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Abstract7

Deep Neural Networks (DNNs) are becoming common in “learning-enabled” time-critical8

applications such as autonomous driving and robotics. One approach to protect DNN inference from9

adversarial actions and preserve model privacy/confidentiality is to execute them within trusted10

enclaves available in modern processors. However, running DNN inference inside limited-capacity11

enclaves while ensuring timing guarantees is challenging due to (a) large size of DNN workloads12

and (b) extra switching between “normal” and “trusted” execution modes. This paper introduces13

new time-aware scheduling schemes—DeepTrustRT—to securely execute deep neural inferences for14

learning-enabled real-time systems. We first propose a variant of EDF (called DeepTrustRT-LW)15

that slices each DNN layer and runs them sequentially in the enclave. However, due to extra context16

switch overheads of individual layer slices, we further introduce a novel layer fusion technique (named17

DeepTrustRT-FUSION). Our proposed scheme provides hard real-time guarantees by fusing multiple18

layers of DNN workload from multiple tasks; thus allowing them to fit and run concurrently within19

the enclaves while maintaining real-time guarantees. We implemented and tested DeepTrustRT ideas20

on the Raspberry Pi platform running OP-TEE+DarkNet-TZ DNN APIs and three DNN workloads21

(AlexNet-squeezed, Tiny Darknet, YOLOv3-tiny). Compared to the layer-wise partitioning approach22

(DeepTrustRT-LW), DeepTrustRT-FUSION can schedule up to 3x more tasksets and reduce context23

switches by up to 11.12x. We further demonstrate the efficacy of DeepTrustRT using a flight controller24

(ArduPilot) case study and find that DeepTrustRT-FUSION retains real-time guarantees where25

DeepTrustRT-LW becomes unschedulable.26
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1 Introduction36

The emergence of modern IoT-specific applications (such as autonomous vehicles, drones, and37

cognitive robots, among others) coupled with advances in computing power and hardware38

efficiency pushed artificial intelligence toward embedded devices. Engineers in modern39

safety-critical applications are progressively deploying more complex deep learning models to40

meet the need for on-device intelligence [1]. Many safety-critical learning-enabled systems also41

have stringent timing (viz., “real-time”) requirements. For example, an autonomous vehicle42

must periodically scan and recognize objects in its surroundings. This is often performed by43

executing a deep neural network (DNN) inference chain. Any delay in the object recognition44
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process may jeopardize decision-making, thus threatening the safety of the vehicle, passengers,45

and others around it.46

Executing DNN models on end-user devices introduces new security and confidentiality47

challenges. Since most autonomous systems collect sensitive information (e.g., location48

and driving dynamics, reconnaissance images, medical records), data leakage from the49

learning task results in privacy concerns. Further, a compromised system could redistribute50

proprietary models (e.g., parameters, intermediate results, final outputs), leaking the51

intellectual property of the model provider. For instance, researchers have demonstrated52

attacks such as membership inference [2,3], fault injection [4,5], and input reconstruction [6],53

which can leak private model information and cause misclassification.54

One way to tackle the DNN confidentiality problem is to execute the inference tasks55

inside trusted enclaves such as Intel SGX [7] or ARM TrustZone [8] available in modern56

processors. Enabling trusted execution for DNN workloads is challenging as most DNN57

tasks are compute/memory-heavy and do not fit within the enclave memory. To put58

this in context, VGG-16 [9], an image classification task, requires 528 MB of memory for59

runtime computations. In contrast, OP-TEE [10], an open-source TrustZone stack, only60

supports 16 MB of enclave memory. To address this issue, researchers proposed various61

techniques to “slice” and execute DNN workload inside trusted enclaves [11]. However, they62

are designed for general-purpose mobile/edge computing platforms (i.e., do not provide63

real-time guarantees). Simply retrofitting existing frameworks without considering periodic,64

deadline-based real-time tasks will not effectively ensure the dependability requirements of65

learning-enabled hard real-time systems. For instance, although we can split the DNN model66

into multiple partitions [12–15], as we shall see in this paper (Section 4.2), slicing and moving67

inference tasks back and forth between the trusted and normal execution mode results in68

extra delays due to high context switch overheads. This may cause some (or all!) critical69

tasks to miss their deadlines [16].70

Hence, our research aims to address the following problem.71

The confidentiality of DNN models running on an untrusted device can be maintained by
executing them within trusted enclaves.
Challenge: How do we ensure compute-heavy real-time DNN tasks fit in limited capacity
enclaves while retaining their timing guarantees (deadlines)?

72

In response to the above problem, we develop scheduling models (called DeepTrustRT)73

that ensure a set of learning-enabled real-time tasks can retain model confidentiality. Our74

first attempt to make the DNN inference tasks trusted and time-aware relies on a slicing75

mechanism that partitions DNN models layer-by-layer [13]. The idea is to sequentially send76

one DNN layer at a time to the enclave, perform its computation, and get the results back.77

However, a single layer may often not fit in the enclave due to its large size. Hence, we78

use the Deep Compression [17] to reduce DNN model size considering the enclave capacity79

(Section 4.1). We then use the compressed model and enable real-time scheduling capabilities80

for the existing (non-real-time) layer-wise partitioning idea. We call our first approach81

DeepTrustRT-LW. We also derive related schedulability conditions (Section 4.2).82

We find that despite real-time guarantees, DeepTrustRT-LW results in poorer throughput83

(i.e., fewer tasks are schedulable) due to high context switch overheads introduced by84

the layer-by-layer partitioning technique. Hence, we further optimize DeepTrustRT-LW85

with a novel “fusion” approach that selectively groups multiple layers from multiple tasks,86

considering enclave capacity and deadline constraints (Section 5). We name this technique87

DeepTrustRT-FUSION. Figure 1 illustrates the key intuition of DeepTrustRT-FUSION for a88
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Naïve Approach: Layer-wise Execution (DeepTrustRT-LW)
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Figure 1 High-level schematic of the scheduling techniques used in the work. Due to the large size
of a DNN model, often it is not feasible to fit within the enclave. If we slice the model layer-by-layer
to fit in the enclave and send them sequentially (left rectangle, named DeepTrustRT-LW), extra
context switch overheads may violate real-time constraints. Hence, we also introduce a novel “layer
fusion” technique (named DeepTrustRT-FUSION, right rectangle) that groups multiple layers from
multiple tasks together to reduce context switch costs and results in better schedulability.

three-task system. When DNN layers are sent sequentially to the enclave, extra context switch89

overheads cause longer response time, and one of the tasks misses the deadline. In contrast,90

fusing multiple layers saves context switch delays, thus resulting in faster response times.91

As a result, all tasks meet deadlines. Our proposed layer fusion approach (a) better utilizes92

enclave capacity, and (b) reduces context switches (normal-to-secure and secure-to-normal)93

incurred by the layer-by-layer partitioning technique (up to 11.12x for a set of 25 tasks at 50%94

utilization, see Section 6). As a result, DeepTrustRT-FUSION achieves better schedulability95

compared to the DeepTrustRT-LW approach.96

In this work, we focus on ARM-based enclaves (viz., TrustZone) as ARM is the dominant97

architecture for embedded applications. However, our ideas are general and can be adapted98

to other enclaves (such as SGX) without loss of generality. We tested both DeepTrustRT-LW99

and DeepTrustRT-FUSION on three realistic workloads (e.g., AlexNet-squeezed [18], Tiny100

Darknet [18], YOLOv3-tiny [19]) running on Raspberry Pi and performed design-space101

exploration (Section 6). We also conducted a case study using the ArduPlilot UAV autopilot102

system [20] and DNN-enabled workload (YOLOv3-tiny, Tiny Darknet) and found that103

