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Optimizing Confidential Deep Learning for Real-Time
Systems
MOHAMMAD FAKHRUDDIN BABAR,Washington State University, USA

MONOWAR HASAN,Washington State University, USA

Deep neural networks (DNNs) are increasingly used in time-critical, learning-enabled cyber-physical

applications such as autonomous driving and robotics. Despite the growing use of various deep learning

models, protecting DNN inference from adversarial threats while preserving model privacy and confidentiality

remains a key concern for resource and timing-constrained autonomous cyber-physical systems. One potential

solution, primarily used in general-purpose systems, is the execution of the DNN workloads within trusted
enclaves available on current off-the-shelf processors. However, ensuring temporal guarantees when running

DNN inference within these enclaves poses significant challenges in real-time applications due to (a) the
large computational and memory demands of DNN models and (b) the overhead introduced by frequent

context switches between “normal” and “trusted” execution modes. This paper introduces new time-aware

schemes for dynamic (EDF) and fixed-priority (RM) schedulers to preserve the confidentiality of DNN tasks by

running them inside trusted enclaves. We first propose a technique that slices each DNN layer and runs them

sequentially in the enclave. However, due to the extra context switch overheads of individual layer slices, we

further introduce a novel layer fusion technique. Layer fusion improves real-time guarantees by grouping

multiple layers of DNN workload from multiple tasks, thus allowing them to fit and run concurrently within

the enclaves while maintaining timing constraints. We implemented and tested our ideas on the Raspberry

Pi platform running a DNN-enabled trusted operating system (OP-TEE with DarkNet-TZ) and three DNN

architectures (AlexNet-squeezed, Tiny Darknet, YOLOv3-tiny). Compared to the layer-wise partitioning

approach, layer fusion can (a) schedule up to 3x more tasksets for EDF and 5x for RM and (b) reduce context
switches by up to 11.12x for EDF and by up to 11.06x for RM.
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integration of machine learningmodels into cyber-physical systems. Many of these learning-enabled

cyber-physical systems are also required to meet stringent real-time constraints. For instance,

autonomous vehicles must continuously analyze their surroundings and identify objects through

deep neural network (DNN) inference chains. Any delay in this object recognition process could

jeopardize decision-making, potentially compromising the safety of the vehicle, passengers, and

the surrounding environment. Deploying DNN models on field devices, however, introduces a

new set of challenges regarding security and confidentiality. Many autonomous cyber-physical

systems frequently handle sensitive data, such as location information, reconnaissance imagery, or

medical records. A breach of these systems could lead to significant privacy violations. For instance,

a compromised system could expose proprietary models (e.g., parameters, intermediate results,

final outputs), thereby leaking the intellectual property of the model provider. Earlier research

identified several vulnerabilities, such as membership inference [57, 42], fault injection [20, 41],

and input reconstruction [13], that can lead to model compromise and misclassification.

To mitigate these confidentiality risks, researchers have explored executing DNN inference tasks

within trusted enclaves, such as Intel SGX [4] or ARM TrustZone [7]. However, securely running

DNNworkloads inside trusted enclaves presents notable difficulties, primarily due to the substantial

computing and memory demands of these models, which often exceed enclave memory capacities.

For example, a typical image classification task with VGG-16 [59] requires 528 MB of memory,

whereas OP-TEE [43], an open-source TrustZone framework for Linux, provides only 16 MB for

enclave operations. While efforts have been made to partition DNN workloads and execute them

within trusted enclaves [10], these methods have largely been designed for general-purpose systems,

lacking the necessary real-time guarantees. Adapting existing frameworks without considering

periodic, deadline-based real-time tasks will not effectively ensure the dependability requirements of

learning-enabled hard real-time systems. For instance, though existing partitioning techniques [53,

62, 46, 24] can reduce memory loads, as discussed in this paper (Section 4.4), frequent switching

between trusted and normal executionmodes introduces substantial delays due to context-switching

overheads, potentially causing critical tasks to miss their deadlines.

In this work, we address the following problem: how do we ensure compute-heavy real-time
DNN tasks fit in limited capacity enclaves to ensure confidentiality without missing
their deadlines? To answer this question, we introduce new scheduling models to ensure the

confidentiality and temporal constraints of learning-enabled real-time tasks. Our initial approach

to making DNN inference tasks both trusted and time-aware employs a slicing mechanism

that partitions DNN models on a layer-by-layer basis [62]. This method involves sequentially

transmitting one DNN layer at a time to the enclave, executing its computations, and returning the

results. However, individual layers may still exceed the enclave’s memory capacity due to their

size. To mitigate this, we apply Deep Compression [30] to reduce the DNN model size following

the enclave’s limitations (Section 4.1). We then use the compressed model and enable real-time

scheduling capabilities for the existing (non-real-time) layer-wise partitioning idea (Section 4.2 and

Section 4.3).

We find that despite real-time guarantees, layer-wise partitioning results in poorer throughput

(i.e., fewer tasks are schedulable) due to high context switch overheads (Section 4.4). Hence, we

propose a novel “fusion” approach that selectively groups multiple layers from multiple tasks,
considering enclave capacity and deadline constraints (Section 5). Figure 1 illustrates the key

intuition of layer fusion for a three-task system. When DNN layers are sent sequentially to the

enclave, extra context switch overheads cause longer response times, and one of the tasks misses

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article . Publication date: March 2025.
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Naïve Approach: Layer-wise Execution 

TEE Context 

Switch

Task 3: Deadline 

Miss!

Time

Deadline (D)

Schedule

D1 D2
D3

Fused Layers From

 Different Tasks

Schedule

All Tasks Meet 

Deadlines!

Enclave

Layer 

Fusion
Task 1

Task 2

Time

Fused Layers From 

the Same Task

Alternate Approach: Layer Fusion 

D1 D2 D3

Task 1 Task 3Task 2

Fig. 1. High-level schematic of the scheduling techniques used in the work. Due to the large size of a DNN
model, often it is not feasible to fit within the enclave. Hence, our first approach is to slice the model
layer-by-layer to fit in the enclave and send them sequentially. However, extra context switch overheads (due
to switching back and forth from enclave) may violate real-time constraints. Hence, we also introduce a novel
“layer fusion” technique (right rectangle) that groups multiple layers from multiple tasks together to reduce
context switch costs and results in better schedulability.

the deadline. In contrast, fusing multiple layers saves context switch delays, thus resulting in faster

response times. As a result, all tasks meet deadlines.

Our Contributions. This research enables time-aware, confidential DNN execution for learning-

enabled real-time systems. Our key contributions include:

• Ensuring timing guarantees for performing confidential deep inference in learning-enabled

real-time systems.

• Introducing new scheduling models for both dynamic (EDF) and fixed-priority (RM) systems

to assess the feasibility of deploying real-time DNN tasks on trusted enclaves.

We evaluated proposed techniques on three realistic workloads (e.g., AlexNet-squeezed [32], Tiny

Darknet [52], YOLOv3-tiny [5]) running on a Raspberry Pi board [54] and conducted extensive

design-space exploration (Section 6). Additionally, we performed a case study using a modified

ArduPilot UAV autopilot system [2] with DNN-enabled workloads (YOLOv3-tiny, Tiny Darknet).

We found that layer fusion archives better schedulability compared to layer-wise partitioning

techniques (Section 6.2).

2 Background
We now start with a background on trusted enclaves (Section 2.1) and DNN architecture (Section 2.2)

before introducing our model and related assumptions (Section 3).

2.1 Trusted Execution and ARM TrustZone
Trusted execution environments (TEEs) [55] provide a secure and isolated runtime environment.

TEEs guarantee the preservation of confidentiality and integrity for the code and data, preventing

any exploitation even in the event of a compromise of the host (i.e., main) operating system. Of

the available TEE solutions, Intel SGX [4] and ARM TrustZone [7] are the most widely adopted in

industry and research. In this work, we focus on TrustZone due to ARM’s dominance in embedded

applications.
1

The runtime operations in TrustZone are divided into “normal” and “secure” worlds, each having

its own kernel, user, and memory space (see Fig. 2). In the normal world, a conventional operating

system (e.g., Linux/RTOS) provides the execution environment, whereas the secure world uses a

1
Section 7 further discusses the portability of our approach for SGX.
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Hardware

Non-Trusted Environment

Application

OS

Trusted Environment

TEE Application

TEE Kernel

Secure Monitor

Fig. 2. TrustZone architecture.

minimal trusted kernel (e.g., OP-TEE [43]). The state of the current processor is determined by

a specialized bit called the non-secure (NS) bit. The NS bit has two states: NS = 1 for non-secure

execution and NS = 0 for secure execution. TrustZone utilizes a mechanism called the secure

monitor call (SMC) to transition between these two states. When an SMC instruction is executed

in the normal world, the processor cores perform a context switch from the normal world to the

secure world, halting operations in the normal world. As a security measure, the normal world

is barred from accessing secure memory, while the secure world has access to normal world

memory. TrustZone also isolates external peripherals. Prior research provides an extensive survey

on TrustZone technology and its applications [51].

2.2 Confidential Deep Neural Inference
DNNs consist of an input layer, one or more hidden layers, and an output layer [58, 47]. Each layer

is made up of interconnected nodes, with edges representing the connections between them, each

with its own weight and threshold value. Mathematically, a DNN can be represented as a function

that maps an input vector X to an output vector Y = 𝐹 (X), where 𝐹 is the DNN function. Each layer

consists of a set of neurons. Each neuron takes a weighted sum of its inputs and applies an activation

function to produce its output. When a node’s output exceeds a certain threshold, it is activated, and

the data is propagated to the next layer. DNN algorithms build models using training data, allowing

them to make predictions without explicit programming. During the inference process, input data
passes through the layers, each performing matrix multiplications on the data. The final layer can

produce numerical or classified outputs, depending on the application. In DNN inference, there is

no cross-dependency between any two layers, and each layer can be computed sequentially [34].

We refer the readers to Goodfellow et al. [29] for additional background on DNNs.

Many DNN-based applications (such as image processing, object detection, medical records, and

financial transactions) handle sensitive data and must be protected from tampering or theft of

intellectual property [25, 56]. To protect model parameters (and hence, ensure “confidentiality”),

one emerging approach is to run critical DNN layers inside trusted enclaves such as TrustZone.

