory
separation. TZASC resides between the system bus and the
memory chip. The designers can use TZASC to configure
specific memory regions as secure or non-secure.

3) Other TEEs
There also exist other TEE implementations. For instance,
the Platform Security Processor [17], (also referred to as
AMD Secure Technology) is a TEE subsystem included
in AMD microprocessors. Apple uses a separate processor
called the SEP (secure enclave processor) [18] for data
protection and biometric authentication. Google introduced
a similar solution (called Titan M [19]), which is an
external security chip that can be found on recent Android
Pixel series smartphones. MultiZone Security [20] designed
by Hex Five Security [21] is the first TEE for RISC-V
architecture.

Among the various TEE implementations, SGX is
mostly employed in cloud-based large-scale systems, where
TrustZone is widely used in embedded, mobile, and
IoT-specific applications. In our study, we were unable to
find research articles that use TEEs by other vendors (e.g.,
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FIGURE 3. A simplified neural network structure. Input and output layers are
connected through multiple hidden layers.

AMD, Apple, and Google) or leverage relatively newer
technology (e.g., RISC-V MultiZone architecture) for secure
DNN processing. Therefore, we limit our focus to TrustZone
and SGX-based papers as these two technologies cover the
state-of-the-art literature.

B. NEURAL NETWORKS
A neural network, also known as artificial neural network
(ANN) [22], is a large-scale, intricate network constituted of
layers, including an input layer, a couple of hidden layers
and an output layer. Figure 4 depicts a simplified neural
network architecture. The naming and structure of ANN
are derived from the human brain, and they resemble the
way biological neurons communicate with one another. Each
layer has many “nerve cells”. The inputs of a current layer’s
nerve cells are the outputs of a former layer’s nerve cells.
Given training data sets, ANN learns specific parameters of
the whole network with feed-forward or feedback.

A deep neural network (DNN) [23] is a derivative of
ANN composed of numerous layers between the input and
output. DNNs are typically feedforward networks, where
data flows from the input layer to the output layer without
looping back. Initially, the DNN constructs a map of virtual
neurons and assigns random numerical weights to their
connections. The weights and inputs are multiplied, yielding
a value between 0 and 1. If the network failed to recognize a
specific pattern, an algorithm would adjust the weights. As a
result, the algorithm can increase the importance of certain
parameters until it determines the correct mathematical
manipulation to process the data fully. DNNs consist of four
types of layers: (i) convolutional layers, (ii) activation layers,
(iii) pooling layers, and (iv) fully-connected layers.

Mathematically, a DNN can be represented as a function
that maps an input vector X to an output vector Y = F (X),
where F is the DNN function. Each layer consists of a set
of neurons. Each neuron takes a weighted sum of its inputs
and applies an activation function to produce its output.
The output of a neuron can be represented mathematically
as Y = σ(WX + b), where W is the weight vector,
X is the input vector, b is the bias term, and σ is the

activation function. The purpose of the activation function
is to introduce non-linearity into the model, which allows
the DNN to learn complex, non-linear relationships between
the input and output. The weights and biases in the DNN
are learned during the training process. The training process
involves iteratively adjusting the weights and biases to
minimize a loss function, which measures the difference
between the predicted output and the actual output. A
commonly used loss function is the cross-entropy loss that
measures the difference between the predicted probabilities
of the different classes and the true probabilities. We can
define the cross-entropy loss function as: L = −

∑
yi ∗

log(ŷi), where yi is the true probability of the i-th class, ŷi
is the predicted probability of the i-th class.

There also exist variants of DNNs. For instance,
convolutional neural networks (CNNs) [24] are a special
case of DNNs that uses matrix multiplications in
conjunction with convolutional filter operations and are used
for image and video analysis. Recurrent neural networks
(RNNs) [25] are specifically designed for time series
prediction. RNNs are distinguished by the presence of
loops in their layer connections, which allow them to
maintain state and make predictions on sequential inputs
while maintaining accuracy.

III. ATTACKS ON NEURAL NETWORKS
In most work, researchers assume that the adversary has
access to model parameters, input data, and REE subsystem
(e.g., rich OS and its memory). Instead of adversary
crashing the system, the attacker may secretly infer critical
information and leak those for economic gain. The common
attack types used in the literature include: (i) white-box [26],
(ii) black-box [27], (iii) generative adversarial network
(GAN) [28], (iv) membership inference [4], and (v) fault
injection attacks [29], as we present below.

1) White-Box Attack
In a white-box attack [26], the adversary has full knowledge
of the model, including its architecture, parameters,
gradients and, loss functions. White-box attacks have
been extensively studied because the disclosure of model
architecture and parameters allows researchers to clearly
understand the weaknesses of the models and can be
mathematically analyzed. Let us represent a learning model
as a function, Y = F (X), where X is a feature vector
and Y is an output vector. In a white-box attack, attackers
attempt to generate the desired adversarial output Y∗ by
constructing an adversarial sample X∗ from a sample X by
adding a perturbation vector δX.