DeepTrustRT-FUSION can meet all deadlines for critical tasks while DeepTrustRT-LW misses104

some (Section 6.2).105

Our Contributions. This research is one of the first efforts to enable time-aware trusted106

DNN execution for learning-enabled real-time systems. Our contributions are as follows:107

Enabling timing guarantees for performing confidential deep inference in latency-critical108

learning-enabled systems.109

A new scheduling framework and analytical model (DeepTrustRT-LW) to determine the110

feasibility of deploying a given real-time DNN workload on TrustZone enclaves (Section 4).111

A novel task fusion approach (DeepTrustRT-FUSION) to further reduce TEE context112

switch overheads while retaining real-time guarantees (Section 5).113

We performed thorough design-space exploration using three DNN architectures (AlexNet-114

squeezed, Tiny Darknet, YOLOv3-tiny). Our case study on a UAV system (ArduPliot)115

running on Raspberry Pi further demonstrates the efficacy and feasibility of the proposed116

techniques.117

We now start with a background on trusted enclaves (TrustZone) and DNN architecture118

(Section 2) before introducing our model and related assumptions (Section 3).119

ECRTS 2024
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2 Background120

2.1 Trusted Execution and ARM TrustZone121

Trusted execution environments (TEEs) offer a secure and isolated runtime environment.122

TEEs ensure confidentiality and integrity for the code and data that can not be exploited even123

if the host (i.e., main) OS is compromised. Among various off-the-shelf TEE implementations,124

Intel SGX [7] and ARM TrustZone [8] are two widely used technologies in many IoT/mobile125

applications. SGX is usually used for general-purpose computers and servers. In contrast,126

TrustZone architecture is more suitable for embedded applications and hence is the focus of127

our work.128

Hardware

Non-Trusted Environment

Application

OS

Trusted Environment

TEE Application

TEE Kernel

Secure Monitor

Figure 2 TrustZone architecture.

The runtime operations in TrustZone129

are divided into “normal” and “secure”130

worlds, each having its own kernel, user,131

and memory space (see Fig. 2). In the132

normal world, a conventional operating133

system (e.g., Linux/RTOS) provides the134

execution environment, whereas the secure135

world uses a minimal trusted kernel (e.g.,136

OP-TEE [10]). The state of the current137

processor is determined by a specialized138

bit called the non-secure (NS) bit. The NS139

bit has two states: NS = 1 for non-secure140

execution and NS = 0 for secure execution. TrustZone employs a customized mechanism141

known as secure monitor call (SMC) to switch between these two states. When an SMC142

instruction is invoked in the normal world, the processor cores perform a context switch143

from the normal world to the secure world and pause normal world operations. As a security144

precaution, the normal world cannot access secure memory, while the secure world can access145

normal world memory. TrustZone also ensures the isolation of external peripherals.146

2.2 Deep Neural Inference147
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h41
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h32

h42

y1

y2
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Figure 3 A simplified neural network structure.
The input and output layers are connected through
multiple hidden layers.

DNNs comprise an input layer, one or more148

hidden layers, and an output layer. Each149

layer consists of interconnected nodes,150

where the connections between nodes are151

represented as edges, each associated with152

a weight, and each node has an associated153

threshold value. When the output of a154

node exceeds its threshold, the node is155

activated, and the data is propagated to156

the next layer. Figure 3 illustrates a157

simplified DNN architecture.158

DNN algorithms establish models159

based on training data, enabling them to generate predictions without explicit programming.160

During the inference process, input data is passed through the layers, and each layer performs161

matrix multiplications on the data. The final layer’s outputs can be numerical or classified162

outputs, depending on the specific application.163
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2.3 Confidential DNN164

Many DNN-based applications (such as image processing, object detection, medical records,165

and financial transactions) deal with sensitive data and require protection against tampering166

or theft of intellectual property. When protecting model parameters is needed, an emerging167

approach is to execute critical DNN layers inside trusted enclaves. As enclaves have limited168

memory and DNN models are generally large, one common approach (used for general-purpose169

systems) is to execute the DNN workload layer-by-layer. This is known as “layer-based170

partitioning,” where each layer forms an independent partition. Each partition includes171

weights and biases and is stored in a separate encrypted file. The enclave stores the decryption172

key. The (encrypted) partition file is loaded into shared memory and decrypted by a trusted173

application on the secure side.174

Note: We do not intend to modify or improve the confidential DNN techniques—a large175

number of literature exists to show how DNN models can be protected using TrustZone or other176

TEEs [13–15,21]. Our focus in this paper is to make existing (non-time-aware) confidential177

DNN ideas used for general-purpose systems adaptable for time-critical applications (viz., a178

set of periodic tasks with deadline constraints controlled by a real-time scheduling policy).179

3 Model and Assumptions180

3.1 System Model181

We consider a uniprocessor real-time system running on a TEE-enabled platform. The182

system consists of n real-time tasks Γ = {τ1, ...τn} performing DNN inference. Each task183

τi is characterized by τi = {Ca
i , Ti, Di, Li, Wi}, where Ca

i is the worst-case execution time184

(WCET) of the task inside the enclave, Ti is the period of task τi, Di is the deadline, Li is185

the number of layers of the DNN task, and Wi is the set of sizes of each layer of the DNN186

task τi where Wi = {wi1, wi2, · · · wiL}. Here, wik is the size of the weights associated with187

the edges between nodes (neurons), activation, and bias of nodes. In addition, Wi is the size188

of the DNN task τi where Wi =
∑Li

k=1 wik. As mentioned earlier (Section 2.3), each layer189

partition, which includes weights and biases, is stored in an encrypted file. This encrypted190

file is loaded into shared memory and decrypted by a trusted application on the secure side.191

Let us denote Ca
i = Cdec

i + Ccom
i is the computation inside the enclave, where Cdec

i is the192

time required for decryption of the layers information and Ccom
i is the computation time of193

task τi.194

We assume the tasks follow the earliest deadline first (EDF) scheduling policy [22]. We195

consider an implicit deadline system (i.e., each task’s period is equal to its deadline, Di = Ti).196

The taskset Γ is “schedulable” if the response time of each task (the time between arrival197

to completion) is less than its deadline. The trusted enclave has a finite capacity δ, i.e., it198

can execute Li ≥ 1 layers together as long as the total resource requirements of those layers199

are less than δ. We consider the size of each layer of a task less than δ. Invoking a TEE200

session involves a series of API calls. For instance, OP-TEE OS [10] requires 5 API calls for201

instantiating and terminating a TEE session (see Table 1). Each time the DNN layers enter202

the enclave, the data needs to be transferred into the enclave. Let Cst
si

be the SMC setup203

time and Cd
si

be the SMC cleanup time. Hence, Ccs
i = Cst

si
+ Cd

si
captures this data copy204

overhead. Note that the parameter Ccs
i is not part of the worst-case execution time (Ca

i ). If205

a task requires ncs
i many context switches (to-and-from normal to secure world), the total206

data copy overhead will be ncs
i × Ccs

i . In Section 5.2, we derive bounds on the number of207

context switches.208

ECRTS 2024
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1 Prepare session with the TA
2 Begin darknet
3 ...
4 ...
5 # darknetp:TEEC Invoke_Command(CONV) failed

Listing 1 OP-TEE Log: Failed Invocation of a Large Model on Raspberry Pi.