As enclaves have limited memory and DNN models are typically large [28, 59, 26], one common

approach (used in general-purpose systems) is to run the DNNworkload layer by layer [62, 48]. This

is known as “layer-based partitioning,” in which each layer forms an independent partition. Each

partition contains weights and biases, which are stored in a separate encrypted file. The decryption

key is stored in the enclave. On the secure side, a trusted application decrypts the (encrypted)

partition file after loading it into sharedmemory. In our prior work [10], we surveyed state-of-the-art

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article . Publication date: March 2025.
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Optimizing Confidential Deep Learning for Real-Time Systems 5

techniques for enabling confidential deep learning. While researchers explore confidential deep

neural inference for general-purpose and mobile/embedded computing systems, surprisingly, there

has not been any prior work (except ours [9, 11]) that considers timing constraints and periodic

workloads used in real-time applications.

3 Model and Assumptions
3.1 System Model
We consider a uniprocessor real-time system running on a TEE-enabled platform. The system

consists of 𝑛 real-time tasks Γ = {𝜏1, ...𝜏𝑛} performing DNN inference. Each task 𝜏𝑖 is characterized

by 𝜏𝑖 = {𝐶𝑎
𝑖 ,𝑇𝑖 , 𝐷𝑖 , 𝐿𝑖 ,W𝑖 }, where 𝐶𝑎

𝑖 is the worst-case execution time (WCET) of the task inside

the enclave,𝑇𝑖 is the period of task 𝜏𝑖 , 𝐷𝑖 is the deadline, 𝐿𝑖 is the number of layers of the DNN task,

andW𝑖 is the set of sizes of each layer of the DNN task 𝜏𝑖 whereW𝑖 = {𝑤𝑖1,𝑤𝑖2, · · ·𝑤𝑖𝐿}. Here,𝑤𝑖𝑘

is the size of the weights associated with the edges between nodes (neurons), activation, and bias

of nodes. In addition,𝑊𝑖 is the size of the DNN task 𝜏𝑖 where𝑊𝑖 =
∑𝐿𝑖

𝑘=1
𝑤𝑖𝑘 . As mentioned earlier

(Section 2.2), each layer partition, which includes weights and biases, is stored in an encrypted file.

This encrypted file is loaded into shared memory and decrypted by a trusted application on the

secure side. Let us denote 𝐶𝑎
𝑖 = 𝐶𝑑𝑒𝑐

𝑖 +𝐶𝑐𝑜𝑚
𝑖 as the computation inside the enclave, where 𝐶𝑑𝑒𝑐

𝑖 is

the time required for the decryption of the layers information and 𝐶𝑐𝑜𝑚
𝑖 is the computation time of

task 𝜏𝑖 .

We assume the tasks follow either the earliest deadline first (EDF) [61] or rate-monotonic

(RM) [40] scheduling policy. We use EDF and RM scheduling policies as they are the typical

schedulers implemented in real-time operating systems and widely used by the real-time research

community [15, 14, 16]. EDF is an optimal dynamic priority scheduling algorithm for uniprocessor

systems, meaning that if a task set is schedulable under any algorithm, it is also schedulable

under EDF [17, 23]. Likewise, RM is an optimal fixed-priority scheduling policy for implicit

deadline systems [44] and also the default scheduler for many real-time operating systems such as

FreeRTOS [3] and NuttX [1] due to its simplicity. Considering that this research is the first effort to

enable confidential DNN for real-time applications, we resort to the most widely used real-time

scheduling policies to ensure broader compatibility.

We consider an implicit deadline system (i.e., each task’s period is equal to its deadline, 𝐷𝑖 = 𝑇𝑖 ).

The taskset Γ is “schedulable” if the response time of each task (the time between arrival to

completion) is less than its deadline. The trusted enclave has a finite capacity 𝛿 , i.e., it can execute

𝐿𝑖 ≥ 1 layers together as long as the total resource requirements of those layers are less than 𝛿 . We

consider the size of each layer of a task less than 𝛿 . Invoking a TEE session involves a series of API

calls. For instance, OP-TEE requires 5 API calls for instantiating and terminating a TEE session

(see Table 1). Each time the DNN layers enter the enclave, the data needs to be transferred into the

enclave. Let 𝐶𝑠𝑡
𝑠𝑖
be the SMC setup time and 𝐶𝑑

𝑠𝑖
be the SMC cleanup time. Hence, 𝐶𝑐𝑠

𝑖 = 𝐶𝑠𝑡
𝑠𝑖
+𝐶𝑑

𝑠𝑖

captures this data copy overhead. Note that the parameter𝐶𝑐𝑠
𝑖 is not part of the worst-case execution

time (𝐶𝑎
𝑖 ). If a task requires 𝑛𝑐𝑠𝑖 many context switches (to-and-from normal to secure world), the

total data copy overhead will be 𝑛𝑐𝑠𝑖 ×𝐶𝑐𝑠
𝑖 . In Section 5.2, we derive bounds on the number of context

switches.

Existing TEE implementations (for instance, OP-TEE) use non-preemptive enclave execution.

We incorporate this behavior, i.e., when a task performs DNN inference inside the enclave, other

higher-priority tasks will be “blocked” until the currently running task releases the enclave.

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article . Publication date: March 2025.
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3.2 Adversary Model
The pre-trained model (e.g., parameters, hyperparameters, and architecture of the DNN) is deployed

to the real-time platform prior to system operation. We assume an adversary attempting to access

sensitive model information. Our focus is on protecting the DNN’s inference operations from such

threats. While the attacker may access input data, they are unable to retrieve details about the

model’s architecture or final inference, as these are executed within the enclave. Though attackers

may be aware of task periods and execution times, we assume they cannot bypass the TEE’s security

measures. These assumptions are consistent with prior work [48, 63].

Following the convention, we assume that the pre-trained model’s parameters are stored in

encrypted form in local storage. Themodel’s hyperparameters, which are typically publicly available

and do not expose sensitive information about the input or training data [36], remain unencrypted

in the normal world. During inference, when a job is executed, both the input data and the encrypted

model parameters are loaded into the enclave memory. The model parameters are then decrypted

within the enclave to perform the necessary inference operation.

4 Time-Aware Confidential Deep Learning
In the vanilla case (i.e., when model confidentiality is not a concern), the weights and biases of

each neuron in a DNN architecture can be loaded into memory to calculate neuron activation.

However, a system with confidentiality requirements (execute models within an enclave) presents

challenges when it comes to preloading all the necessary values (e.g., weights, biases) due to limited

enclave size, which could be as low as 8 MB for some systems [49]. In contrast, most DNN models

need 100+ MB [59]. If a DNN model is too large, then the model may fail to execute inside the

enclave. To test this, we conducted a simple experiment on Raspberry Pi running OP-TEE and

Darknet [53] that tried to load an AlexNet architecture [37]. For large models (e.g., vanilla AlexNet),

Darknet could not load to the model. Hence, we used a model compression technique using Deep
Compression [30] to reduce the model size (presented next). We repeated the same test with a

compressed AlexNet-squeezed model [32] and were able to load and run the model successfully.

4.1 Resizing (Trimming) the Model
Deep Compression is a three-stage pipeline that reduces the storage requirement of neural networks

by 35x to 49x without compromising their accuracy. The pipeline consists of pruning, trained

quantization, and Huffman coding [49]. The first stage prunes the network by learning only the

essential connections, and the second stage quantizes the weights to enforce weight sharing. Finally,

the pipeline applies Huffman coding. The method reduces the storage required by AlexNet-squeezed

by 35x (from 240 MB to 6.9 MB), and VGG-16 by 49x (from 552 MB to 11.3 MB), without any

significant loss of accuracy. This enables the large model to fit inside TEE, tackling the memory

constraints.

Recall that, to fit the model in the TEE, the size of each layer must be less than the enclave

capacity 𝛿 . For a given DNN task 𝜏𝑖 ,𝑊𝑖 is the size of the task, 𝐿𝑖 is the total number of layers,

and then the set of size of the layers isW𝑖 = {𝑤𝑖1, · · · ,𝑤𝑖𝐿𝑖 }, where𝑊𝑖 =
∑𝐿𝑖

𝑗=1
𝑤𝑖 𝑗 . We check

∀𝑤𝑖 𝑗 ,𝑤𝑖 𝑗 < 𝛿 . If𝑤𝑖 𝑗 > 𝛿 , we calculate the approximation 𝜃𝑖 𝑗 = 𝑤𝑖 𝑗 − 𝛿 required for this layer. The

approximate percentage is defined by 𝜃𝑖 𝑗% = 𝜃𝑖 𝑗/𝑤𝑖 𝑗 . The first stage of Deep Compression (see

Algorithm 1) prunes the network by learning only the required connections, and the second stage

quantizes the weights to enforce weight sharing. In general, for a network with𝑚 connections, each

connection is represented by 𝑏 bits, constraining the connections to have only 𝑘 shared weights

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article . Publication date: March 2025.



295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Optimizing Confidential Deep Learning for Real-Time Systems 7

Algorithm 1Model Compression

1: Input: 𝑤𝑖 𝑗 , 𝜆

2: Output: Compressed Size (𝑤′
𝑖 𝑗
)

3: Prune the network below a certain threshold 𝜆 following state-of-the-art techniques [31].

4: Retrain the network.

5: Quantize the weights of model: 𝑟 = 𝑚𝑏
𝑚 log

2
𝑘+𝑘𝑏 ⊲ Plugging the value of r from approximation percentage (i.e.,

(1 − 𝜃𝑖 𝑗%) ) to get the value of k
6: Huffman coding to the quantized weights ⊲ final compressed weight
7: return 𝑤′

𝑖 𝑗

Algorithm 2 Resize all Layers

1: Input:Model size set (W𝑖 ), TEE Capacity 𝛿

2: Output: Resized model size set (W′
𝑖
)

3: W′
𝑖
= [ ] ⊲ Initialize to an n empty array

4: for 𝑗 = 1 to 𝐿𝑖 inW𝑖 do
5: if 𝑤𝑖 𝑗 > 𝛿 then
6: Optimized the layer using Algorithm 1

7: W𝑖
′ ← 𝑤𝑖 𝑗

′

8: else
9: W𝑖

′ ← 𝑤𝑖 𝑗

10: end if
11: 𝑗 ← 𝑗 + 1
12: end for
13: return Resized model (W′

𝑖
)

will result in a compression rate of

𝑟 =
𝑚𝑏

𝑚 log
2
𝑘 + 𝑘𝑏 . (1)

Let us assume (1 − 𝜃𝑖 𝑗%) is the desired value for the compression rate 𝑟 . Plugging the desired

compression rate 𝑟 = (1 − 𝜃𝑖 𝑗%), we can find the cluster size 𝑘 based on Eq. (1). After checking

and resizing all the layers, we will get the desired task ready that can fit within the enclave (see

Algorithm 2).