2) Black-Box Attack
Unlike white-box attacks, in black-box attacks [27] the
adversary can only get outputs for provided inputs and has
no knowledge of the model structure or parameters. Hence,
the inner configuration of DNN models is unavailable to
the adversary in a black-box attack scenario. In a black box
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attack, the adversary attempt to build their own model F ∗.
Then the attackers generate an adversarial sample X∗ and
apply the adversarial sample to the target model F .

3) Generative Adversarial Network (GAN) Attack
GAN [28] is an unsupervised learning model where two
neural networks compete to become more accurate in their
predictions. Generative modeling includes automatically
detecting and learning the patterns from the input data.
However, the goal is to train in a way that the model
can be used to generate new samples that seem to draw
from the original dataset. The two neural networks that
comprise a GAN are known as the generator model G
and the discriminator model D. The generator model
G learns the training data distribution by attempting
to generate “fake” samples that are difficult for the
discriminator D to distinguish from the real ones. The
generative network’s main goal is to “fool” the discriminator
network by producing new candidates that the discriminator
thinks are not synthesized but are part of the true data
distribution. Simultaneously, the discriminator model D
learns to differentiate whether a given sample comes from
the training data or is created by the generator G. The
training objective of G is to increase the error rate of the
discriminator D.

4) Membership Inference Attack (MIA)
MIAs [4] are a type of attack that uses “memorized
information” from the layers of a model to identify whether
a given data record was part of the training dataset.
MIAs could be performed both in black-box and white-box
settings. In a black-box MIA, the attacker uses model
outputs and auxiliary information (such as public datasets or
the public prediction accuracy of the model) to train shadow
models or classifiers without gaining access to the internal
model parameters. For instance, to obtain the outputs of
the model F , the attacker trains a binary classifier C with
labeled data points to predict whether a given data point
was in the training dataset. Based on the model’s output,
the classifier C assists the attacker in inferring data points
for the training set.

In a white-box MIA, the attacker has the internal
information of the model architecture. For instance, the
learning model Y = F (X), where X is a feature vector and
Y is a prediction, is known to the attacker. Adversaries can
thus create true samples and use active learning techniques
on these known samples to create a very accurate dataset
that closely resembles the original dataset.

5) Fault Injection Attack
A fault injection attack [29] may involve modifying the
network’s input data or internal parameters that lead to
incorrect or unexpected outputs. An attacker could, for
instance, introduce noise into the input to cause the DNN to
misclassify. Mathematically we can represent fault injection
attack as a conditional probability distribution P (Y|X),

where Y is the compromised output and X is the expected
output (i.e., without any attack). The difference between the
probability distributions of X and Y is used to determine
the success of such an attack.

A. THREAT MODELS USED IN LITERATURE
The majority of the work (i.e., 11 out of 16) [30]–[40]
assume black-box attacks and the rest consider white-box
attacks [41], GAN-based attacks [42], fault injection
attacks [43], [44], and membership inference scenarios [45].
A typical assumption is that adversaries have complete
access to the rich OS. For instance, an attacker may
compromise the integrity and confidentiality of the target
DNN model, including modifying the input, reconstructing
the model, and uncovering the final inference result of
the model (HybridTEE [30], Slalom [35], Sectum [39]). A
stealthy attacker could try to access the model’s parameters,
intermediate results, and final output without disrupting the
inference task (T-Slices [40]). Further, the adversary may
compromise the rich OS to intrude, forge, and modify the
interference task and steal user data from non-protected
processes (SecDeep [31], real-time DNN [38]). They may
also have access to the cache, memory, and storage
(Trusted-DNN [33]) and inject faults that may change
specific DNN parameters in the memory (AegisDNN [43]).
Using such access, the adversaries could (a) steal input
and output data (e.g., users’ private information) and
model parameters (e.g., pre-trained weight data) and (b)
change data and compute false results to mislead users.
It could also be possible that the adversary can steal
user input but provide correct output — say to glean
private user information managed by a malicious party but
remain stealthy (Serdab [32]). One example could be home
automation systems, where home camera feeds are stored
and processed using deep learning models by a third-party
cloud vendor. Hence, a trusted DNN execution framework
can protect the privacy of user inputs (e.g., camera feeds)
hosted by the (potentially malicious) edge/cloud providers.
Consider a case an untrusted user has complete control
over the OS, memory, and storage. The attackers then
may attempt to obtain proprietary information (e.g., device
configuration and other intellectual property) such as those
available unencrypted in memory or storage but not publicly
accessible (Confidential-DL [34]). The attacker may have
access to a remote node where the DNN models/data
are accessible once they are transferred from a cloud
server (DarkneTZ [41]). The adversary may seek to extract
sensitive data, such as vendor intellectual property, user
input/output, or data that identifies or tracks the user
(OMG [36]).