Existing TEE implementations (for instance, OP-TEE) use non-preemptive enclave209

execution. We incorporate this behavior, i.e., when a task performs DNN inference inside210

the enclave, other higher-priority tasks will be “blocked” until the currently running task211

releases the enclave.212

3.2 Assumptions on Adversarial Capabilities213

The pre-trained model (e.g., parameter and hyperparameter values such as structure or214

properties of the particular DNN) is deployed to the real-time platform before the system is215

operational. We consider an adversary seeks to gain access to sensitive information of the216

model. Our focus is on protecting the inference operations of the DNN model. Attackers217

may have access to the input data, but they will not obtain any information about the model218

architecture or the final inference as long as they execute within the enclave. The attackers219

may know all the task periods and their execution times. We further assume that the220

adversaries cannot bypass the TEE protection mechanisms. Note that similar assumptions221

are used by other researchers [21,23].222

Following the convention, we assume that the parameters of the pre-trained model are223

kept encrypted in the local storage. The hyperparameters of the model are kept unencrypted224

in the normal world as they are generally well-known to the public and do not disclose any225

sensitive information about the input or training data [24]. During inference (i.e., invocation226

of a job), the input data and model parameters are loaded into the enclave memory, and the227

required inference operation is carried out after the decryption of the model parameters.228

4 Time-Aware Confidential Deep Learning229

In the vanilla case (i.e., when model confidentiality is not a concern), the weights and biases of230

each neuron in a DNN architecture can be loaded into memory to calculate neuron activation.231

However, a system with confidentiality requirements (execute models within an enclave)232

presents challenges when it comes to preloading all the necessary values (e.g., weights, biases)233

due to limited enclave size, which could be as low as 8 MB for some systems [25]. In contrast,234

most DNN models need 100+ MB [9]. If a DNN model is too large, then the model may fail235

to execute inside the enclave. To illustrate this, we conducted experiments on Raspberry Pi236

running OP-TEE and Darknet [12]. For large models, Darknet was unable to load to model237

(Listing 1). Hence, we used a model compression technique using Deep Compression [17]238

to reduce the model size as we present below. Listing 2 shows the case after trimming that239

allowed us to load and run the model successfully.240

4.1 Resizing (Trimming) the Model241

Deep Compression is a three-stage pipeline that reduces the storage requirement of neural242

networks by 35x to 49x without compromising their accuracy. The pipeline consists of243
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1 Prepare session with the TA
2 Begin darknet
3 ...
4 ...
5 user CPU start: 0.029851; end: 0.029851
6 kernel CPU start :2.916167; end: 2.917143
7 Max: 2756 kilobytes
8 vmsize :545460850536; vmrss :365072222916;
9 vmdata :545460847464; vmstk :132;

10 vmexe :412; vmlib :545460848828
11

12 // Successful inference and job completion

Listing 2 OP-TEE Log: Successful Inference.

Algorithm 1 Model Compression
1: Input: wij , λ
2: Output: Compressed Size (w′

ij)
3: Prune the network below a certain threshold λ following state-of-the-art techniques [26].
4: Retrain the network.
5: Quantize the weights of model: r = mb

m log2 k+kb ▷ Plugging the value of r from approximation
percentage (i.e., (1− θij%) ) to get the value of k

6: Huffman coding to the quantized weights ▷ final compressed weight
7: return w′

ij

pruning, trained quantization, and Huffman coding [25]. The first stage prunes the network244

by learning only the essential connections, and the second stage quantizes the weights to245

enforce weight sharing. Finally, the pipeline applies Huffman coding. The method reduces246

the storage required by AlexNet-squeezed by 35x (from 240 MB to 6.9 MB), and VGG-16 by247

49x (from 552 MB to 11.3 MB), without any significant loss of accuracy. This enables the248

large model to fit inside TEE, tackling the memory constraints.249

Recall that, to fit the model in the TEE, the size of each layer must be less than the250

enclave capacity δ. For a given DNN task τi, Wi is the size of the task, Li is the total number251

of layers, and then the set of size of the layers is Wi = {wi1, · · · , wiLi}, where Wi =
∑Li

j=1 wij .252

We check ∀wij , wij < δ. If wij > δ, we calculate the approximation θij = wij − δ required253

for this layer. The approximate percentage is defined by θij% = θij/wij . The first stage254

of Deep Compression (see Algorithm 1) prunes the network by learning only the required255

connections, and the second stage quantizes the weights to enforce weight sharing. In general,256

for a network with m connections, each connection is represented by b bits, constraining the257

connections to have only k shared weights will result in a compression rate of258

r = mb

m log2 k + kb
. (1)259

Let us assume (1 − θij%) is the desired value for the compression rate r. Plugging the desired260

compression rate r = (1 − θij%), we can find the cluster size k based on Eq. (1). After261

checking and resizing all the layers, we will get the desired task ready that can fit within the262

enclave (see Algorithm 2).263

4.1.1 Formal Description of Model Trimming264

Algorithm 1 and Algorithm 2 formally present our ideas for trimming a given DNN model.265

The model compression process (Algorithm 1) initially prunes the network below a threshold266

λ to remove less critical connections (Line 3). For this, we use the techniques Han et al. [26]267

ECRTS 2024
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Algorithm 2 Resize all Layers

1: Input: Model size set (Wi), TEE Capacity δ
2: Output: Resized model size set (W ′

i)
3: W ′

i = [ ] ▷ Initialize to an n empty array
4: for j = 1 to Li in Wi do
5: if wij > δ then
6: Optimized the layer using Algorithm 1
7: Wi

′ ← wij
′

8: else
9: Wi

′ ← wij

10: end if
11: j ← j + 1
12: end for
13: return Resized model (W ′

i)

described. We rerun the network to learn the final weights with pruned networks (Line 4).268

Then, the algorithm quantizes weights, determining the value of shared weights k plugging269

desired compression rate r = (1 − θij%) in Eq. (1) (Line 5). Finally, we apply Huffman270

coding [25] to the quantized weights (Line 6).271

Following the steps in Algorithm 1 allows us to resize a single layer. We then use272

Algorithm 2 to resize all the layers of a task τi so that we can fit at least a single layer at273

a given time inside TEE. Algorithm 2 examines each layer of τi to determine if it exceeds274

the TEE capacity δ (Lines 4-12). For instance, if wij > δ, the layer is optimized using275

Algorithm 1 (Line 6) and stores the resized layers information in W ′
i (Line 7). If wij < δ,276

unchanged value of wij is stored in W ′
i (Line 9). This process is repeated for each layer of τi,277

and resized layer information is stored in W ′
i.278

We note that a compressed model may not fit into TEE due to limited enclave size (i.e.,279

Wi =
∑

wij > δ). In such cases, a known technique (used in general-purpose systems) is to280

split the DNN model into smaller parts [13, 27]. This partitioning method is beneficial as281

the only values needed at a given time are the activation of the previous layer, the weights,282

and biases for the current layer. To illustrate, for two fully connected layers, each with z283

neurons, it would require z activations, z × z weights, and z biases. This effectively reduces284

the instantaneous memory requirement to that of a single layer. The largest layer in the285

model determines the minimum amount of secure world memory needed for confidential286

DNN execution. However, this approach partitions each layer and transfers results back287

and forth from secure to the normal world. This extra context switch overhead could be288

a bottleneck for real-time applications. Thus, we need timing analysis and schedulability289

conditions to ensure all tasks retain real-time constraints. The following shows how we can290

adapt the EDF scheduler for a conventional layer-wise partitioning technique. We refer to291

this EDF variant as DeepTrustRT-LW.292

4.2 DeepTrustRT-LW: Real-Time Layer-wise DNN Execution293

Our first approach—DeepTrustRT-LW—sequentially partitioned the layers. They are then294

transferred to the enclave and scheduled using EDF policy. This is feasible since there is295

no cross-dependency between any two layers, and each layer can be computed sequentially296

independently [27]. Traditional EDF schedulability conditions often involve checking many297

relative deadline points to assess the schedulability of a taskset up to the hyperperiod [28,29].298