4.1.1 Formal Description of Model Trimming. Algorithm 1 and Algorithm 2 formally present our

ideas for trimming a given DNN model. The model compression process (Algorithm 1) initially

prunes the network below a threshold 𝜆 to remove less critical connections (Line 3). For this, we

use the techniques Han et al. [31] described. We rerun the network to learn the final weights with

pruned networks (Line 4). Then, the algorithm quantizes weights, determining the value of shared

weights 𝑘 plugging desired compression rate 𝑟 = (1 − 𝜃𝑖 𝑗%) in Eq. (1) (Line 5). Finally, we apply

Huffman coding [49] to the quantized weights (Line 6).

Following the steps in Algorithm 1 allows us to resize a single layer. We then use Algorithm 2 to

resize all the layers of a task 𝜏𝑖 so that we can fit at least a single layer at a given time inside TEE.

Algorithm 2 examines each layer of 𝜏𝑖 to determine if it exceeds the TEE capacity 𝛿 (Lines 4-12).

For instance, if 𝑤𝑖 𝑗 > 𝛿 , the layer is optimized using Algorithm 1 (Line 6) and stores the resized

layer’s information inW′
𝑖 (Line 7). If 𝑤𝑖 𝑗 < 𝛿 , unchanged value of 𝑤𝑖 𝑗 is stored inW′

𝑖 (Line 9).

This process is repeated for each layer of 𝜏𝑖 , and resized layer information is stored inW′
𝑖 .

We note that a compressed model may not fit into TEE due to limited enclave size (i.e.,𝑊𝑖 =∑
𝑤𝑖 𝑗 > 𝛿). In such cases, a known technique (used in general-purpose systems) is to split the DNN

model into smaller parts [62, 34]. This partitioning method is beneficial as the only values needed

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article . Publication date: March 2025.



344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Mohammad Fakhruddin Babar and Monowar Hasan

at a given time are the activation of the previous layer, the weights, and biases for the current layer.

To illustrate, for two fully connected layers, each with 𝑧 neurons, it would require 𝑧 activations,

𝑧 × 𝑧 weights, and 𝑧 biases. This effectively reduces the instantaneous memory requirement to

that of a single layer. The largest layer in the model determines the minimum amount of secure

world memory needed for confidential DNN execution. However, this approach partitions each

layer and transfers results back and forth from secure to the normal world. This extra context

switch overhead could be a bottleneck for real-time applications. Thus, we need timing analysis

and schedulability conditions to ensure all tasks retain real-time constraints, as we present below.

4.2 Layer-wise Partitioning for EDF Scheduler (LW-EDF)
We refer to our layer-wise partitioning technique for the EDF scheduler as LW-EDF. Traditional

EDF schedulability conditions often involve checking many relative deadline points to assess the

schedulability of a taskset up to the hyperperiod [64, 45]. To speed up this process, Zhang et al.

propose an improved algorithm (called QPA) that significantly reduces the computation required to

check each relative deadline [64]. To determine the schedulability conditions for LW-EDF, we use

the existing QPA-based EDF timing analysis technique [64] and adapt it to our DNN-based workload.

We choose QPA-based analysis instead of others [45] because (a) it provides us a modular model

that can be extended to more general tasksets (arbitrary deadline systems) and (b) computational

complexity of QPA is an offline (design-time) analysis which will not affect runtime performance.

Recall that the execution within the enclave is non-preemptive. Such behavior is modeled by

incorporating a “blocking” delay in schedulability analysis. In EDF scheduling with blocking, a

set of tasks is schedulable if ∀𝑡 > 0, ℎ(𝑡) + 𝑏 (𝑡) ≤ 𝑡 , where ℎ(𝑡) is the processor demand function
and 𝑏 (𝑡) is the blocking delay [60, 22]. The function ℎ(𝑡) calculates the maximum execution time

required by the system for all tasks with both their arrival times and their deadlines in a contiguous

interval of length 𝑡 . The demand function ℎ(𝑡) is given by: ℎ(𝑡) = ∑𝑖=𝑛
𝑖=1

⌊
𝑡
𝑇𝑖

⌋
𝐶𝑖 . In our context, the

blocking delay is 𝑏 (𝑡) = max{𝐶𝑐𝑠
𝑗 |𝐷 𝑗 > 𝑡}.

For LW-EDF, the computing time is given by 𝐶𝑖 = 𝐶𝑎
𝑖 + 𝑛𝑐𝑠𝑖 ×𝐶𝑐𝑠

𝑖 , where 𝑛𝑐𝑠𝑖 is the total SMC

context switches. Hence, we can rewrite ℎ(𝑡) as follows: ℎ(𝑡) = ∑𝑖=𝑛
𝑖=1

⌊
𝑡
𝑇𝑖

⌋
(𝐶𝑎

𝑖 + 𝑛𝑐𝑠𝑖 × 𝐶𝑐𝑠
𝑖 ), see

Lemma 4.1 for a formal derivation. Note that, in LW-EDF, 𝑛𝑐𝑠𝑖 = 𝐿𝑖 . The upper limit of 𝑡 that

needs to be checked is defined by 𝑆 = max{𝑇1,𝑇2, · · · ,𝑇𝑛}. The taskset is schedulable if𝑈 < 1 and

ℎ(𝑡) + 𝑏 (𝑡) ≤ 𝑇𝑚𝑖𝑛 , where 𝑇𝑚𝑖𝑛 = min{𝑇1,𝑇2, · · · ,𝑇𝑛}.
Algorithm 3 presents steps for the schedulability checks following EDF scheduling. We start

by finding the maximum task period in the taskset (Line 3). 𝑇𝑚𝑖𝑛 stores the minimum value of the

task period in the taskset (Line 4). The processor demand function ℎ(𝑡) calculates the maximum

execution time required by the system for given 𝑡 (Line 6). If ℎ(𝑡) + 𝑏 (𝑡) > 𝑇𝑚𝑖𝑛 and ℎ(𝑡) + 𝑏 (𝑡) < 𝑡 ,

we tighten the bound on processor demand to check if we can execute all ready tasks. This is done

by changing the value of 𝑡 to ℎ(𝑡) (Line 8). If ℎ(𝑡) + 𝑏 (𝑡) ≤ 𝑇𝑚𝑖𝑛 at any time 𝑡 , we can conclude that

our system can execute all ready tasks without missing any deadlines. Therefore, the task set is

schedulable (Line 9). If it finds ℎ(𝑡) + 𝑏 (𝑡) > 𝑡 at any time 𝑡 , then we report that the taskset is not

schedulable (Line 13).

The following lemma shows the expression for processor demand function, ℎ(𝑡).

Lemma 4.1. The maximum execution time required by the system contiguous interval of length 𝑡
following EDF scheduling, is given by: ℎ(𝑡) = ∑𝑖=𝑛

𝑖=1

⌊
𝑡
𝑇𝑖

⌋
𝐶𝑖 .

Proof. From traditional EDF timing analysis [64],ℎ(𝑡) = ∑𝑖=𝑛
𝑖=1 max{0, 1+⌊ 𝑡−𝐷𝑖

𝑇𝑖
⌋}×𝐶𝑖 . Replacing

𝐷𝑖 = 𝑇𝑖 in the above equation (since we have an implicit deadline system) and after simplification,
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Algorithm 3 LW-EDF Schedulability

1: Input: Real-time taskset (Γ)
2: Output: Taskset schedulability
3: 𝑡 ← max{𝑇1,𝑇2, · · ·𝑇𝑛 }
4: 𝑇𝑚𝑖𝑛 ← min{𝑇1,𝑇2, · · ·𝑇𝑛 }
5: while 𝑡 > 𝑇min do
6: ℎ (𝑡 ) ← ∑𝑛

𝑖=1 ⌊ 𝑡
𝑇𝑖
⌋ (𝐶𝑎

𝑖
+ 𝐿𝑖 × 𝐶𝑐𝑠 ) ⊲ Calculate ℎ (𝑡 ) for the given 𝑡

7: if ℎ (𝑡 ) + 𝑏 (𝑡 ) > 𝑇min ∧ ℎ (𝑡 ) + 𝑏 (𝑡 ) < 𝑡 then
8: 𝑡 ← ℎ (𝑡 ) + 𝑏 (𝑡 )
9: else if ℎ (𝑡 ) + 𝑏 (𝑡 ) ≤ 𝑇min then
10: Taskset is schedulable

11: Break
12: else
13: Taskset is not schedulable

14: Break
15: end if
16: end while

Algorithm 4 LW-RM Schedulability

1: Input: Real-time taskset (Γ)
2: Output: Taskset schedulability
3: 𝑅𝑖 (0) = (𝐶𝑎

𝑖
+ 𝑛𝑐𝑠

𝑖
× 𝐶𝑐𝑠

𝑖
)

4: while 𝑅𝑖 (𝑘 + 1)! = 𝑅𝑖 (𝑘 ) , ∀𝜏𝑖 (from high to low priority order) do
5: 𝑅𝑖 (𝑘 + 1) = 𝑏𝑖 + (𝐶𝑎

𝑖
+ 𝑛𝑐𝑠

𝑖
× 𝐶𝑐𝑠

𝑖
) +∑

𝑗 ∈ℎ𝑝 (𝑖 )
⌈
𝑅𝑖 (𝑘 )
𝑇𝐽

⌉
(𝐶𝑎

𝑗
+ 𝑛𝑐𝑠

𝑗
× 𝐶𝑐𝑠

𝑗
)

6: end while
7: if 𝑅𝑖 ≤ 𝐷𝑖 then
8: Taskset is schedulable

9: else
10: Taskset is not schedulable

11: end if

ℎ(𝑡) can be rewritten as: ℎ(𝑡) = ∑𝑖=𝑛
𝑖=1 max{0, ⌊ 𝑡

𝑇𝑖
⌋} × 𝐶𝑖 . Note that,

𝑡
𝑇𝑖

is a non-negative value.