In GAN-based attack scenarios, all intermediate model
data could be accessible to adversaries after offloading the
second partition of the DNN in an intermediate layer to
an unsecured CPU or GPU (Origami [42]). The goal of
the attacker is to reconstruct the input using GAN. For
multi-party scenarios (e.g., user, developer, and a cloud
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TABLE 1. Summary of Adversarial Capabilities

Reference Attacker’s
Access/Capabilities

Attack Type

AegisDNN [43] Inject faults data Fault injection
Confidential DL [34] Unencrypted data of the

model
Black-box

DarkneTZ [41] Access to some part of
DNN models

White-box

HybridTEE [30] Modify the input,
reconstruct model, extract
the final inference results

Black-box

Occlumency [37] Access to cloud software Black-box
hardware resources

OMG [36] Vendor intellectual property, Black-box
User input and output data

Origami [42] Access to some part of
DNN models

GAN

Privado [44] Access to the DRAM Fault injection
Real-Time DNN [38] Access to input data, known

task periods and execution
times

Black-box

Sclera [45] Training data MIA
SecDeep [31] User data of non-protected

side
Black-box

Sectum [39] Input Data, Model
information

Black-box

Serdeb [32] User input Black-box
Slalom [35] Information about model or

inputs
Black-box

Trusted-DNN [33] Device cache, memory, and
storage

Black-box

T-Slices [40] Access to the model
parameters and intermediate
results

Black-box

vendor), a rouge vendor may try to steal user inputs
or alter inference models (Occlumency [37]). The cloud
provider may leveraging software vulnerabilities to obtain
privileged system access and acquire sensitive data or
capture information flow by exploiting existing side-channel
attacks (Privado [44]). Further, a truthful cloud provider
may obey the protocol but stealthily intend to steal client’s
private information by launching a membership inference
attack (Sclera [45]).

Table 1 summarizes threat models and assumptions on
the adversarial capabilities used in the literature. As we
can see from the table, a common assumption is that the
adversary has access to model parameters, which are stored
on the untrusted side. They may also be able to change
model parameters. However, they do not have access to the
data of the trusted OS — this is a reasonable assumption
as TEEs are intended to protect critical information. While
there exist some side-channel, physical, and DoS attacks
on TEEs [46]–[53], the state-of-the-art TEE-based DNN
execution models do not consider such attack vectors.

IV. TRUSTED DEEP NEURAL EXECUTION TECHNIQUES
Many DNN-based applications (such as image processing,
object detection, medical records, and financial transactions)
deal with sensitive data and require protection against
tampering or theft. While TEEs could be a promising

TABLE 2. Trusted Neural Network Execution Techniques

Reference Key Idea
AegisDNN [43] Sensitive layer in TEE based on a given

protection configuration profile
Confidential DL [34] Layer-by-layer execution inside the TEE
DarkneTZ [41] First l layers in the REE and the remaining

layers inside a TEE
HybridTEE [30] First few layer in a local TEE (TrustZone),

intermediate layers in cloud TEE (SGX),
and the final layer in the local TEE
(TrustZone)

Occlumency [37] Offloading user data to SGX enclave (cloud
server) and execute the model inside the
enclave

OMG [36] Encrypted data exchange between user and
vendor such that both party cannot infer
secret information

Origami [42] Similar to Slalom, but use blinding and
deblinding factor only for the first few
layers

Privado [44] Generates enclave-specific code and
encrypted parameters of the models that
is loaded to the server to prevent leakage

Real-time DNN [38] Fused various layer from same or multiple
task subject to TEE capacity

Sclera [45] Splitting the model into multiple sub-model
based on privacy expectation & resource
availability

SecDeep [31] Sensitive model code and data inside the
TEE

Sectum [39] Offload deep learning tasks to the edge-
cloud running trusted enclave

Serdeb [32] Plaintext tensor-like matrix multiplication
inside the TEE

Slalom [35] Calculates matrix multiplication in a faster
device using blinding and deblinding
technique

Trusted-DNN [33] Partition the encrypted weight file into
variable-length size to execute all layers
within the TEE

T-Slices [40] Converts deep learning models into slices
and executes as many slices as possible
sequentially inside the TEE

approach to protect critical DNN applications, a TEE-based
architecture must adhere to limited trusted resources
available. Many widely-used DNN models deal with a
large number of parameters. For instance, LetNet [54],
AlexNet [55], and VGG16 [56] have 60 thousand, 60
million, and 138 million parameters, respectively [57]. The
execution of such models inside TEEs needs a significant
amount of storage and memory. Secure enclaves often
have small memory. For instance, TrustZone has only 8
MB of memory [58] and SGX has up to 128 MB of
secure memory [15]. Unlike traditional systems, hence it
is more challenging to run DNN models in a TEE-based
architecture.