To speed up this process, Zhang et al. propose an improved algorithm (called QPA) that299

significantly reduces the computation required to check each relative deadline [28]. To300

determine the schedulability conditions for DeepTrustRT-LW, we use the existing QPA-301
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Algorithm 3 DeepTrustRT-LW Schedulability Checking

1: Input: Real-time taskset (Γ)
2: Output: Taskset schedulability
3: t← max{T1, T2, · · ·Tn}
4: Tmin ← min{T1, T2, · · ·Tn}
5: while t > Tmin do
6: h(t)←

∑n

i=1⌊
t

Ti
⌋(Ca

i + Li × Ccs) ▷ Calculate h(t) for the given t

7: if h(t) + b(t) > Tmin ∧ h(t) + b(t) < t then
8: t← h(t) + b(t)
9: else if h(t) + b(t) ≤ Tmin then

10: Taskset is schedulable
11: Break
12: else
13: Taskset is not schedulable
14: Break
15: end if
16: end while

based EDF timing analysis technique [28] and adapt it to our DNN-based workload. We302

choose QPA-based analysis instead of others [29] because (a) it provides us a modular303

model that can be extended to more general tasksets (arbitrary deadline systems) and (b)304

computational complexity of QPA is an offline (design-time) analysis which will not affect305

runtime performance of DeepTrustRT.306

Recall that the execution within the enclave is non-preemptive. Such behavior is modeled307

by incorporating a “blocking” delay in schedulability analysis. In EDF scheduling with308

blocking, a set of tasks is schedulable if ∀t > 0, h(t) + b(t) ≤ t, where h(t) is the processor309

demand function and b(t) is the blocking delay [30, 31]. The function h(t) calculates the310

maximum execution time required by the system for all tasks with both their arrival times311

and their deadlines in a contiguous interval of length t. The demand function h(t) is given312

by: h(t) =
∑i=n

i=1

⌊
t

Ti

⌋
Ci. In our context, the blocking delay is b(t) = max{Ccs

j |Dj > t}.313

For DeepTrustRT-LW, the computing time is given by Ci = Ca
i + ncs

i × Ccs
i , where314

ncs
i is the total SMC context switches. Hence, we can rewrite h(t) as follows: h(t) =315 ∑i=n

i=1

⌊
t

Ti

⌋
(Ca

i + ncs
i × Ccs

i ), see Lemma 1 in Section 4.3 for a formal derivation. Note that,316

in DeepTrustRT-LW, ncs
i = Li. The upper limit of t that needs to be checked is defined by317

S = max{T1, T2, · · · , Tn}. The taskset is schedulable if U < 1 and h(t) + b(t) ≤ Tmin, where318

Tmin = min{T1, T2, · · · , Tn}.319

4.3 Workflow and Analysis of DeepTrustRT-LW320

As mentioned before, in DeepTrustRT-LW, layers are sequentially executed inside the enclave,321

and the tasks are scheduled using the EDF policy. Algorithm 3 presents steps for the322

schedulability checks. We start by finding the maximum task period in the taskset (Line 3).323

Tmin stores the minimum value of the task period in the taskset (Line 4). The processor324

demand function h(t) calculates the maximum execution time required by the system for325

given t (Line 6). If h(t) + b(t) > Tmin and h(t) + b(t) < t, we tighten the bound on processor326

demand to check if we can execute all ready tasks. This is done by changing the value of t327

to h(t) (Line 8). If h(t) + b(t) ≤ Tmin at any time t, we can conclude that our system can328

execute all ready tasks without missing any deadlines. Therefore, the task set is schedulable329

(Line 9). If it finds h(t) + b(t) > t at any time t, then we report that the taskset is not330

schedulable (Line 13).331
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Table 1 APIs Required for Invoking a TEE Call. The Overheads are Measured on Raspberry Pi.

API Function Overhead (µs)

TEEC_InitializeContext() Initialize connection 240
TEEC_OpenSession() Open a new TEE session 18000
TEEC_InvokeCommand() Invokes a Command 280
TEEC_CloseSession() Close the session 1180
TEEC_FinalizeContext() Close connection 110

Determining the Processor Demand Function. The following lemma shows the332

expression for h(t).333

▶ Lemma 1. The maximum execution time required by the system contiguous interval of334

length t, is given by: h(t) =
∑i=n

i=1

⌊
t

Ti

⌋
Ci.335

Proof. From traditional EDF timing analysis [28], h(t) =
∑i=n

i=1 max{0, 1 + ⌊ t−Di

Ti
⌋} × Ci.336

Replacing Di = Ti in the above equation (since we have an implicit deadline system) and337

after simplification, h(t) can be rewritten as: h(t) =
∑i=n

i=1 max{0, ⌊ t
Ti

⌋} × Ci. Note that,338

t
Ti

is a non-negative value. Hence, reduced form of h(t) is h(t) =
∑i=n

i=1 ⌊ t
Ti

⌋Ci. Replacing339

Ci = Ca
i + ncs

i × Ccs
i , h(t) can be rewritten as: h(t) =

∑i=n
i=1 ⌊ t

Ti
⌋ × (Ca

i + ncs
i × Ccs

i ). ◀340

Overhead Analysis. For a given task τi, the worst-case execution time of the model341

inside TEE is Ca
i , where Ca

i =
∑j=Li

j=1 Ca
ij and Ca

ij is the computation time for layer j. In342

DeepTrustRT-LW, if a task τi has Li number of layers, we need Li number of context switches.343

The total execution time of task τi required in the layer-wise approach is Ci = Ca
i + Li × Ccs

i .344

We now explain the overhead of DeepTrustRT-LW using a simple example.345

▶ Example 1. Let us assume we have three tasks τ1, τ2, τ3 each having 5 layers (i.e., Li = 5)346

and δ = 7. The size of τ1 and τ2 is 10, and the size of τ3 is 5 units. We cannot execute all347

the layers of τ1 inside the enclave as the size of τ1 > δ. DeepTrustRT-LW requires five SMC348

switches from the normal to secure world for five layers for each task τ1, τ2, and τ3. Hence,349

we need 3 × 5 = 15 SMC switches to execute these three tasks inside TEE.350

4.4 The Need for an Efficient Scheduler351

Despite DeepTrustRT-LW ensures real-time guarantees (for schedulable tasksets), as we shall352

see below (and also from our evaluation in Section 6), it results in poorer schedulability. This353

is because each switching results in extra SMC invocation, which increases task response354

times. For example, OP-TEE (an open-source TrustZone port for Linux) [10] performs five355

API calls to initiate and teardown a TEE session. Each of these API calls takes a considerable356

amount of time. We carried out experiments to time each call on a Raspberry Pi platform.357

As the Table shows, initiating a TEE session, transferring data to/from the enclave, and358

cleanup steps take approximately 20 ms. In our context, each of the layer execution sessions359

will add up those TEE API overheads, thus potentially slowing down the inference task and360

may result in missed deadlines. We further illustrate this issue using a simple example.361

▶ Example 2. Let us consider the taskset listed in Table 2.362
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Table 2 Example Taskset 1.