Hence, reduced form of ℎ(𝑡) is ℎ(𝑡) = ∑𝑖=𝑛
𝑖=1 ⌊ 𝑡𝑇𝑖 ⌋𝐶𝑖 . Replacing 𝐶𝑖 = 𝐶𝑎

𝑖 + 𝑛𝑐𝑠𝑖 × 𝐶𝑐𝑠
𝑖 , ℎ(𝑡) can be

rewritten as: ℎ(𝑡) = ∑𝑖=𝑛
𝑖=1 ⌊ 𝑡𝑇𝑖 ⌋ × (𝐶

𝑎
𝑖 + 𝑛𝑐𝑠𝑖 ×𝐶𝑐𝑠

𝑖 ). □

4.3 Layer-wise Partitioning for RM Scheduler (LW-RM)
We refer to the RM variant of the layer-wise partition approach as LW-RM. For RM scheduling,

the response time 𝑅𝑖 of a task 𝜏𝑖 is calculated iteratively using the following equation: 𝑅𝑖 (𝑘 + 1) =
𝑏𝑖 +𝐶𝑖 +

∑
𝑗∈ℎ𝑝 (𝑖 )

⌈
𝑅 𝑗 (𝑘 )
𝑇𝐽

⌉
𝐶 𝑗 , where ℎ𝑝 (𝑖) is the set of task with a priority higher than 𝜏𝑖 and 𝑏𝑖 is

the blocking delay [22]. The computing time is given by 𝐶𝑖 = 𝐶𝑎
𝑖 + 𝑛𝑐𝑠𝑖 ×𝐶𝑐𝑠

𝑖 , where 𝑛𝑐𝑠𝑖 is the total

SMC context switches. Hence, we can rewrite the recurrence relation as follows:

𝑅𝑖 (𝑘 + 1) = 𝑏𝑖 + (𝐶𝑎
𝑖 + 𝑛𝑐𝑠𝑖 ×𝐶𝑐𝑠

𝑖 ) +
∑︁

𝑗∈ℎ𝑝 (𝑖 )

⌈
𝑅𝑖 (𝑘)
𝑇𝐽

⌉
(𝐶𝑎

𝑗 + 𝑛𝑐𝑠𝑗 ×𝐶𝑐𝑠
𝑗 ) (2)

The blocking delay is given by 𝑏𝑖 = max

𝑗∈𝑙𝑝 (𝑖 )
{𝐶 𝑗 }, where 𝑙𝑝 (𝑖) denotes the set of tasks with lower

priority that 𝜏𝑖 . The taskset is schedulable if 𝑅𝑖 ≤ 𝐷𝑖 .

Algorithm 4 presents steps for the schedulability checks following RM scheduling. We follow

busy-window-based analysis [8] for schedulability checking. The algorithm begins by calculating
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Table 1. APIs Required for Invoking a TEE Call. The Overheads are Measured on Raspberry Pi 3 Model B.

API Function Overhead (𝝁s)
TEEC_InitializeContext() Initialize connection 240

TEEC_OpenSession() Open a new TEE session 18000

TEEC_InvokeCommand() Invokes a Command 280

TEEC_CloseSession() Close the session 1180

TEEC_FinalizeContext() Close connection 110

the initial response time 𝑅𝑖 (0) for a task 𝜏𝑖 (Line 4). Then, the algorithm enters a loop where it

iteratively calculates the response time following busy-window based analysis (Line 6). This loop

continues until the response time stabilizes (i.e., 𝑅𝑖 (𝑘 + 1) = 𝑅𝑖 (𝑘)). The algorithm checks for

schedulability conditions once the response time is calculated (Line 7-Line 11).

4.4 The Need for Further Optimization
For a given task 𝜏𝑖 , theworst-case execution time of themodel inside TEE is𝐶𝑎

𝑖 , where𝐶
𝑎
𝑖 =

∑𝑗=𝐿𝑖
𝑗=1

𝐶𝑎
𝑖 𝑗

and𝐶𝑎
𝑖 𝑗 is the computation time for layer 𝑗 . In LW-EDF/LW-RM, if a task 𝜏𝑖 has 𝐿𝑖 number of layers,

we need 𝐿𝑖 number of context switches. The total execution time of task 𝜏𝑖 required in the layer-wise

approach is 𝐶𝑖 = 𝐶𝑎
𝑖 + 𝐿𝑖 ×𝐶𝑐𝑠

𝑖 . We now explain the overhead of layer-wise partitioning using a

simple example.

Example 1. Let us assume we have three tasks 𝜏1, 𝜏2, 𝜏3 each having 5 layers (i.e., 𝐿𝑖 = 5) and 𝛿 = 7.

The size of 𝜏1 and 𝜏2 is 10, and the size of 𝜏3 is 5 units. We cannot execute all the layers of 𝜏1 inside

the enclave as the size of 𝜏1 > 𝛿 . LW-EDF/LW-RM requires five SMC switches from the normal to

secure world for five layers for each task 𝜏1, 𝜏2, and 𝜏3. Hence, we need 3 × 5 = 15 SMC switches to

execute these three tasks inside TEE.

Despite LW-EDF and LW-RM ensure real-time guarantees (for schedulable tasksets), as we shall

see below (and also from our evaluation in Section 6), they result in poorer schedulability. This

is because each switching results in extra SMC invocation, which increases task response times.

For example, OP-TEE performs five API calls to initiate and teardown a TEE session (See Table 1).

Each of these API calls takes a considerable amount of time. We carried out experiments to time

each call on a Raspberry Pi platform. As the Table shows, initiating a TEE session, transferring

data to/from the enclave, and cleanup steps take approximately 20 ms. In our context, each of the

layer execution sessions will add up those TEE API overheads, thus potentially slowing down the

inference task and may result in missed deadlines. We further illustrate this issue using an example.

Example 2. Let us consider the taskset listed in Table 2.

Table 2. Example Taskset 1.

Task 𝑳 𝑪𝒄𝒔/layer 𝑪𝒂
𝒊 𝑪 𝑻

𝜏1 8 20 290 450 700

𝜏2 6 20 270 390 1500

𝜏3 8 20 290 450 3000

We now show how layer-wise execution in LW-EDF/LW-RM adds context switch overheads that

can increase the overall execution time. There are three tasks 𝜏1, 𝜏2, 𝜏3, where𝐶
𝑎
1
,𝐶𝑎

2
,𝐶𝑎

3
are 450, 390,

and 450 units respectively. The maximum blocking delay for task 𝜏2 is 450 time units. The periods
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𝑇1,𝑇2,𝑇3 are 700, 1500, and 3000 time units, respectively. In this taskset,

∑
𝐶𝑎
𝑖 /𝑇𝑖 = 0.69 < 1. Let

us assume the context switch overhead is 20 units per layer. Adding this context switch overhead

leads execution times, 𝐶1,𝐶2,𝐶3 to 450, 390, and 450 units, respectively. As a result, the utilization

is

∑
𝐶𝑖/𝑇𝑖 = 1.05 > 1. The taskset is not schedulable under LW-EDF/LW-RM since the system

utilization is over 100%. In this example, we can see the summation of the actual execution time,∑
𝐶𝑎
𝑖 = 850, and the summation of total execution time

∑
𝐶 = 1290. This indicates an additional

34% context switching overhead in executing the taskset.

Task 1

Layer-wise Execution

Layer Fusion

SMC Setup

SMC Cleanup

. . . 

Task 2 

Deadline

Task 2 Completion 

(Deadline Miss!)

Task 3 3 units

Task 3 3 units

Task 2 Finishes 

Before Deadline

Task 2

. . . 

Fusion 

(Task 1)

Fusion 

(Task 2)

Fig. 3. Key intuition of model fusion: when the tasks are executed layer-wise (top schedule), Task 2 misses
the deadline due to multiple context switch overheads. However, in a multi-layer execution approach (bottom
schedule), multiple layers are fused, which reduces context switch overheads, and all the tasks meet their
deadlines.

To address this problem, we develop a simple yet compelling idea. Instead of sending each layer

sequentially, we propose to group (fuse) multiple layers from multiple tasks (as long as they fit in the
enclave) and send them together. Figure 3 illustrates a high-level schematic for two tasks. In this

case, layer-wise execution misses deadlines for Task 2 due to multiple context switch overheads.

However, when we fuse the layers in Fusion, we save context switch costs, thus allowing both tasks

to meet deadlines.

Task fusion has been used for TEE-enabled conventional (i.e., non-learning enabled) real-time

systems to reduce TEE context switch overheads [50]. We borrow a similar concept to group

multiple layers of tasks and fit them within the enclave. For each decision instance, we group the

tasks based on priorities with the following two goals: (a) maximize enclave utilization (capacity

usage), i.e., fit as many layers as possible, and (b) satisfy timing requirements (deadlines). Our

selection process, as described in Section 5, is inspired by the bin-packing heuristics (such as

best-fit) [19] used in partitioned multiprocessor scheduling.
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5 Multi-layer Task Fusion
Fusing multiple layers from multiple tasks can save context switch overheads compared to the

layer-wise partitioning approach. For example, AlexNet-squeezed [28] has 16 layers. If the system

follows layer-wise transfer to the enclave, it needs 16 context switches (one for each layer). In

contrast, assuming each layer is 1 MB in size and the enclave has 8 MB of memory, if we allow the

grouping of layers, we can finish the execution with two context switches. We now illustrate how

Fusion improves schedulability. Fusion works independent of task period types (i.e., harmonic/non-

harmonic), as illustrated in the following example.

Example 3. Let us consider the following taskset parameters (Table 3 and Table 4).

Table 3. Example Taskset and Layer Size.

Task 𝑳 Size of layers (MB) Total Size (MB)
𝜏1 8 {0.046, 0.186, 0.48, 0.39, 0.27, 5.84, 2.69, 1.50} 11.40

𝜏2 6 {0.186, 0.48, 0.39, 5.84, 2.69, 1.50} 11.08

𝜏3 8 {0.046, 0.186, 0.48, 0.39, 0.27, 5.84, 2.69, 1.50} 11.40

Table 4. Example Taskset with Fusion Parameters.