Researchers propose various techniques to execute DNN
models inside resource-constrained trusted enclaves. This
section presents various ideas available in the literature.
Table 2 summarizes the key approaches used by the authors.
We divide the TEE-based execution techniques into two
major classes: (a) full execution (all DNN layers running
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FIGURE 4. High-level illustration of trusted DNN execution approaches. The
trusted enclaves (e.g., SGX/TrustZone) can be used to execute only the critical
layers (top figure) or all of the layers (bottom figure), depending on the design
configuration.

inside TEE) and (b) partial execution (only a subset of layers
running inside TEE). The bottom part of Fig. 4 depicts
a case where all layers run inside the enclave where the
top parts illustrate a partial execution scenario. We discuss
several full and partial execution techniques in Section IV-A
and Section IV-B, respectively. Section IV-C presents
various solutions designed for targeted use cases (e.g.,
cloud and real-time computing, computation offloading, and
privacy-aware executions).

Figure 5 presents a classification of existing work.
We categorize the papers based on the number of TEE
technology (i.e., single or multiple TEE architecture). Each
of them may support single or multiple enclaves. We further
classify the techniques based on whether all or some parts
of DNN layers run inside the TEE (e.g., SGX, TrustZone,
or a combination of both). We present the summary of our
findings in Section V-A.

A. COMPLETE EXECUTION: ALL LAYERS RUNNING
INSIDE TEE
One way to enable trusted DNN execution is to run the
complete DNN application inside the TEE. However, as
mentioned earlier, TEEs have resource constraints and may
not fit a large DNN model. Hence researchers propose
various techniques to “trim” the model and fit it within the
enclave capacity, as we present below.

Peter et al. [34] propose a TrustZone-based confidential
deep learning framework by breaking down the model
layer-by-layer to tackle the TEE’s memory constraints. The
key idea is to use “layer-based partitioning” where each
layer is an independent partition. Each partition includes its
weights and biases and is stored in a separate encrypted
file. An encrypted file of a partition is loaded into shared
memory and decrypted by a trusted application on the

secure side. Then the necessary computation is done to
activate all the neurons belonging to that partition. After
computation, the current layer’s weights and biases are
discarded. The activation information of the neurons is then
stored in a secured memory and used as input to the next
layer. The partitions may still need a large memory if a
single layer has many neurons. The authors introduce a
“sub-layer partitioning” approach to solve this issue. In this
method, the model is partitioned by a layer as before. Then,
each layer is further divided into p subsets to address the
memory constraints. Sub-layer partitioning and layer-based
partitioning have some commonalities for the following
steps: (i) sending the encrypted data (activation, weights,
bias) of the layer, (ii) calculating the activation of the
present layer, (ii) discarding the weights and bias of the
previous layer, and (iv) using the stored activation data for
the incoming layer.

Trusted-DNN [33] is a memory-aware, encryption-based
model protection strategy based on TrustZone. This
technique ensures the privacy and integrity of user input
data, model weights, and output data by encrypting
input/output data with the RSA encryption algorithm.
The client and the trusted application produce RSA keys
and send the public keys to each other before starting
the DNN execution. Trusted-DNN leverages TrustZone’s
safe storing technique to protect the weight data. To
handle cryptographic keys, TrustZone uses a multi-level
key management unit based on a hardware unique key
(HUK) [59] that is only read by TEE. The TEE uses
HUK to generate a trusted applicant storage key (TSK) [59]
for each TA. The DNN model’s weight file is encrypted
with a randomly generated AES [60] key, which is then
encrypted with TSK. This ensures that only a specific TA
can read the file. Trusted-DNN divides the encrypted weight
file into parts of varying sizes, which can be changed to
fit the memory before each execution. Only one segment
is loaded into a memory buffer of the same size at any
given point in time. The buffer’s content changes when
weight parameters from another segment are needed during
the computation. Trusted-DNN further supports a special
convolutional layer calculation approach [33] that allows
finishing an inference by traversing the weight file only once
from front to back. Instead of computing with a convolution
kernel, Trusted-DNN calculates all results linked to one
parameter independently in a convolution kernel. Then, it
accumulates the results individually to the relevant place
in the output feature map. Trusted-DNN also employs
a model compression approach (i.e., binary quantification
compression) that reduces the number of weights and
computations in a DNN model, thus making it suitable for
TEE-enabled systems.

Note that partitioning the DNN model and then running
all the layers of those partitions can still take a large amount
of time. Generally, the DNN partitions contain two parts: (a)
a small secure component that runs in the protected TEE,
and (b) a large non-secure part that runs outside of the TEE.
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FIGURE 5. A classification of existing Trusted DNN frameworks. The system may support a single TEE architecture or a combination of a few (say both SGX and
TrustZone). Each TEE architecture may consist of single or multiple enclaves where some or all part of the DNN layers are executed. We use Blue and Gray

nodes to represent TrustZone and SGX-based designs, respectively and Green node depicts a combination of both TEE technology.