Task L Ccs/layer Ca
i C T

τ1 8 20 290 450 700
τ2 6 20 270 390 1500
τ3 8 20 290 450 3000

We now show how layer-wise execution in DeepTrustRT-LW adds context switch overheads363

that can increase the overall execution time. There are three tasks τ1, τ2, τ3, where Ca
1 , Ca

2 , Ca
3364

are 450, 390, and 450 units respectively. The maximum blocking delay for task τ2 is 450365

time units. The periods T1, T2, T3 are 700, 1500, and 3000 time units, respectively. In this366

taskset,
∑

Ca
i /Ti = 0.69 < 1. Let us assume the context switch overhead is 20 units per367

layer. Adding this context swich overhead leads execution times, C1, C2, C3 to 450, 390, and368

450 units, respectively. As a result, the utilization is
∑

Ci/Ti = 1.05 > 1. The taskset is369

not schedulable under DeepTrustRT-LW since the system utilization is over 100%. In this370

example, we can see the summation of the actual execution time,
∑

Ca
i = 850, and the371

summation of total execution time
∑

C = 1290. This indicates an additional 34% context372

switching overhead in executing the taskset.373

Task 1

Layer-wise Execution (DeepTrustRT-LW)

Layer Fusion (DeepTrustRT-FUSION)

SMC Setup

SMC Cleanup

. . . 

Task 2 

Deadline

Task 2 Completion 

(Deadline Miss!)

Task 3 3 units

Task 3 3 units

Task 2 Finishes 

Before Deadline

Task 2

. . . 

Fusion 

(Task 1)

Fusion 

(Task 2)

Figure 4 Key intuition of model fusion: when the tasks are executed layer-wise (DeepTrustRT-LW,
top schedule), Task 2 misses deadline due to multiple context switch overheads. However, in a
multi-layer execution approach (DeepTrustRT-FUSION, bottom schedule), multiple layers are fused
together, which reduces context switch overheads and all the tasks meet their deadlines.

To address this problem, we develop a simple yet compelling idea: instead of sending374

each layer sequentially, we propose to group (fuse) multiple layers from multiple tasks375

(as long as they fit in the enclave) and send them together. We refer to this technique376

DeepTrustRT-FUSION. Figure 4 illustrates a high-level schematic for two tasks. In this377

case, DeepTrustRT-LW misses deadlines for Task 2 due to multiple context switch overheads.378

However, when we fuse the layers in DeepTrustRT-FUSION, we save context switch costs,379

thus allowing both tasks to meet deadlines.380
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We note that task fusion has been used in literature for TEE-enabled conventional381

(i.e., non-learning enabled) fixed-priority real-time systems to reduce TEE context switch382

overheads [32]. We borrow a similar concept to group multiple layers of tasks and fit383

them within the enclave. For each decision instance, we group the tasks with shorter384

deadlines so that (a) enclave utilization (capacity usage) is maximized, i.e., fit as many385

layers as possible, and (b) tasks do not miss deadlines. Our selection process, as described in386

Section 5, is inspired by the bin-packing heuristics (such as best-fit) [33] used in partitioned387

multiprocessor scheduling. We now discuss DeepTrustRT-FUSION scheduler in detail and388

derive schedulability conditions.389

5 DeepTrustRT-FUSION: Multi-layer Task Fusion390

Fusing multiple layers from multiple tasks can significantly save context switch overheads391

compared to DeepTrustRT-LW approach. For example, AlexNet-squeezed [34] has 16 layers.392

If the system follows DeepTrustRT-LW, it needs 16 context switches (one for each layer).393

In contrast, assuming each layer is 1 MB in size and the enclave has 8 MB of memory, if394

we fuse layers using DeepTrustRT-FUSION, we can finish the execution with two context395

switches. We now illustrate how DeepTrustRT-FUSION improves schedulability. Fusion396

works independent of task period types (i.e., harmonic/non-harmonic), as we illustrate with397

an example.398

▶ Example 3. Let us consider the following taskset parameters (Table 3 and Table 4).399

Table 3 Example Taskset and Layer Size.

Task L Size of layers (MB) Total Size (MB)

τ1 8 {0.046, 0.186, 0.48, 0.39, 0.27, 5.84, 2.69, 1.50} 11.40
τ2 6 {0.186, 0.48, 0.39, 5.84, 2.69, 1.50} 11.08
τ3 8 {0.046, 0.186, 0.48, 0.39, 0.27, 5.84, 2.69, 1.50} 11.40

Table 4 Example Taskset with Fusion Parameters.

Task L Ccs/layer CS (fusion) Ca
i C T (non-harmonic) T (harmonic)

τ1 8 20 2 290 330 700 700
τ2 8 20 2 270 310 1500 1400
τ3 8 20 2 290 330 3000 2800

We show for both harmonic and non-harmonic cases. Let us first consider the non-400

harmonic periods. In this case,
∑

Ci/Ti = 0.78 < 1. We can calculate the schedulability401

conditions of as follows: (a) t = 3000, h(t) = 2270; (b) t = 2270, h(t) = 1300; and (c)402

t = 1300, h(t) = 330. We can see h(t) < Tmin. Hence, the taskset is schedulable (recall: the403

same taskset is not schedulable using DeepTrustRT-LW). Let us now consider the harmonic404

case. For harmonic periods, (a) t = 2800, h(t) = 2270; (b) t = 2270, h(t) = 1300; and (c)405

t = 1390, h(t) = 330. We can see h(t) < Tmin. Hence, the taskset is schedulable.406

5.1 Workflow of DeepTrustRT-FUSION407

DeepTrustRT-FUSION aims to maximize the usage of TEE capacity. Hence, we send the408

maximum number of layers that TEE can support to reduce the SMC context switching409
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Algorithm 4 DeepTrustRT-FUSION: Task Fusion and Scheduling

1: Input: Real-time taskset (Γ), TEE-capacity δ
2: Output:Taskset schedulability decision
3: Compress the Model ▷ See Algorithm 1
4: Resize Layers ▷ See Algorithm 2
5: Ω(t) = {W ′

1,W ′
2, · · ·W ′

i} ▷ Obtain the set of the weight of each task available at time t
6: Thyp =LCM of {T1, T2, · · · , Tn} ▷ T is the set of period of all DNN tasks
7: BEGIN ▷ Find layers to send to TEE
8: while TRUE do
9: S=Find_Layers_To_Send{Ω(t)} ▷ See Line 23 for definition

10: Send S to TEE
11: end while
12: END
13: function Find_Transition_of_Layers(Ω(t))
14: i← index of first task in Ω(t)
15: while i ≤ no of task available at time t do
16: if

∑j=k

j=p
wij = δ1 < δ and

∑j=k+1
j=p

wij > δ then
17: i = i + 1
18: Remove wim, · · · , wik from Ω(t)
19: end if
20: end while
21: return wip, · · · , wik, w(i+1)p′ , · · ·
22: end function
23: function Find_Layers_To_send(Ω(t))
24: while Ω(t) ̸= NULL do
25: S =Find_Transition_Of_Layers(Ω(t)) ▷ See Line 13 for definition
26: Check schedulability using Lemma 3
27: if Schedulable then
28: Continue
29: else
30: break ▷ Taskset is not schedulable
31: end if
32: if t ≥ Thyp then ▷ Thyp is the hyperperiod of T
33: break
34: end if
35: end while
36: return S
37: end function

overhead. For a given DNN task τi, the worst-case execution time of the model inside TEE410

is Ca
i , where Ca

i =
∑j=L

j=1 Ca
ij and Li is the number of layers. If there is Li layers in task τi,411

then the size of each layer will be wi1, wi2, ...wiLi
, where

∑j=Li

j=1 wij = Wi. We first check412

if the following condition holds: (wi1 + wi2) < δ. We find the maximum value of k where413 ∑j=k
j=1 wij = δ̂ < δ,

∑j=k+1
j=1 wij > δ. If some extra capacity is left (i.e., δ − δ̂), we check414

the subsequent task to fit within this extra space. We find the maximum value of k for the415

next task where
∑j=k

j=1 w(i+1)j < (δ − δ̂),
∑j=k+1

j=1 w(i+1)j > (δ − δ̂). We check all available416

candidate tasks at a given time t to check whether layers can fit inside the enclave. Once we417

obtain the schedule profile, we repeat the same steps for all subsequent task arrivals.418