Task 𝑳 𝑪𝒄𝒔/layer CS (fusion) 𝑪𝒂
𝒊 𝑪 𝑻 (non-harmonic) 𝑻 (harmonic)

𝜏1 8 20 2 290 330 700 700

𝜏2 8 20 2 270 310 1500 1400

𝜏3 8 20 2 290 330 3000 2800

Case 1: EDF Scheduling. We show for both harmonic and non-harmonic cases. Let us first

consider the non-harmonic periods. In this case,

∑
𝐶𝑖/𝑇𝑖 = 0.78 < 1. We can calculate the

schedulability conditions of as follows: (a) 𝑡 = 3000, ℎ(𝑡) = 2270; (b) 𝑡 = 2270, ℎ(𝑡) = 1300;

and (c) 𝑡 = 1300, ℎ(𝑡) = 330. We can see ℎ(𝑡) < 𝑇𝑚𝑖𝑛 . Hence, the taskset is schedulable (recall: the

same taskset is not schedulable using LW-EDF). For taskset with harmonic periods, (a) 𝑡 = 2800,

ℎ(𝑡) = 2270; (b) 𝑡 = 2270, ℎ(𝑡) = 1300; and (c) 𝑡 = 1390, ℎ(𝑡) = 330. We can see ℎ(𝑡) < 𝑇𝑚𝑖𝑛 . Hence,

the taskset is schedulable.

Case 2: RM Scheduling. For the non-harmonic periods,

∑
𝐶𝑖/𝑇𝑖 = 0.78. Let us calculate the

response time of 𝜏1 as follows: 𝑅1 (0) = 640 (here 𝑏1 = 330) and 𝑅1 (1) = 640. Hence, 𝑅1 = 640. As

𝑅1 < 𝐷1 = 700, 𝜏1 meets its deadline. For 𝜏2, 𝑏2 = 330 and 𝑅2 (0) = 660, 𝑅2 (1) = 970, 𝑅2 (3) = 1280,

and 𝑅2 (4) = 1280. Hence, 𝑅2 = 640 and 𝑅2 < 𝐷2 = 1500 (i.e., 𝜏1 also meets its deadline). Finally, for

𝜏3, 𝑅3 (0) = 330 (in this case 𝑏3 = 0), 𝑅3 (1) = 970, 𝑅3 (3) = 1280, and 𝑅3 (4) = 1280. Hence, 𝑅3 = 1280

and as 𝑅3 < 𝐷3 = 3000, 𝜏3 meets its deadline. Since 𝑅𝑖 < 𝐷𝑖 for ∀𝜏𝑖 , the taskset is schedulable (recall:
the same taskset is not schedulable using LW-RM).

Let us now consider the harmonic case. For 𝜏1, 𝑅1 (0) = 640 and (b) 𝑅1 (1) = 640. Hence, 𝑅1 = 640

and 𝑅1 < 𝐷1 = 700. For 𝜏2, 𝑅2 (0) = 660, 𝑅2 (1) = 970, 𝑅2 (3) = 1280; and 𝑅2 (4) = 1280. Hence,

𝑅2 = 640 and 𝑅2 < 𝐷2 = 1400. For 𝜏3, 𝑅3 (0) = 330, 𝑅3 (1) = 970, 𝑅3 (3) = 1280, and 𝑅3 (4) = 1280.

Hence, 𝑅3 = 1280 and 𝑅3 < 𝐷3 = 2800. Since for each task 𝜏𝑖 , we find 𝑅𝑖 < 𝐷𝑖 , the taskset is

schedulable.

5.1 Layer Fusion: Workflow
We call the EDF and RM variants for layer fusion as Fusion-EDF and Fusion-RM, respectively.

Our proposed fusion approach aims to maximize the usage of TEE capacity. Hence, we send the
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Algorithm 5 Task Fusion and Scheduling

1: Input: Real-time taskset (Γ) , TEE-capacity 𝛿
2: Output:Taskset schedulability decision

3: Compress the Model ⊲ See Algorithm 1
4: Resize Layers ⊲ See Algorithm 2
5: Ω (𝑡 ) = {W′

1
,W′

2
, · · · W′

𝑖
} ⊲ Obtain the set of the weight of each task available at time t

6: 𝑇ℎ𝑦𝑝 =LCM of {𝑇1,𝑇2, · · · ,𝑇𝑛 } ⊲ 𝑇 is the set of period of all DNN tasks
7: BEGIN ⊲ Find layers to send to TEE
8: while TRUE do
9: 𝑆=Find_Layers_To_Send{Ω (𝑡 ) } ⊲ See Line 23 for definition
10: Send 𝑆 to TEE

11: end while
12: END

13: function Find_Transition_of_Layers(Ω (𝑡 ))
14: 𝑖 ← index of first task in Ω (𝑡 )
15: while 𝑖 ≤ no of task available at time 𝑡 do
16: if

∑𝑗=𝑘

𝑗=𝑝
𝑤𝑖 𝑗 = 𝛿1 < 𝛿 and

∑𝑗=𝑘+1
𝑗=𝑝

𝑤𝑖 𝑗 > 𝛿 then
17: 𝑖 = 𝑖 + 1
18: Remove 𝑤𝑖𝑚, · · · , 𝑤𝑖𝑘 from Ω (𝑡 )
19: end if
20: end while
21: return 𝑤𝑖𝑝 , · · · , 𝑤𝑖𝑘 , 𝑤(𝑖+1)𝑝′ , · · ·
22: end function

23: function Find_Layers_To_send(Ω (𝑡 ))
24: while Ω (𝑡 ) ≠ 𝑁𝑈𝐿𝐿 do
25: 𝑆 =Find_Transition_Of_Layers(Ω (𝑡 )) ⊲ See Line 13 for definition
26: Check schedulability conditions (e.g., Lemma 5.2 for EDF and Lemma 5.3 for RM)

27: if Schedulable then
28: Continue

29: else
30: break ⊲ Taskset is not schedulable
31: end if
32: if 𝑡 ≥ 𝑇ℎ𝑦𝑝 then ⊲ 𝑇ℎ𝑦𝑝 is the hyperperiod of𝑇
33: break
34: end if
35: end while
36: return 𝑆

37: end function

maximum number of layers that TEE can support to reduce the SMC context switch overheads.

For a given DNN task 𝜏𝑖 , the worst-case execution time of the model inside TEE is 𝐶𝑎
𝑖 , where

𝐶𝑎
𝑖 =

∑𝑗=𝐿

𝑗=1
𝐶𝑎
𝑖 𝑗 and 𝐿𝑖 is the number of layers. If there is 𝐿𝑖 layers in task 𝜏𝑖 , then the size of each

layer will be𝑤𝑖1,𝑤𝑖2, ...𝑤𝑖𝐿𝑖 , where
∑𝑗=𝐿𝑖

𝑗=1
𝑤𝑖 𝑗 =𝑊𝑖 . We first check if the following condition holds:

(𝑤𝑖1 +𝑤𝑖2) < 𝛿 . We find the maximum value of 𝑘 where

∑𝑗=𝑘

𝑗=1
𝑤𝑖 𝑗 = ˆ𝛿 < 𝛿 ,

∑𝑗=𝑘+1
𝑗=1

𝑤𝑖 𝑗 > 𝛿 . If some

extra capacity is left (i.e., 𝛿 − ˆ𝛿), we check the subsequent task to fit within this extra space. We find

the maximum value of 𝑘 for the next task where

∑𝑗=𝑘

𝑗=1
𝑤 (𝑖+1) 𝑗 < (𝛿 − ˆ𝛿), ∑𝑗=𝑘+1

𝑗=1
𝑤 (𝑖+1) 𝑗 > (𝛿 − ˆ𝛿).

We check all available candidate tasks at a given time 𝑡 to check whether layers can fit inside the

enclave. Once we obtain the schedule profile, we repeat the same steps for all subsequent task

arrivals.

Algorithm 5 formally presents the fusion approach. The fusion decision will be made when a

task (a) arrives, (b) completes, or (c) returns from the enclave. Since the scheduler keeps track of
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the ready-queue and SMC returns (for example, OP-TEE tear-down APIs TEEC_CloseSession()
and TEEC_FinalizeContext()), we know when to perform fusion decisions. For each scheduling

decision event, the scheduler picks the fuse candidates (for instance, the loops in Line 8-Line 11,

Algorithm 5). Let Ω(𝑡) be the set of all tasks scheduled by using the vanilla EDF/RM (i.e., without

any TEEs) algorithm at any given time 𝑡 . We first calculate the hyperperiod of the taskset (Line

6). From Ω(𝑡), we find the set of layers 𝑆 to send to TEE (Line 9). We find the transition point 𝑘

for each task and remove layers 𝑝 to 𝑘 from Ω(𝑡), where 𝑝 is an integer initialized to 0 (Line 18).

Then, we calculate the corresponding candidate by following the condition (Line 16). We repeat

this for all subsequent tasks available at that time using the while loop (Line 15-20). We return all

the layers 𝑤𝑖𝑝 , · · · ,𝑤𝑖𝑘 ,𝑤 (𝑖+1)𝑝′ , · · · (Line 21) to 𝑆 that is finding the set of layers to send to TEE

(Line 9). We then check the schedulability condition (see Lemma 5.2 and 5.3 for a formal derivation).

If the task is schedulable, we continue to find the next candidate to send to TEE and repeat this

process till hyperperiod. In the following example, we demonstrate our proposed idea.

Example 4. Let us assume we have three tasks 𝜏1, 𝜏2, 𝜏3 each having 5 layers and 𝛿 = 7. The size

of 𝜏1 and 𝜏2 is 10, and the size of 𝜏3 is 5 units. We consider the size of each layer to be the same

for simplicity. We cannot execute all the layers of 𝜏1 inside the enclave as the size of 𝜏1 > 𝛿 . If we

execute layer-by-layer, we need five SMC switching from the normal world for five layers for each

task 𝜏1, 𝜏2, and 𝜏3. If we send multiple layers of 𝜏1 that can be supported by TEE, it still requires

two SMC switching i.e., {𝑤11,𝑤12,𝑤13}, {𝑤14,𝑤15}. For task 𝜏2, we also need two SMC switching

{𝑤21,𝑤22,𝑤23}, {𝑤24,𝑤25}. For task 𝜏3, we need one SMC contetxt switching {𝑤31,𝑤32,𝑤33,𝑤34,𝑤35}.
Hence, we need fifteen SMC switches for layer-by-layer operations to execute these three tasks.