The non-secure part could pose a threat to user privacy as
it can be accessible by the adversary. An attacker may get
sensitive information from the non-secure part, that in turn,
can aid to compromise the DNN model. HybridTEE [30]
aims to trade off security and execution time and ensure
user privacy. The goal is to ensure the safety of the
data and the performance of the DNN model execution.
HybridTEE achieves this by running the entire DNN model
in a local secure environment (TrustZone enclave) and
offloading the DNN model on the SGX server. HybridTEE
introduced a trustworthy communication channel connecting
TrustZone and SGX to enable secure offloading of the DNN
between two TEEs. Running the whole DNN in the TEE,
HybridTEE ensures the security and confidentiality of the
data. HybridTEE offloads the DNN model to a remote Intel
SGX server to achieve the desired performance. The DNN
model is partitioned into LocalNet, RemotNet and PredNet.
LocalNet contains the most sensitive part of the DNN. The
data and code of the DNN and its feed-forward function
should reside in the local TEE (i.e., TrustZone) for privacy
protection. RemotNet contains the greatest number of layers
as it runs in the high-performance SGX server.

In HybridTEE, an auxiliary DNN is used for object
detection at the intermediate layers. If the auxiliary DNN
is not able to classify an image with a certain degree of
confidence, the image is then considered free of privacy
exposure and can be offloaded to a remote server. Finally,
PredNet — the final layer of the DNN layer — which
performs the final interference, executes inside the local
TEE (i.e., TrustZone) as the inference result is more

sensitive.

Occlumency [37] presents a cloud-based solution that
protects user privacy without limiting the benefits of
utilizing powerful cloud resources. Occlumency uses a
secure SGX enclave to maintain user data confidentiality
and integrity throughout the DNN inference process.
Since on-device inference leads to high energy costs
in battery-operated smart devices, Occlumency addresses
this problem using a cloud-driven approach. Through a
secure channel, a device sends user data directly into an
SGX enclave on a cloud server. Occlumency then runs
the entire DNN processing pipeline in the enclave and
returns the results to the device. As a result, Occlumency
secures users’ private input data, inference results, and
all intermediate outputs throughout the offloading process
while leveraging powerful cloud resources. However, due
to limited physical memory space and inefficient page
swapping, DNN inference in the SGX enclave imposes
a significant performance degradation [61]. Occlumency
addresses this by using intelligent techniques such as (a)
on-demand weights loading that dynamically load a part
of model weights in the protected enclave, as needed, (b)
memory-efficient inference that reduces memory usage to
store the intermediate data needed for inference and (c)
parallel pipeline for weights copying, hash checking, and
model inference to best utilize the SGX resources.

Researchers also proposed techniques that do not
sacrifice accuracy while ensuring trustworthy inference.
For instance, T-Slices [40] proposes a new inference
framework that dynamically converts an unmodified deep
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model into smaller units (called slices). Each slice executes
independently and remain within the trusted memory limit.
T-Slices sequentially loads as many slices as possible into
the trusted memory, while the next slices wait in the
encrypted untrusted memory. The prediction accuracy is
not impacted since T-Slices does not modify the protected
model.

B. PARTIAL EXECUTION: VARIABLES LAYERS
RUNNING INSIDE TEE
Running all DNN layers inside the enclave incurs significant
timing overhead. An alternative option for faster inference
could be executing only a few layers inside TEE and running
the rest in CPU/GPU. The challenge then is to determine
which layers should be executed inside TEE. We now
discuss DNN execution models that run a variable number
of layers inside TEE.

DarkneTZ [41] presents a partitioning algorithm — it
divides the DNN model into two parts: (a) a non-sensitive
layer and (b) a sensitive layer. The non-sensitive layers
are executed in REE. In contrast, the sensitive layers are
executed in TEE which allows the computation of the whole
DNN model on devices with limited resources. Splitting
models into two segments can avoid training data from being
leaked using inference attacks (e.g., MIA). For instance, if
there exist L layers in a DNN model, the model owner
determines an intermediate layer l where 1 ≤ l < L. During
the fine-tuning or inference of DNN, the (untrusted) client
application runs layers 1 to l in the REE while the (trusted)
server application runs the remaining layers inside the TEE
(i.e., layer l+1 to L). The rationale for running the last few
layers in TEE is that those layers have a high probability of
leaking information about the training data. If there exists
an encrypted layer (say, given by the model owner), that
layer will be decrypted by the secret key stored inside the
TEE. We note that running a part of the model outside the
enclave reduces verifiability and increases latency.