Algorithm 4 formally presents DeepTrustRT-FUSION approach. The fusion decision will419

be made when a task (a) arrives, (b) completes, or (c) returns from the enclave. Since the420

scheduler keeps track of the ready-queue and SMC returns (for example, OP-TEE tear-down421

APIs TEEC_CloseSession() and TEEC_FinalizeContext()), we know when to perform422

fusion decisions. For each scheduling decision event, DeepTrustRT-FUSION scheduler picks423

the fuse candidates (for instance, the loops in Line 8-Line 11, Algorithm 4). Let Ω(t) be the424

set of all tasks scheduled by using the vanilla EDF (i.e., without any TEEs) algorithm at425

any given time t. We first calculate the hyperperiod of the taskset (Line 6). From Ω(t), we426
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find the set of layers S to send to TEE (Line 9). We find the transition point k for each task427

and remove layers p to k from Ω(t), where p is an integer initialized to 0 (Line 18). Then,428

we calculate the corresponding candidate by following the condition (Line 16). We repeat429

this for all subsequent tasks available at that time using the while loop (Line 15-20). We430

return all the layers wip, · · · , wik, w(i+1)p′ , · · · (Line 21) to S that is finding the set of layers431

to send to TEE (Line 9). We then check the schedulability condition (see Lemma 3 for a432

formal derivation). If the task is schedulable, we continue to find the next candidate to send433

to TEE and repeat this process till hyperperiod. In the following example, we demonstrate434

our proposed idea.435

▶ Example 4. Let us assume we have three tasks τ1, τ2, τ3 each having 5 layers and δ = 7.436

The size of τ1 and τ2 is 10, and the size of τ3 is 5 units. We consider the size of each layer to437

be the same for simplicity. We cannot execute all the layers of τ1 inside the enclave as the438

size of τ1 > δ. If we execute layer-by-layer, we need five SMC switching from the normal439

world for five layers for each task τ1, τ2, and τ3. If we send multiple layers of τ1 that can440

be supported by TEE, it still requires two SMC switching i.e., {w11, w12, w13}, {w14, w15}.441

For task τ2, we also need two SMC switching {w21, w22, w23}, {w24, w25}. For task τ3, we442

need one SMC contetxt switching {w31, w32, w33, w34, w35}. Hence, we need fifteen SMC443

switches for layer-by-layer operations to execute these three tasks. In contrast, it is possible444

to perform the same objective using only five SMC switches if we can send it by multiple445

layers. If we send multiple layers of τ1, we still have some extra capacity left (δ − δ1 = 1).446

In this case, we check whether if it is feasible to use that space capacity. In this example,447

w11 + w12 + w13 + w31 = 7 ≤ δ. Hence, we can fuse the first three layers from τ1 and the first448

layer from τ3, and then send them together to the enclave. If we repeat the same operations for449

the rest of the layers we get the following pattern: {w11, w12, w13, w31},{w14, w15, w21, w32},450

{w22, w23, w24, w33},{w25, w34, w35} i.e., we only need four SMC switches.451

5.2 Schedulabilty Conditions and Overhead Analysis452

Recall that, a taskset is schedulabe if ∀t, U(t) < 1 and h(t) ≤ t. We now derive the453

expressions for U(t) and h(t) for DeepTrustRT-FUSION.454

▶ Lemma 2. Let ns
i (t) is the number of context switches by applying fusion for a window of455

duration t. System utilization U(t) for a given taskset at any given time t is given by456

U(t) =
i=n∑
i=1

(
⌊ t

Ti
⌋ × Ci

t
− ns

i (t) × Ccs
i

t

)
. (2)457

Proof. To determine the system utilization for a given taskset, we assume that each task458

arrives at time t = 0. We then calculate the number of occurrences of each task within time459

t using the expression ⌊ t
Ti

⌋, where Ti represents the period of task τi. The overhead of each460

task is then given by ⌊ t
Ti

⌋ × Ci, where Ci represents the computation time required for task461

τi. At any given time t, system utilization is
∑i=n

i=1
⌊ t

Ti
⌋×Ci

t . However, by applying layer462

fusion, we can reduce context switching overhead as ns
i (t)×Ccs

i

t , where ns
i (t) is the number of463

context switches by applying fusion for a window of duration t. Hence, we can calculate the464

system utilization at any given time t as follows: U(t) =
∑i=n

i=1
( ⌊ t

Ti
⌋×Ci

t − ns
i (t)×Ccs

i

t

)
◀465

In the following, we derive the processor demand function h(t) for DeepTrustRT-FUSION.466
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▶ Lemma 3. The task set Γ is schedulable under DeepTrustRT-FUSION if ∀t > 0, t < Tmax;467

h(t) + b(t) ≤ t, U(t) < 1, where468

h(t) =
i=n∑
i=1

(
⌊ t

Ti
⌋Ci − ns

i (t) × Ccs
i

t

)
. (3)469

Proof. The demand function h(t) calculates the maximum execution time required by all470

tasks that have both their arrival times and their deadlines in a contiguous interval of length471

t. Recall that, h(t) is given by h(t) =
∑i=n

i=1 ⌊ t
Ti

⌋Ci. DeepTrustRT-FUSION can reduce up472

to ns
i (t) context switches for each task τi for a window of size t. Considering this reduction,473

we now rewrite h(t) as: h(t) =
∑i=n

i=1
(
⌊ t

Ti
⌋Ci − ns

i (t)×Ccs
i

t

)
. ◀474

We now calculate the performance benefits of DeepTrustRT-FUSION, i.e., the reduction475

in SMC context switch counts when we use layer fusion.476

▶ Lemma 4. If we have z fused tasks in Γ, then the total context switch reduction within477

the hyperperiod is
∑j=z

j=1(kj − 1)Ccs
j , where kj is the number of fused layers in jth fused task,478

Ccs
j is the context switch overhead.479

Proof. If we can fuse k layers from different tasks that are available at time t, then jth fused480

task τfused
j is defined as (Cfused

j , nfused
j ), where Cfused

j is the execution time of fused task481

and nfused
j is the SMC context switching reduction due to jth fused task. If we can fuse kj482

layers, then Cfused
j can be measured using the following equation: Cfused

j = Ccs
j +

∑i=kj

i=1 Ca
ji,483

where Ca
ji is the computation time at ith layer. If we can fuse k layers in jth fused task, we484

can reduce nfused
j = (kj − 1) × Ccs

j context switches. If we have z number of fused tasks485

within the hyperperiod, we can define the total context switching overhead reduction as:486

ns =
j=z∑
j=1

ns
j =

j=z∑
j=1

(kj − 1)Ccs
j . (4)487

◀488

6 Evaluation489

We evaluate our techniques on two fronts: (a) design-space exploration with various DNN490

workloads (Section 6.1) and (b) case study with a UAV autopilot system (Section 6.2). Our491

implementation is available on GitHub: https://github.com/CPS2RL/DeepTrust-RT.492

6.1 Design-Space Exploration with Deep Learning Workloads493

6.1.1 Simulation Setup494

We evaluate the performance of our scheme using synthetically generated workloads, with495

parameters similar to that used in prior work [35]. We vary the system utilization from 0% to496

100%. For each system utilization u in the range [0, 10, · · · , 100]%, we generate 200 tasksets,497

each taskset containing 5 to 15 tasks. Task periods are randomly selected from 50 to 100 ms.498

For deep learning workload, we used three popular DNN architectures: AlexNet-squeezed [18],499

YOLOv3-tiny [19], and Tiny Darknet [18]. We also tested with a “random workload” where500

we randomly generated the number of layers, task period, size of layers, and computation501

time. We tested with two enclave capacities (δ): 8 MB for AlexNet-squeezed and Tiny502

Darknet and 16 MB for YOLOv3-tiny. We note that similar sizes of enclaves are used by503
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Table 5 Systems & Workloads.