In contrast, it is possible to perform the same objective using only five SMC switches if we can

send it by multiple layers. If we send multiple layers of 𝜏1, we still have some extra capacity left

(𝛿 − 𝛿1 = 1). In this case, we check whether if it is feasible to use that space capacity. In this

example,𝑤11 +𝑤12 +𝑤13 +𝑤31 = 7 ≤ 𝛿 . Hence, we can fuse the first three layers from 𝜏1 and the

first layer from 𝜏3, and then send them together to the enclave. If we repeat the same operations

for the rest of the layers we get the following pattern: {𝑤11,𝑤12,𝑤13,𝑤31},{𝑤14,𝑤15,𝑤21,𝑤32},
{𝑤22,𝑤23,𝑤24,𝑤33},{𝑤25,𝑤34,𝑤35} i.e., we only need four SMC switches.

5.2 Schedulabilty Conditions and Overhead Analysis
Recall that, a taskset is schedulable (a) if ∀𝑡 , 𝑈 (𝑡) < 1 and ℎ(𝑡) ≤ 𝑡 (for EDF) or (b) if 𝑅𝑖 ≤ 𝐷𝑖 ,∀𝜏𝑖
(for RM). We now derive the expressions for𝑈 (𝑡), ℎ(𝑡), and 𝑅𝑖 .

Lemma 5.1. Let 𝑛𝑠𝑖 (𝑡) is the number of context switches by applying fusion for a window of duration
𝑡 . System utilization𝑈 (𝑡) for a given taskset at any given time 𝑡 is given by

𝑈 (𝑡) =
𝑖=𝑛∑︁
𝑖=1

(
⌊ 𝑡
𝑇𝑖
⌋ ×𝐶𝑖

𝑡
−
𝑛𝑠𝑖 (𝑡) ×𝐶𝑐𝑠

𝑖

𝑡

)
. (3)

Proof. To determine the system utilization for a given taskset, we assume that each task arrives

at time 𝑡 = 0. We then calculate the number of occurrences of each task within time 𝑡 using the

expression ⌊ 𝑡
𝑇𝑖
⌋, where 𝑇𝑖 represents the period of task 𝜏𝑖 . The overhead of each task is then given

by ⌊ 𝑡
𝑇𝑖
⌋ × 𝐶𝑖 , where 𝐶𝑖 represents the computation time required for task 𝜏𝑖 . At any given time

𝑡 , system utilization is

∑𝑖=𝑛
𝑖=1

⌊ 𝑡
𝑇𝑖
⌋×𝐶𝑖

𝑡
. However, by applying layer fusion, we can reduce context

switching overhead as

𝑛𝑠
𝑖
(𝑡 )×𝐶𝑐𝑠

𝑖

𝑡
, where 𝑛𝑠𝑖 (𝑡) is the number of context switches by applying fusion

for a window of duration 𝑡 . Hence, we can calculate the system utilization at any given time 𝑡 as

follows:𝑈 (𝑡) = ∑𝑖=𝑛
𝑖=1

( ⌊ 𝑡
𝑇𝑖
⌋×𝐶𝑖

𝑡
− 𝑛𝑠

𝑖
(𝑡 )×𝐶𝑐𝑠

𝑖

𝑡

)
□
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Lemma 5.2 (EDF Schedulability). The task set Γ is schedulable by an EDF scheduler if ∀𝑡 > 0,
𝑡 < 𝑇𝑚𝑎𝑥 ; ℎ(𝑡) + 𝑏 (𝑡) ≤ 𝑡 ,𝑈 (𝑡) < 1, where

ℎ(𝑡) =
𝑖=𝑛∑︁
𝑖=1

(
⌊ 𝑡
𝑇𝑖
⌋𝐶𝑖 −

𝑛𝑠𝑖 (𝑡) ×𝐶𝑐𝑠
𝑖

𝑡

)
. (4)

Proof. The demand function ℎ(𝑡) calculates the maximum execution time required by all

tasks that have both their arrival times and their deadlines in a contiguous interval of length 𝑡 .

Recall that, ℎ(𝑡) is given by ℎ(𝑡) = ∑𝑖=𝑛
𝑖=1 ⌊ 𝑡𝑇𝑖 ⌋𝐶𝑖 . With fusion, we can reduce up to 𝑛𝑠𝑖 (𝑡) context

switches for each task 𝜏𝑖 for a window of size 𝑡 . Considering this reduction, we now rewrite ℎ(𝑡)
as: ℎ(𝑡) = ∑𝑖=𝑛

𝑖=1

(
⌊ 𝑡
𝑇𝑖
⌋𝐶𝑖 −

𝑛𝑠
𝑖
(𝑡 )×𝐶𝑐𝑠

𝑖

𝑡

)
. □

Lemma 5.3 (RM Schedulability). The task set Γ is schedulable following RM scheduling policy if
∀𝜏𝑖 , 𝑅𝑖 ≤ 𝐷𝑖 , where 𝑅𝑖 (𝑘 + 1) = 𝑏𝑖 +𝐶𝑖 +

∑
𝑗∈ℎ𝑝 (𝑖 )

⌈
𝑅𝑖 (𝑘 )
𝑇𝐽

⌉
𝐶 𝑗 −

∑𝑖=𝑖
𝑖=1 𝑛

𝑠
𝑖 ×𝐶𝑐𝑠

𝑖 .

Proof. The response time 𝑅𝑖 of a task 𝜏𝑖 is calculated iteratively using the following equation:

𝑅𝑖 (𝑘 + 1) = 𝑏𝑖 + 𝐶𝑖 +
∑

𝑗∈ℎ𝑝 (𝑖 )

⌈
𝑅𝑖 (𝑘 )
𝑇𝐽

⌉
𝐶 𝑗 . For Fusion-RM, the computing time is given by 𝐶𝑖 =

𝐶𝑎
𝑖 + 𝑛𝑐𝑠𝑖 × 𝐶𝑐𝑠

𝑖 , where 𝑛𝑐𝑠𝑖 is the total SMC context switches. Let us rewrite 𝑅𝑖 (𝑘) as follows:

𝑅𝑖 (𝑘 + 1) = 𝑏𝑖 + (𝐶𝑎
𝑖 + 𝑛𝑐𝑠𝑖 ×𝐶𝑐𝑠

𝑖 ) +
∑

𝑗∈ℎ𝑝 (𝑖 )

⌈
𝑅𝑖 (𝑘 )
𝑇𝐽

⌉
(𝐶𝑎

𝑗 + 𝑛𝑐𝑠𝑗 ×𝐶𝑐𝑠
𝑗 ). Layer fusion can reduce up to

𝑛𝑠𝑖 context switches for each task 𝜏𝑖 . Hence, 𝑅𝑖 (𝑘 + 1) = 𝐶𝑖 +
∑

𝑗∈ℎ𝑝 (𝑖 )

⌈
𝑅 𝑗 (𝑘 )
𝑇𝐽

⌉
𝐶 𝑗 −

∑𝑖=𝑖
𝑖=1 𝑛

𝑠
𝑖 ×𝐶𝑐𝑠

𝑖 .

□

We now calculate the reduction in SMC context switch counts when we use layer fusion.

Lemma 5.4. If we have 𝑧 fused tasks in Γ, then the total context switch reduction within the
hyperperiod is

∑𝑗=𝑧

𝑗=1
(𝑘 𝑗 − 1)𝐶𝑐𝑠

𝑗 , where 𝑘 𝑗 is the number of fused layers in 𝑗 th fused task, 𝐶𝑐𝑠
𝑗 is the

context switch overhead.

Proof. If we can fuse 𝑘 layers from different tasks that are available at time 𝑡 , then 𝑗𝑡ℎ fused task

𝜏
𝑓 𝑢𝑠𝑒𝑑

𝑗
is defined as (𝐶 𝑓 𝑢𝑠𝑒𝑑

𝑗
, 𝑛

𝑓 𝑢𝑠𝑒𝑑

𝑗
), where 𝐶 𝑓 𝑢𝑠𝑒𝑑

𝑗
is the execution time of fused task and 𝑛

𝑓 𝑢𝑠𝑒𝑑

𝑗
is

the SMC context switching reduction due to 𝑗𝑡ℎ fused task. If we can fuse 𝑘 𝑗 layers, then𝐶
𝑓 𝑢𝑠𝑒𝑑

𝑗
can

be measured using the following equation: 𝐶
𝑓 𝑢𝑠𝑒𝑑

𝑗
= 𝐶𝑐𝑠

𝑗 +
∑𝑖=𝑘 𝑗

𝑖=1
𝐶𝑎
𝑗𝑖 , where 𝐶

𝑎
𝑗𝑖 is the computation

time at 𝑖th layer. If we can fuse 𝑘 layers in 𝑗 th fused task, we can reduce 𝑛
𝑓 𝑢𝑠𝑒𝑑

𝑗
= (𝑘 𝑗 − 1) ×𝐶𝑐𝑠

𝑗

context switches. If we have 𝑧 number of fused tasks within the hyperperiod, we can define the

total context switching overhead reduction as:

𝑛𝑠 =

𝑗=𝑧∑︁
𝑗=1

𝑛𝑠𝑗 =

𝑗=𝑧∑︁
𝑗=1

(𝑘 𝑗 − 1)𝐶𝑐𝑠
𝑗 . (5)

□

6 Evaluation
We evaluate our techniques on two fronts: (a) design-space explorationwith various DNNworkloads

for EDF and RM schedulers (Section 6.1) and (b) case study with a UAV autopilot system (Section 6.2).

6.1 Design-Space Exploration with Deep Learning Workloads
6.1.1 Simulation Setup. We evaluate the performance of the proposed schemes using synthetically

generated workloads, with parameters similar to that used in prior work [38]. We vary the system
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Table 5. Systems and Workloads.