SecDeep [31] uses an on-device accelerator (ARM
Mali GPU) which provides two orders of magnitude
better inference performance than the on-device processor
(ARM Cortex CPU). To figure out which parts of the
inference code and data will run inside the TEE, SecDeep
divides deep learning libraries into two parts: (a) the
confidential computing base, which runs in the TEE, and
(b) the non-confidential computing base, which runs in
the untrusted execution environment. At development time,
the confidential and non-confidential computation bases are
unidentified preprocessor directives so that they can be
separated at compile time. SecDeep starts with a secure
boot process and works for each layer in an iterative
manner. For instance, when any data needs to be sent to
the non-confidential computing base, it first encrypts data
inside TEE. Then, the non-confidential computing base uses
the encrypted data and the model parameters and applies the
required neural processing for the current layer, and sends
the results to the confidential computing base. The above

process is repeated for the remaining layers.
Elgamal et al. [32] propose a distributed framework

(named Serdab) for deploying DNN across multiple
secure enclaves (e.g., SGX) that guarantees privacy and
confidentiality. The key idea is to distribute neural
network layers across multiple enclaves when running the
entire DNN framework in a resource-constrained TEE
is inefficient. A “placement path” mechanism determines
whether a layer will be executed on a trusted resource or an
untrusted resource. In Serdab, the first layer must run on a
trusted enclave. If a layer is to be executed on an untrusted
device, the input to that layer should be significantly
dissimilar to the input of the first layer. The similarity is
defined by the similarity function (i.e., correlation, image
resolution) and a threshold. For example, let us consider
Layer 4 of a neural network is significantly less similar
to the original image. Then, the first four layers will be
executed in TEE, and the remaining layers can be executed
on a regular processor (e.g., hardware accelerators). Serdab
can speed up inference through parallel processing. For
example, when one TEE is processing some part of the
neural chain for a given video frame, another TEE can start
processing the initial part of the neurons for the following
frame.

C. APPLICATION-ORIENTED SOLUTIONS
So far we discuss approaches that develop partitioning
techniques for trustworthy DNN execution. Researchers
also investigate various ideas geared toward targeted
use-case such as securing matrix multiplications in a
DNN model, providing DNN as a cloud/edge service,
retaining model/data privacy for multi-party communication,
and adapting TEE-based DNNs for latency-critical (viz.,
real-time) applications, as we discuss below.

1) Outsourcing Matrix Multiplication
Matrix multiplications account for a significant portion of
the arithmetic operations required to evaluate DNNs, in
both convolutional and fully connected layers. Slalom [35]
aims to take advantage of faster devices to calculate the
matrix multiplication in order to speed up the secure DNN
execution process. In particular, Slalom proposed to partition
neural network computation into a forward phase executed
in an untrusted environment and a backward phase in a
trusted environment. Therefore, it delegates the execution
of all linear layers (e.g., matrix multiplication, addition,
and other operations, that account for 99% of the DNN
computation) from a TEE to a faster (though untrusted)
processor. The matrix multiplication outputs are then sent
back to the secure enclave and verified using Freivalds’
algorithm [62].

Origami [42] allows privacy-preserving inference for
massive DNN models by leveraging cryptographic blindings
(i.e., obscuring data by introducing noise). Origami divides
the DNN model into several partitions. The first partition
(running inside the SGX enclave) receives encrypted user
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input. After decrypting the input, the input data and model
parameters are cryptographically blinded. Origami then
sends the obfuscated data to an untrusted GPU or CPU
for processing. When the computation is offloaded to a
GPU or CPU, the SGX keeps the blinding and de-blinding
factors private, preventing the data from being inferred
from the adversary through reverse engineering. Similar to
Slalom [35], the outsourced matrix multiplication process is
repeated for each DNN layer. The overhead of blinding and
unblinding the data is a limiting factor to scalability. The
authors show that Origami results in 11x to 15x improved
inference performance over Slalom.

2) Trusted DNN on the Cloud & Edge —
Learning-as-a-Service

Situations where an enterprise that does not have an
in-house infrastructure for large-scale DNN processing
may need to rely on third-party cloud services for such
computation. PRIVADO [44] aims to aid such scenarios
by providing secure DNN inference-as-a-service. PRIVADO
makes C/C++ based DNN frameworks “input-oblivious”
and removes input-dependent access patterns to prevent
information leakage. In PRIVADO, an automated tool
(called PRIVADO-Converter) detects data-dependent access
patterns and uses existing oblivious constructs meth-
ods [63]–[65] to modify them in order to make the model
data independent.

SCLERA [45] also provides learning-as-a-service and
supports secure execution of client workloads using SGX
enclaves. To reduce the computational complexity and
achieve low-latency inference, SCLERA leverages DNN
splitting and quantization, enclave parallelization, and
a resource-aware offloading policy that protects clients’
private data.

3) Privacy-preserving Enclaves

Consider an interaction between a user U and vendor V
providing learning services. U provides input data (say,
voice transcripts) to V and is concerned about data privacy.
V shares machine learning models that contain intellectual
property. Hence U must not be able to reverse engineer
the model. OMG (Offline Model Guard) [36] can assist
such scenarios by keeping information about the model’s
architecture or user data secret. OMG relies on a small
TCB TrustZone extension (called SANCTUARY [66]) and
allows the secure execution of machine learning models on
mobile devices. OMG comprises three phases: preparation,
initialization, and operation. The enclave is loaded and
attested by both U and V . Then, V provides an encrypted
model to the enclave. During initialization, V passes the
model’s decryption key to the enclave. Finally, the enclave
is ready for processing and the user U sends input data for
running learning-related tasks.