Parameters Description

Hardware 4x ARM Cortex A53, 1 GB RAM (Raspberry Pi 3 B)
Rich OS Linux 6.2.0
Trusted OS OP-TEE 3.19.0
Workloads • AlexNet-squeezed (Image Processing)

• Tiny Darknet and YOLOv3-tiny (Object Detection)
• Random: weights and run times are generated randomly

Table 6 Simulation Parameters.

Parameters Value

Enclave capacity, δ 8 MB
Utilization, U 0%-100%
Period T [50, 100] ms
Number of layers, L [5, 24]
Weight, W [0.01, 7]
Execution time inside TEE per layer, ca

ij [0.1, 8] ms
SMC overhead, cst

s + cd
s 20 ms

Number of tasks, n [5, 25]
Number of taskset for each utilization, Nu 200

OP-TEE. Unless otherwise specified, we consider SMC context switch overhead (cst
s + cd

s)504

to be 20 ms. Table 5 summarizes platform and workload, and Table 6 lists key simulation505

parameters.506

6.1.2 Schemes and Metrics507

We compare DeepTrustRT-FUSION with layer-wise execution technique (DeepTrustRT-LW).508

For completeness, we also study a “non-secure” variant that does not consider any enclave.509

The schemes used in our evaluation are listed below.510

DeepTrustRT-LW: Sends the layers sequentially (layer-wise) to the enclave (Section 4.2).511

DeepTrustRT-FUSION: Our proposed scheme that fuses multiple layers from multiple512

tasks (Section 5).513

No-TEE: DNN task execution without any enclave. The tasks follow EDF scheduling514

policy. In this case, model confidentiality is not enforced.515

We tested the above schemes with the following two metrics.516

Sparsity: Our newly introduced metric that shows the “spread” of the task (viz., the517

ratio between response time and period). Higher sparsity means tasks are completed late518

and that may result in poorer QoS in terms of the DNN inference process. A Sparsity519

value > 1 implies the task misses the deadline.520

Acceptance Ratio: A commonly used metric by the real-time community that represents521

the fraction of tasks that meet deadlines over the total generated ones.522
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Figure 5 Sparsity and Acceptance Ratio with varying system utilization for {5, 10, 15} tasks using
AlexNet-squeezed [18] architecture. The red shaded regions show cases where DeepTrustRT-LW
cannot find schedulable tasksets while other schemes can. DeepTrustRT-FUSION result in better
schedulability compared to DeepTrustRT-LW as the utilization increases with performance penalty
(i.e., both Sparsity and Acceptance Ratio are close to the No-TEE case.
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(f) Acc. Ratio-vs-Util., n=15

Figure 6 Sparsity and Acceptance Ratio using Tiny Darknet [18] architecture using a setup
identical to that of Fig. 5. The findings are similar.

6.1.3 Results523

We first show the Sparsity and Acceptance Ratio for varying numbers of tasks (n = 5, n = 10,524

and n = 15) for the DNN workloads listed on Table 5. The x-axis of Fig. 5 shows the525

various taskset utilization for randomly generated taskset. The y-axis of Fig. 5a and Fig. 5d526

shows Sparsity and Acceptance Ratio, respectively. We show the Sparsity and Acceptance527

Ratio for DeepTrustRT-FUSION (Green), DeepTrustRT-LW (Black), and No-TEE (Black)528

schemes. The red shaded regions in the figure represent the cases where DeepTrustRT-LW is529

unable to find any schedulable candidate while DeepTrustRT-FUSION finds some. For lower530

utilization, all schemes show similar behavior. However, DeepTrustRT-FUSION outperforms531

DeepTrustRT-LW up to 3x as the utilization increases (i.e., DeepTrustRT-LW is unable to532

find schedulable tasksets as the utilization reaches 60%). This is expected because layer-wise533
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(f) Acc. Ratio-vs-Util., n=15

Figure 7 Sparsity and Acceptance Ratio using YOLOv3-tiny [19] architecture using a setup
identical to that of Fig. 5. Our findings are similar to Fig. 5 and Fig. 6.
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Figure 8 Sparsity and Acceptance Ratio for a randomly generated workload with two different
context switching overheads: (a) 10% of max(WCET) values (solid lines) and (b) 30% of max(WCET)
values (dotted lines). Larger context switch delays result in higher Sparsity for DeepTrustRT-LW
when compared to DeepTrustRT-FUSION, which in turn, reduces the percentage of schedulable
tasksets. DeepTrustRT-FUSION performs identically to No-TEE for lower context switch delays.

execution in DeepTrustRT-LW increases delay due to additional context switches. At higher534

utilization, that causes more tasks to miss deadlines and results in lower acceptance. We also535

note that the performance of our scheme (both in terms of Sparsity and Acceptance Ratio)536

is close to No-TEE case (recall: No-TEE does not provide model confidentiality). Hence,537

DeepTrustRT-FUSION can improve the security posture of the DNN tasks without significant538

overhead (close to the vanilla execution that does not have TEE support). In Figs. 6-7, we539

repeat the experiments with ImageNet1k datasets and obtain similar results. As the number540

of tasks increases (i.e., n = 15), the impact of context switching becomes more apparent,541

and hence, Acceptance Ratio in No-TEE case significantly outperforms DeepTrustRT-LW542

and DeepTrustRT-FUSION in highly utilized systems.543

To further analyze the effect of context switches on Sparsity and Acceptance Ratio, we544

vary the SMC overheads as a percentage of WCET. Let max(WCET ) denote the maximum545

WCET value observed in our experiments. The solid lines in Fig. 8 show the context switch546

cost as 10% of max(WCET ) values of all tasks while dotted lines are generated with SMC547

overheads with 30% of max(WCET ). As the figures show, the effect of larger context switch548
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Figure 9 Context switches overhead comparison for three architectures (e.g., Tiny Darknet,
AlexNet-squeezed, YOLOv3-tiny) and one for a random taskset. DeepTrustRT-FUSION reduces
context switch overhead 1.96x-11.12x compared to DeepTrustRT-LW.
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(a) AlexNet-squeezed
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Figure 10 DeepTrustRT data copy overheads for various DNN workloads. Inference confidentiality
increases response times due to additional data transfers and SMC calls. However, this overhead
remains constant with the increasing number of tasks. The overheads of DeepTrustRT-FUSION are
less compared to DeepTrustRT-LW due to fewer number of context switches.

costs causes DeepTrustRT-LW to perform poorly as delays accumulating by higher context549

switch duration lead to longer response times (higher Sparsity values), that in turn, cause550

more tasks to miss their deadlines (result in lower Acceptance Ratio).551

DeepTrustRT-FUSION outperforms DeepTrustRT-LW, especially for high utilization
scenarios. Further, the overhead of DeepTrustRT-FUSION is negligible as its performance
is close to the No-TEE case. Systems with longer TEE context switch delay can be
significantly benefited by layer fusion compared to layer-wise partitioning.

552

In the next set of experiments (Fig. 9), we measure the number of SMC context switches553

for DeepTrustRT-FUSION and DeepTrustRT-LW. For this experiment, we set the system554

utilization 50%. Note that, as No-TEE does not have any enclave, there are no SMC calls555

(context switches). Hence, our plots exclude No-TEE in this case. As the figures show,556

DeepTrustRT-FUSION enables us to achieve a significant reduction in context switch counts557

compared to DeepTrustRT-LW (5.45x-11.1x) for all three architectures. This is because558

DeepTrustRT-FUSION groups multiple layers, hence reducing overall SMC calls.559

DeepTrustRT-FUSION can significantly reduce the number context switches (1.9x-11.1x)
(see Fig. 9). This reduction of context switches also contribute to higher acceptance rate
(see Figs. 5-7).