Parameters Description
Hardware 4x ARM Cortex A53, 1 GB RAM (Raspberry Pi 3 Model B)

Rich OS Linux 6.2.0

Trusted OS OP-TEE 3.19.0

Workloads • AlexNet-squeezed (Image Processing)

• Tiny Darknet and YOLOv3-tiny (Object Detection)

• Random: weights and run times are generated randomly

Table 6. Simulation Parameters.

Parameters Value
Enclave capacity, 𝛿 8 MB

Utilization,𝑈 0%-100%

Period 𝑇 [50, 1000]
Number of layers, 𝐿 [5, 24]
Weight,𝑊 [0.01, 7]
Execution time inside TEE per layer, 𝑐𝑎𝑖 𝑗 [0.1, 8]
SMC overhead, 𝑐𝑠𝑡𝑠 + 𝑐𝑑𝑠 20 ms

Number of tasks, 𝑛 [5, 25]

Number of taskset for each utilization, 𝑁𝑢 200

utilization from 0% to 100%. For each system utilization𝑢 in the range [0, 10, · · · , 100]%, we generate
200 tasksets, each taskset containing 5 to 15 tasks. Task periods are randomly selected from 50 to 1000.

For the deep learning workload, we used three popular DNN architectures: AlexNet-squeezed [32],

Tiny Darknet [52], and YOLOv3-tiny [5]. We also tested with a “random workload” where we

randomly generated the number of layers, task period, size of layers, and computation time. We

tested with two enclave capacities (𝛿): 8 MB for AlexNet-squeezed and Tiny Darknet and 16 MB for

YOLOv3-tiny. We note that OP-TEE uses enclaves of similar sizes. Unless otherwise specified, we

consider SMC context switch overhead (𝑐𝑠𝑡𝑠 + 𝑐𝑑𝑠 ) to be 20 ms. Table 5 summarizes platform and

workload, and Table 6 lists key simulation parameters.

6.1.2 Schemes and Metrics. We compare layer fusion (i.e., Fusion-EDF, and Fusion-RM) with

layer-wise execution technique (i.e., LW-EDF and LW-RM). For completeness, we also study a

“non-secure” variant that does not consider any enclave. The schemes used in our evaluation are

listed below.

• LW-EDF and LW-RM: Sends the layers sequentially (i.e., layer-wise) to the enclave using

EDF (Section 4.2) and RM (Section 4.3) scheduling, respectively.

• Fusion-EDF and Fusion-RM: Groups multiple layers from multiple tasks following EDF

and RM scheduling, respectively (Section 5).

• NoTEE-EDF and NoTEE-RM: DNN task execution without any enclave. The tasks

follow the EDF (NoTEE-EDF) or RM (NoTEE-RM) scheduling policy. In this case, model

confidentiality is not enforced.

We tested the above schemes with the following two metrics.

• Sparsity: Our newly introduced metric that shows the “spread” of the task (viz., the ratio

between response time and period) [11]. Higher sparsity means tasks are completed late, and

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article . Publication date: March 2025.
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Fig. 4. Sparsity and Acceptance Ratio with varying system utilization for {5, 10, 15} tasks using AlexNet-
squeezed [32] architecture following EDF scheduling. The red shaded regions show cases where LW-EDF
cannot find schedulable tasksets while other schemes can. Fusion-EDF result in better schedulability compared
to LW-EDF as the utilization increases with performance penalty (i.e., both Sparsity and Acceptance Ratio
are close to the No-TEE case.
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Fig. 5. Sparsity and Acceptance Ratio using Tiny Darknet [52] architecture following EDF scheduling using a
setup identical to that of Fig. 4. The findings are similar.

that may result in poorer performance in terms of the DNN inference process. A Sparsity

value > 1 implies the task misses the deadline.

• Acceptance Ratio: A commonly used metric by the real-time community that represents

the fraction of tasks that meet deadlines over the total generated ones.

6.1.3 Results. We first show the Sparsity and Acceptance Ratio for varying numbers of tasks

(𝑛 = 5, 𝑛 = 10, and 𝑛 = 15) for the DNN workloads listed in Table 5. The x-axis of Fig. 4 shows the

various taskset utilization for randomly generated taskset running AlexNet-squeezed architecture

and scheduled by EDF policy. The y-axis of Fig. 4a and Fig. 4d shows Sparsity and Acceptance

Ratio, respectively. We show the Sparsity and Acceptance Ratio for Fusion-EDF (Green), LW-EDF
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Fig. 6. Sparsity and Acceptance Ratio using YOLOv3-tiny [5] architecture following EDF scheduling using a
setup identical to that of Fig. 4. Our findings are similar to Fig. 4 and Fig. 5.
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Fig. 7. Sparsity and Acceptance Ratio using AlexNet-squeezed [32] architecture for RM scheduler using a
setup identical to that of Fig. 4. The findings are similar to the EDF case.

(Black), and NoTEE-EDF (Red) schemes. The red shaded regions in the figure represent the cases

where LW-EDF is unable to find any schedulable candidate while Fusion-EDF finds some. For

lower utilization, all schemes show similar behavior. However, Fusion-EDF outperforms LW-EDF

up to 3x as the utilization increases (i.e., LW-EDF is unable to find schedulable tasksets as the

utilization reaches 60%). This is expected because layer-wise execution in LW-EDF increases delay

due to additional context switches. At higher utilization, that causes more tasks to miss deadlines

and results in lower acceptance. We also note that the performance of fusion (both in terms of

Sparsity and Acceptance Ratio) is close to NoTEE-EDF case (recall: NoTEE-EDF does not provide

model confidentiality). Hence, Fusion-EDF can improve the security posture of the DNN tasks

without significant overhead since it performs close to the vanilla execution (NoTEE-EDF) that

does not have TEE support. In Fig. 5 and Fig. 6, we repeat the experiments with Tiny Darknet and

YOLOv3-tiny architectures, respectively, and obtain similar results. We further run the experiments

with the same DNN workloads for the RM scheduler; see Fig. 7 (AlexNet-squeezed), Fig. 8 (Tiny
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Fig. 8. Sparsity and Acceptance Ratio using Tiny Darknet [52] architecture for RM scheduler.
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Fig. 9. Sparsity and Acceptance Ratio using YOLOv3-tiny [5] architecture for RM scheduler.

Darknet), and Fig. 9 (YOLOv3-tiny), where the data points are as follows: Fusion-RM (Green),

LW-RM (Black), and NoTEE-RM (Red). The overall findings are similar to those of the EDF case. As

the number of tasks increases (i.e., 𝑛 = 15), we see a higher impact of context switches. As a result,

Acceptance Ratio in NoTEE-EDF (NoTEE-RM) case significantly outperforms Fusion-EDF/LW-EDF

(Fusion-RM/LW-RM) in highly utilized systems. However, Fusion-EDF (Fusion-RM) always results

in lower Sparsity (and hence, better Acceptance Ratio) than LW-EDF (LW-RM).

To further analyze the effect of context switches on Sparsity and Acceptance Ratio, we vary the

SMC overheads as a percentage of WCET. Let max(𝑊𝐶𝐸𝑇 ) denote the maximum WCET value

observed in our experiments. The solid lines in Fig. 10 show the context switch cost as 10% of

max(𝑊𝐶𝐸𝑇 ) values of all tasks, while dotted lines are generated with SMC overheads with 30%

of max(𝑊𝐶𝐸𝑇 ). As the figures show, the effect of higher context switch costs causes LW-EDF to

perform poorly as delays accumulating by higher context switch duration lead to longer response

times (higher Sparsity values), which in turn cause more tasks to miss their deadlines (result in
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Fig. 10. Sparsity and Acceptance Ratio for a randomly generated workload with two different context
switch overheads for EDF scheduler: (a) 10% of max(WCET) values (solid lines) and (b) 30% of max(WCET)
values (dotted lines). Larger context switch delays result in higher Sparsity for LW-EDF when compared to
Fusion-EDF, which in turn, reduces the percentage of schedulable tasksets. Fusion-EDF performs identically
to No-TEE due to lower context switch delays.
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Fig. 11. Sparsity and Acceptance Ratio for a randomly generated workload with two different context switch
overheads following RM scheduling using a setup identical to that of Fig. 10. The findings are similar to the
EDF case.

lower Acceptance Ratio). In Fig. 11, we repeat the experiments with an identical setup but for the

RM scheduler. We see a similar performance trend for RM to that observed for EDF.

Fusion-EDF (Fusion-RM) outperforms LW-EDF (LW-RM), especially for high utilization scenarios.
Further, the overhead of layer fusion is negligible as its performance is close to the vanilla execution
(e.g., NoTEE-EDF/NoTEE-RM). Systems with longer TEE context switch delay can be significantly
benefited by layer fusion compared to the layer-wise partitioning.

In the next set of experiments we measure the number of SMC context switches as follows:

LW-EDF vs. Fusion-EDF (Fig. 12a-Fig.12d) and LW-RM vs. Fusion-RM (Fig. 12e-Fig.12h). For these

experiments, we set the system utilization to 50%. Note that, as NoTEE-EDF and NoTEE-RM

do not have any enclave, there are no SMC calls (context switches). Hence, our plots exclude

NoTEE-EDF/NoTEE-RM in this case. As the figures show, layer fusion can significantly reduce

context switch counts compared to layer-wise execution (5.45x-11.1x for EDF and 6.59x-11.06x

for RM) for all three architectures. This is because Fusion-EDF/Fusion-RM groups multiple layers;

hence, overall, the number of SMC calls is reduced.

Layer fusin significantly reduces the number context switches (1.96x-11.12x for EDF and 1.92x-11.06x
for RM, see Fig. 12). This reduction of context switches also contributes to a higher schedulability
(see Fig. 4-Fig. 9).
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Fig. 12. Context switch overhead comparison for three known architectures (e.g., Tiny Darknet, AlexNet-
squeezed, YOLOv3-tiny) and one for a random workload. Layer fusion reduces context switch overheads
compared to layer-wise partitioning (1.96x-11.12x for EDF and 1.92x-11.06x for RM).
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(c) YOLOv3-tiny (EDF)
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(e) Tiny Darknet (RM)
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Fig. 13. Data copy overheads for various DNN workloads. Inference confidentiality increases response times
due to additional data transfers and SMC calls. However, this overhead remains constant with the increasing
number of tasks. The overheads of Fusion-EDF (Fusion-RM) are less compared to LW-EDF (LW-RM) due to
the fewer context switches.