4) Time-aware Trusted DNN Execution
Many safety and latency-critical systems (such as au-
tonomous vehicles and manufacturing robots) DNN models
need to perform correctly within a stringent timing budget.
Malicious actions such as fault injection attacks may lead to
delays in the processing and result in erroneous outputs, thus
threatening the safety of the system. AegisDNN [43] aims
to protect critical parts of the time-sensitive DNN tasks from
fault injection attacks by running them inside SGX enclaves.
AegisDNN measures the amount of misclassification that
can occur when a DNN layer is not properly protected.
AegisDNN uses this information to determine the layer
protection configurations for a given task set in order to meet
both temporal guarantees and dependability requirements.

A similar line of work exists [38] that presents a
technique to enable time-critical DNN computations for
TrustZone-enabled enclaves. As TrustZone enclaves do not
have enough capacity to process DNN models from multiple
tasks and run them together while retaining temporal
constraints, the authors proposed splitting the DNN tasks
into multiple chunks. As a result, the proposed technique
can fit larger models inside a resource-constrained enclave
and reduce the context switch overheads and making
time-sensitive DNN computation plausible.

Sectum [39] performs an empirical study to analyze the
relationship between DNN inference latency and memory
occupation. The authors design a latency predictor for
SGX-hosted inference, which predicts inference latency
using a two-stage approach. The first stage uses a graph
neural network (GNN)-based model to detect whether
a given model would trigger memory over usage. The
second stage combines operator-level (e.g., ADD, MUL,
CONV_2D) profiling with linear regression to predict the
latency of a model.

V. DISCUSSION
We now summarize our findings (Section V-A) and outline
a few open research issues (Section V-B).

A. SUMMARY AND OBSERVATIONS
Efficient neural network training and inference while
maintaining privacy, integrity, and confidentiality is a
challenging task. Researchers proposed several strategies
depending on application requirements. For instance, there
exist models for running the entire DNN layers inside TEEs
[30], [33], [34], [38], [40]. Another alternative is to run
the model in multiple enclaves to speed up the inference
process [30], [32], [35], [37], [39], [42], [43], [45]. We can
also run only the sensitive layer(s) inside TEE and the rest
in an untrusted environment (e.g., REE) [31], [32], [41],
[43]. Table 3 summarizes the techniques we discuss in this
survey. Majority of work (14 out of 16) [30]–[38], [40],
[42]–[45] focus on inference task and remaining two [39],
[41] consider both training and inference (see “Learning
Task” column). We use the “Design Focus” column to
demonstrate the key performance metrics considered by the
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TABLE 3. Qualitative Comparisons of the Papers Studied in this Survey

Reference Target Application TEE Technology Enclave Learning Task Design Focus
AegisDNN [43] Cloud Systems SGX Multiple Enclaves Inference Privacy, Performance

Confidential DL [34] Platform/application oblivious TrustZone Single Enclave Inference Privacy, Confidentiality

DarkneTZ [41] Smartphone, IoT TrustZone Single Enclave Training and Inference Privacy

HybridTEE [30] Mobile Devices TrustZone + SGX Multiple Enclaves Inference Privacy, Performance

Occlumency [37] Mobile Devices and IoT SGX Multiple Enclaves Inference Privacy, Performance

OMG [36] Smartphone, Tablet TrustZone Multiple Enclaves Inference Privacy

Origami [42] Cloud Systems SGX Multiple Enclaves Inference Privacy, Performance,
Low Overhead

Privado [44] Cloud Systems SGX Multiple Enclaves Inference Privacy, Performance

Real-time DNN [38] Embedded Devices TrustZone Single Enclave Inference Performance, Low
Overhead

Sclera [45] Cloud Systems SGX Multiple Enclaves Inference Privacy, Performance

SecDeep [31] Mobile Devices and IoT TrustZone Single Enclave Inference Privacy, Confidentiality

Sectum [39] Cloud Systems SGX Multiple Enclaves Training and Inference Privacy, Performance

Serdab [32] IoT SGX Multiple Enclaves Inference Privacy, Performance

Slalom [35] Cloud Systems SGX Multiple Enclaves Inference Privacy, Performance

Trusted-DNN [33] Embedded Devices TrustZone Single Enclave Inference Privacy, Low Overhead

T-Slices [40] Embedded Devices TrustZone Single Enclave Inference Privacy, Low Overhead

authors. We classify them into four major categories: (a)
privacy (user data and model secrecy), (b) integrity (keeping
data/parameters from being tampered), (c) performance
(faster runtime, say by offloading to some layers on faster
processing units such as GPU or cloud), and (d) low
overhead (reduced TEE memory footprint, context switches,
and cryptographic computation).