560

Recall from Section 3.1 that each time a context switch is performed, normal world561

(encrypted) data needs to be transferred to the secure world. We now analyze this data copy562

overhead. The experiments in Fig. 10 show the overheads for the various DNN workloads563
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Figure 11 Sparsity for ArduPlilot controller tasks. Bold tasks are DNN inference workload. The
red horizontal line denotes the deadline. The increasing number of context switches in DeepTrustRT-
LW caused a larger spread of tasks (higher Sparsity), and as a result, two tasks missed deadlines.
Under DeepTrustRT-FUSION, all tasks were able to meet deadlines.

(AlexNet-squeezed, Tiny Darknet, and YOLOv3-tiny) and a varying number of tasks (n = 5,564

n = 10, and n = 15) running on Raspberry Pi and OP-TEE. To calculate the end-to-end data565

copy overheads, we first measured the response times for No-TEE case and then subtracted566

these values from the response times of each of the DeepTrustRT schemes. Finally, we567

normalized them with the task periods (i.e., calculated Sparsity) and obtained the overhead568

percentage. We only considered schedulable tasksets. For each data point, we generated 100569

samples and took the 90th percentile value. As the figure shows, enabling confidential inference570

comes with a cost, i.e., increase in response times. This data copy overhead is system (i.e.,571

underlying SMC implementations) and workload (i.e., DNN layers/architecture) dependent.572

For instance, we find that the additional delay in response times due to transferring context573

for DeepTrustRT-LW and DeepTrustRT-FUSION are (a) 2.39 s and 1.34 s (AlexNet-squeezed),574

(b) 1.54 s and 2.95 s (Tiny Darknet), and (c) 5.62 s and 6.96 s (YOLOv3-tiny), respectively575

on Raspberry Pi+OP-TEE setup (recall: each SMC overheads could be as high as 20 ms, see576

Table 1). As the figure shows, the data copy overhead scales well with the increasing number577

of tasks (remains constant). Further, DeepTrustRT-FUSION incurs lower overheads due to a578

reduced number of context switches, as we also observed in prior experiments (Fig. 9).579

Confidential deep inference comes with a cost: it increases response times due to additional
data transfer between normal and secure worlds. However, this data transfer overhead
does not increase significantly with the increasing number of tasks.

580

6.2 Case Study with a UAV Controller System581

In the final set of experiments (Fig. 11), we evaluate DeepTrustRT-FUSION, DeepTrustRT-LW,582

and No-TEE with a UAV autopilot system (ArduPlilot [20]) running on Raspberry Pi 3 [36].583

The ArduPlilot controller has 18 real-time tasks (defined in /ArduCopter/Copter.cpp).584

Since the vanilla controller does not have any DNN workload, we included two additional585

inference tasks (i.e., check_visual_target() and object_detection()) that use Tiny586

Darknet and YOLOv3-tiny models, respectively to perform object detection. The periods of587
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our DNN tasks were 5. The total system utilization (including two of the included DNN tasks)588

was 0.75. Each of the bars in Fig. 11 shows the various tasks and their Sparsity for each of the589

three schemes. The figure shows that due to high context switches, DeepTrustRT-LW misses590

deadlines for two real-time tasks (i.e., Sparsity > 1). In contrast, both DeepTrustRT-FUSION591

and No-TEE were able to meet all deadlines.592

High SMC context switch overheads cause DeepTrustRT-LW to miss deadlines for two
real-time tasks. DeepTrustRT-FUSION, in contrast, was able to meet all deadlines.

593

7 Discussion594

In this work, we assume all layers execute inside TEEs. There exist use cases where not all595

layers have confidentiality requirements. For example, in image/voice recognition applications596

where the user may not want to reveal input and processed data, running initial input layers597

and final output layers inside TEE should be sufficient. Our future work will explore the598

variable number of TEE executions and analyze the performance trade-offs in a real-time599

context. Our research focuses on scheduling within a single enclave as existing TrustZone600

implementations support a single enclave. We will further investigate the feasibility and601

performance benefits of DeepTrustRT running on multiple enclaves.602

DeepTrustRT-FUSION currently selects a whole slice of a layer and fuses it with another603

task. For example, consider τi has four layers {l11
i , · · · , l14

i } and τj has three layers604

{l11
j , · · · , l13

j }. If feasible (i.e., enclave has capacity), DeepTrustRT-FUSION fuses all seven605

layers. It could also be possible to obtain a “partial” slice of a layer in case a complete slice606

is not fit in the enclave (or the enclave has a little extra capacity). For instance, in the607

example above, {l11
i , l12

i , l12
j , l13

j } could form a fusion group in case all seven layers do not fit608

to further improve schedulability. Sub-layer-based partitioning ideas will be explored in our609

future work.610

We assume only inference tasks use TEEs. In practice, other (non-DNN) tasks could611

also use TEEs, thus potentially limiting enclave availability. DeepTrustRT-FUSION can be612

extended for such scenarios considering extra slack reclaimed from other non-inference tasks.613

The overall security of DeepTrustRT relies on the underlying TEE architecture. However,614

TEEs could also be vulnerable, especially exposed to schedule-based attacks [37] for real-time615

context. One approach to limit such observability is to introduce “noise” in the scheduler [38].616

For instance, instead of fusing the same set of tasks, DeepTrustRT-FUSION can be extended617

to select fusion candidates from different groups, thus limiting the predictability and hence618

reducing the chances of information leakage.619

8 Related work620

Research in confidential deep inference for real-time context is still in the early stages. In621

our preliminary (workshop) paper [39], we propose a layer-grouping idea for fixed priority622

systems. Unlike DeepTrustRT, our prior work does not provide formal timing guarantees.623

AegisDNN [23] proposes to execute only a few layers that will be executed inside SGX-based624

TEEs. However, AegisDNN [23] is primarily designed for soft real-time systems and allows625

deadline misses. In contrast, DeepTrustRT is designed for hard real-time systems.626

There exists other work for general-purpose systems. DarkneTZ [21] proposes to execute627

only a few layers that will be executed inside TEE, which is not suitable for applications628

that require executing all layers within TEE. Layers that execute outside of the secure629
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world expose information to the untrusted normal world, raising data privacy concerns. A630

similar line of work exists (e.g., HybridTEE [40], Confidential DL [13], Occlumency [41]),631

for executing machine learning workloads inside TEEs. However, none of them consider632

real-time constraints.633

SuperTEE [32] aims to reduce TEE task switching overhead. However, SuperTEE [32]634

is not designed for learning-enabled real-time systems and can not be directly adapted for635

DNN workloads. Researchers also propose techniques (e.g., Subflow [35], AppNet [42]) to636

make deep learning “time-aware,” but they do not consider trusted execution aspects. The637

proposed research is one of the fundamental works that investigates time-aware confidential638

deep learning techniques for hard autonomous systems.639

9 Conclusion640

This research introduces techniques to enable real-time guarantees for confidential deep641

learning using trusted enclaves. We show how to slice a partition in a large deep-learning642

model to schedule using real-time schedulers such as EDF. We further propose an optimization643

using a novel idea of “layer fusion” that selectively groups multiple layers from various tasks644

to minimize TEE context switch overheads. By using the approach presented in this work,645

engineers of future autonomous systems will be able to design/schedule systems efficiently646

and measure overheads of deep neural inference workloads in a “quantifiable” way.647
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