Recall from Section 3.1 that each time a context switch is performed, normal world (encrypted)

data needs to be transferred to the secure world. We now analyze this data copy overhead. The

experiments in Fig. 13a-13f show the overheads for the various DNN workloads (AlexNet-squeezed,

Tiny Darknet, and YOLOv3-tiny) and a varying number of tasks (𝑛 = 5, 𝑛 = 10, and 𝑛 = 15)

for EDF and RM schedulers running on Raspberry Pi and OP-TEE. To calculate the end-to-end

data copy overheads, we first measured the response times for NoTEE-EDF/NoTEE-RM case and
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Fig. 14. Sparsity for ArduPlilot controller tasks: (a) EDF (left) and (b) RM (right). Bold tasks are our added
DNN inference workload, and the red horizontal line denotes the deadline. The increasing number of context
switches in LW-EDF (LW-RM) caused a larger spread of tasks (higher Sparsity), and as a result, two (three)
tasks missed deadlines. For Fusion-EDF and Fusion-RM, all tasks meet their deadlines.

then subtracted these values from the response times of each of the fusion schemes. Finally,

we normalized them with the task periods (i.e., calculated Sparsity) and obtained the overhead

percentage. We only considered schedulable tasksets. For each data point, we generated 100 samples

and took the 90
th
percentile value. As the figure shows, enabling confidential inference comes with

a cost, i.e., increase in response times. This data copy overhead is system (i.e., underlying SMC

implementations) and workload (i.e., DNN layers/architecture) dependent. For instance, we find

that the additional delay in response times due to transferring context for LW-EDF and Fusion-EDF

are (a) 2.39 s and 1.34 s (AlexNet-squeezed), (b) 2.95 s and 1.54 s (Tiny Darknet), and (c) 6.96 s and
5.62 s (YOLOv3-tiny), respectively on Raspberry Pi+OP-TEE setup (recall: each SMC overhead could

be as high as 20 ms; see Table 1). Likewise, additional delays in response times due to transferring

data back and forth from the enclave and the normal world for LW-RM and Fusion-RM are (a)
2.31 s and 1.76 s (AlexNet-squeezed), (b) 2.89 s and 1.65 s (Tiny Darknet), and (c) 7.43 s and 5.86 s

(YOLOv3-tiny), respectively. As the figure shows, the data copy overhead scales well with the

increasing number of tasks (remains constant). Further, Fusion-EDF and Fusion-RM incur lower

overheads due to a reduced number of context switches, as we also observed in prior experiments

(Fig. 12).

Confidential deep inference comes with a cost: it increases response times due to additional data
transfer between normal and secure worlds. However, this data transfer overhead does not increase
significantly with the increasing number of tasks.

6.2 Case Study with a UAV Controller System
In the final set of experiments (Fig. 14), we evaluate Fusion-EDF, LW-EDF, and NoTEE-EDF (resp.

Fusion-RM, LW-RM, NoTEE-RM)with a UAV autopilot system (ArduPlilot [2]) running on Raspberry

Pi 3 [54]. The ArduPlilot controller has 18 real-time tasks (defined in /ArduCopter/Copter.cpp).
Since the vanilla controller does not have any DNN workload, we included two additional

inference tasks (i.e., check_visual_target() and object_detection()) that use Tiny Darknet

and YOLOv3-tiny models, respectively, to perform object detection.
2

2
Note: Conceptually, our added DNN inference tasks can be scheduled like other existing ArduPliot tasks, for instance,

by modifying the variable AP_Scheduler::Task Copter::scheduler_tasks[] in Copter.cpp and inserting them in the
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The inference tasks were invoked periodically (i.e., in 5 seconds intervals). The total system

utilization (including two of the included DNN tasks) was 0.75. We selected these parameters by

trial and error to ensure that we can evaluate the taskset for a highly utilized setup (i.e., above the

theoretical L&L bound [45]), but at the same time, they remain schedulable at least for the base

case (NoTEE-EDF/NoTEE-RM) that does not have TEE related overheads.

Each of the bars in Fig. 14 shows the various tasks and their Sparsity for each of the three schemes.

The figure shows that due to high context switches, LW-EDF (LW-RM) misses deadlines for two

(three) real-time tasks (i.e., Sparsity > 1). The controller tasks that miss deadlines in LW-RM are

higher priority than DNN tasks. However, due to the non-preemptive execution of TEE segments,

the DNN tasks cause extra inference (blocking delay), which increases response times. In contrast,

both Fusion-EDF (Fusion-RM) and NoTEE-EDF (NoTEE-RM) met all deadlines. Engineers can

conduct similar design-time tests to assess the feasibility of adapting confidential DNN techniques

in their target system.

High SMC context switch overheads cause LW-EDF and LW-RM to miss a few deadlines; Fusion-EDF
and Fusion-RM, in contrast, were able to meet all deadlines.

7 Discussion
Confidentiality-Schedulability Trade-Offs. In this work, we assume that all layers run inside TEEs

using EDF and RM scheduling. There are use cases in which not all layers require confidentiality.

For example, in image/voice recognition applications where the user may prefer not to reveal

input and processed data, running initial input and final output layers within TEE should suffice.

Our future research will look into the variable number of TEE executions and the performance

trade-offs in a real-time context.

Further Optimization using Sub-Layer Partitioning. Our current design currently selects a whole

slice of a layer and fuses it with another task. For example, consider 𝜏𝑖 has four layers {𝑙11𝑖 , · · · , 𝑙14𝑖 }
and 𝜏 𝑗 has three layers {𝑙11𝑗 , · · · , 𝑙13𝑗 }. When feasible (for instance, the enclave can fit layers), we

fuse all seven layers. It could also be possible to obtain a “partial” slice of a layer in case a complete

slice does not fit in the enclave (or the enclave has a little extra capacity). For instance, in the

example above, {𝑙11𝑖 , 𝑙12𝑖 , 𝑙12𝑗 , 𝑙
13

𝑗 } could form a fusion group in case all seven layers do not fit to

further improve schedulability. However, extending this paper to incorporate such splitting needs

further research.

Mixed Workload. We assume only inference tasks use TEEs. In practice, other (non-DNN) tasks

could also use TEEs, thus potentially limiting enclave availability. Our proposed idea can be extended

for such scenarios considering extra slack reclaimed from other non-inference tasks.

Limiting Schedule Observability. The overall security of our confidentiality-preserving inference

technique relies on the underlying TEE architecture (TrustZone). However, TrustZone could also

be vulnerable, especially exposed to schedule-based attacks [6] for real-time context. One approach

to limit such observability is to introduce “noise” in the scheduler [18]. For instance, instead of

fusing the same set of tasks, we can select fusion candidates from different groups, thus limiting

the predictability and, hence, reducing the chances of information leakage. However, this may

scheduler through the SCHED_TASK() function. However, to the best of our knowledge, ArduPliot does not support TEE,

and there is no DNN library compatibility in the existing scheduler implementation. We use ArduPilot parameters to

demonstrate the tradeoffs of adding TEE-based DNN inference in a realistic setup (e.g., UAV autopilot system). Adapting

ArduPliot for TEEs (say OP-TEE) and adding library support for DNN requires a significant redesign, and we leave this for

future exploration.
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cause priority inversions for some tasks, and we need a new schedulability analysis to ensure that

temporal constraints are met.

Compatibility with Other TEEs. Our work focuses on TrustZone, as ARM is widely used for

embedded and cyber-physical application development. Conceptually similar ideas can be adopted

for other TEEs, such as Intel SGX. In SGX, switching between enclave mode and regular execution

is performed through the ECALL (enclave call) and OCALL (outside call) mechanisms. An ECALL

allows an application to execute secure operations inside an enclave by securely switching

the execution context from normal mode to enclave mode. An OCALL enables an enclave to

invoke external untrusted services, such as I/O or file system access. The SMC instructions in

TrustZone for switching between the normal and secure world are conceptually similar to SGX’s

ECALL/OCALL mechanisms. Despite conceptual similarities, SGX (x86) and TrustZone (ARM) are

different architectures. A complete porting of our proposed ideas to other SGX or other TEEs needs

further investigation, and we leave this for future research.

8 Related Work
In early work [10], we survey existing confidential deep learning techniques to find that adapting

confidentiality for the DNN inference process for real-time cyber-physical systems is still in the early

stages. The closest line of research is our prior work [11] — which is a follow-up on our preliminary

investigation presented at a workshop [9] — where we show how to integrate confidential DNN

techniques for EDF schedulers. This paper extends our prior work to fixed-priority (RM) schedulers.

AegisDNN [63] proposes to execute only a few layers that will be executed inside SGX-based

TEEs. However, AegisDNN is primarily designed for soft real-time systems and allows for missed

deadlines. Our work aims to provide hard real-time guarantees. SuperTEE [50] aims to reduce

TEE task switching overhead. However, SuperTEE is not designed for learning-enabled real-time

systems and can not be directly adapted for multi-layer DNN tasks. Researchers also propose

various techniques (e.g., Subflow [38], AppNet [12], Zygarde [33], LaLaRAND [35]) to make deep

learning “time-aware,” but they do not consider trusted execution or model confidentiality aspects.

There exists other work for general-purpose systems. DarkneTZ [48] proposes to execute

only a few layers that will be executed inside TEE, which is not suitable for applications that

require executing all layers within TEE. Layers that execute outside of the secure world expose

information to the untrusted normal world, raising data privacy concerns. A similar line of work

exists (e.g., HybridTEE [27], Confidential DL [62], Occlumency [39], SecureQNN [21]), for executing

machine learning workloads inside TEEs. However, none of them consider real-time constraints.

The proposed research is one of the fundamental works that explores time-aware confidential DNN

inference techniques for learning-enabled real-time systems.

9 Conclusion
This study presents novel techniques to ensure real-time guarantees for confidential deep neural

inference. We demonstrate how to partition large DNN models and schedule them using two key

real-time scheduling policies (EDF and RM). Additionally, we introduce an optimization strategy

(layer fusion) to reduce the overhead caused by frequent TEE context switching. The techniques

developed in this work provide a framework for engineers of autonomous systems to analyze the

performance trade-offs in terms of overhead and scheduling efficiency while integrating confidential

DNN workloads.
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