We find that there is a trade-off between security and
performance. For instance, for faster processing, we may
need to run the (non-sensitive) layers on powerful (and
potentially untrusted) components (e.g., in GPU). Running
all layers inside TEE incurs a significant timing overhead.
Further, running the entire model insider enclaves may often
be infeasible as most TEEs have limited, finite memory.
Partitioning the model and executing the only sensitive
layers within a TEE could be an alternative to address
this problem. For example, in image/voice recognition
applications where the user may not want to reveal input
and processed data, running initial input layers and final
output layers inside TEE should be sufficient.

B. OPEN RESEARCH ISSUES
While there exists some work on trusted neural network
computation, research in this domain is still in the early
stages. In the following, we identify a few research
challenges and open issues.

1) Resource-aware Trusted Learning
Each inference in a learning model necessitates a large
amount of computing, which consumes a significant
amount of energy. Energy consumption is critical on the
low-resource edge and IoT devices [67], [68]. Further, they

often have limited computational resources (e.g., processor,
memory, and storage). Data and DNN parameters are
usually stored in memory, where significant memory is
consumed by frequent memory access [69]. Transferring
data from a low-cost external memory to an expensive
on-chip memory leads to a considerable increase in energy
consumption. Neural network executions incur significant
power, memory, and timing overhead. Hence, developing
energy-aware secure DNN execution in edge devices is
critical. One of the research challenges is to address the
issue of frequent memory access and design an efficient
memory hierarchy architecture and data-flow mapping
strategy. Further latency-critical applications, such as future
autonomous vehicles need to perform online training and
inference within a stringent timing budget. We find that
only limited studies exist [38], [43] for enabling trusted
learning. We may need to explore the inner dynamics of the
models and identify their less influential weights to make
them lightweight without sacrificing accuracy. Developing
a holistic resource-aware TEE-enabled learning framework
requires further research.

2) Attack-resilient Frameworks

Existing trusted learning frameworks assume that underlying
TEE technology is secure. However, TEEs are often prone
to side-channel attacks that may leak critical information
such as execution time, thermal usage, and memory
access patterns, among others [70], [71]. For instance,
researchers demonstrated a side-channel against DNNs
on SGX-enabled cloud servers that can infer encrypted
inputs from the model [44]. There have been limited
studies that explore side-channel vulnerabilities in the
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context of TEE-enabled secure neural network execution, in
particular for embedded and IoT-style systems. We believe a
concerted effort is required to develop an end-to-end secure
learning framework that protects critical information against
multiple classes of attacks including side-channel, MIA, and
white-box attacks.

3) Exploration of Other TEE Architectures
Our study shows that most frameworks consider SGX and
TrustZone (i.e., x86 and ARM architecture, respectively) as
underlying TEE technology since they are the predominant
TEE platforms as of today. Other architectures such
as RISC-V [72] getting popularity to cope with the
performance and power requirements of mightier workloads
required by emerging AI and learning-driven applications.
We believe that the exploration of enabling trusted
learning for other TEE architectures, especially RISC-V
MultiZone [20] is a promising area of research.

VI. RELATED SURVEYS
There have been limited studies that survey trusted neural
network computation. Perhaps the closest line of work is
Duy et al. [14] which survey various machine learning
frameworks in the context of “confidential computing.”
The authors summarize attack vectors and review existing
techniques. Unlike ours, the focus is on generic learning
models and does not provide an in-depth analysis of neural
network models. On a related study, Sagar et al. [13] classify
confidential learning techniques based on cryptographic
primitives and hardware-based protocols. However, the
authors’ study is limited to SGX-based TEEs only. A
similar systematization is performed by Mo et al. [73].
In this (non-peer-reviewed) technical report, the authors
discuss how the notion of confidential computing can
be used to increase security and privacy in various
machine learning settings. In contrast, our study primarily
reviews TEE-enabled neural network execution frameworks
and presents a taxonomy and classification of existing
literature. Besides, the above work do not cover recent
papers (2021 and beyond). Our study complements
existing confidential computing-based learning surveys.
There exist other surveys that review (a) generic (viz.,
insecure/untrusted) DNN computation for IoT-specific
devices [74], mobile applications [75], (b) adversarial threats
to machine learning [10], and (c) hardware security for DNN
models [76], among others. However, the consideration
of TEE-enabled neural network models distinguishes our
survey from existing reviews.

VII. CONCLUSION
This paper thoroughly reviews state-of-the-art techniques
for enabling commodity “trusted environments” for neural
network training and inference. To the best of our
knowledge, this work is one of the first efforts to
systematically summarize existing literature and threat
vectors in the context of trusted and privacy-preserving

neural network computation. Our threat classification,
taxonomy, and summary of the existing techniques will
be valuable for researchers, industry personnel, and
standardization bodies.
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