
Towards Efficient Auditing for Real-Time Systems

Ayoosh Bansal1[0000−0002−4848−6850], Anant Kandikuppa1, Chien-Ying Chen1,
Monowar Hasan2, Adam Bates1, and Sibin Mohan3[0000−0002−3295−0233]

1 University of Illinois Urbana-Champaign, Urbana-Champaign IL 61801, USA
{ayooshb2, anantk3, cchen140, batesa}@illinois.edu

2 Wichita State University, Wichita KS 67260, USA
monowar.hasan@wichita.edu

3 Oregon State University, Corvallis OR 97331, USA
sibin.mohan@oregonstate.edu

Abstract. System auditing is a powerful tool that provides insight into
the nature of suspicious events in computing systems, allowing machine
operators to detect and subsequently investigate security incidents. While
auditing has proven invaluable to the security of traditional comput-
ers, existing audit frameworks are rarely designed with consideration for
Real-Time Systems (RTS). The transparency provided by system audit-
ing would be of tremendous benefit in a variety of security-critical RTS
domains, (e.g., autonomous vehicles); however, if audit mechanisms are
not carefully integrated into RTS, auditing can be rendered ineffectual
and violate the real-world temporal requirements of the RTS.
In this paper, we demonstrate how to adapt commodity audit frame-
works to RTS. Using Linux Audit as a case study, we first demonstrate
that the volume of audit events generated by commodity frameworks is
unsustainable within the temporal and resource constraints of real-time
(RT) applications. To address this, we present Ellipsis, a set of kernel-
based reduction techniques that leverage the periodic repetitive nature of
RT applications to aggressively reduce the costs of system-level auditing.
Ellipsis generates succinct descriptions of RT applications’ expected ac-
tivity while retaining a detailed record of unexpected activities, enabling
analysis of suspicious activity while meeting temporal constraints. Our
evaluation of Ellipsis, using ArduPilot (an open-source autopilot appli-
cation suite) demonstrates up to 93% reduction in audit log generation.

Keywords: Real-time systems · Auditing · Cyber-physical systems

1 Introduction

As RTS become indispensable in safety- and security-critical domains — medi-
cal devices, autonomous vehicles, manufacturing automation, smart cities, etc.
[28,40,52,57] — the need for effective and precise auditing support is growing.
Even now, event data recorders (or black boxes) are crucial for determining
fault and liability when investigating vehicle collisions [15,16], and the need
for diagnostic event logging frameworks (e.g., QNX [4], VxWorks [5] and Com-
posite OS [61]) is well understood. However, these high-level event loggers are



2 A. Bansal and A. Kandikuppa, et al.

insufficient to detect and investigate sophisticated attacks. Concomitant with
its explosive growth, today’s RTS have become ripe targets for sophisticated
attackers [26]. Exploits in RTS can enable vehicle hijacks [24,35], manufacturing
disruptions [59], IoT botnets [30], subversion of life-saving medical devices [66]
and many other devastating attacks. The COVID-19 pandemic has further shed
light on the potential damage of attacks on medical infrastructure [13,60]. These
threats are not theoretical, rather active and ongoing, as evidenced recently by
malicious attempts to take control of nuclear power, water and electric systems
throughout the United States and Europe [54].

In traditional computing systems, system auditing has proven crucial to de-
tecting, investigating and responding to intrusions [19,32,33,51]. Unfortunately,
comprehensive system auditing approaches are not widely used in RTS. RTS log-
ging takes place largely at the application layer [15,16] or performs lightweight
system layer tracing for performance profiling (e.g., log syscall occurrences, but
not arguments) [17]; in both cases, the information recorded is insufficient to
trace attacks because the causal links between different system entities cannot
be identified. The likely cause of this hesitance to embrace holistic system-layer
logging is poor performance. System audit frameworks are known to impose
tremendous computational and storage overheads [50] that are incompatible with
the temporal requirements of many real-time applications. Thus, while we are
encouraged by the growing recognition of the importance of embedded system
auditing [8,25,37] and the newfound availability of Linux Audit in the Embedded
Linux [3], a practical approach to RTS auditing remains an elusive goal.

Observing that performance cost of Linux Audit is ultimately dependent
on the number of log events generated, and that the performance impacts of
commodity auditing frameworks can be optimized without affecting the forensic
validity of the audit logs, e.g., through carefully reducing the number of events
that need to be logged [10,12,14,31,42,46,50,64,73], we set out to tailor Linux
Audit to RTS, carefully reducing event logging without impacting the forensic
validity of the log. We present Ellipsis, a kernel-based log reduction framework
that leverages the predictability of real-time tasksets’ execution profiles. Ellipsis
first profiles tasks to produce a template of their audit footprint. At runtime, be-
haviors consistent with this template are reduced, while any deviations from the
template are audited in full, without reduction. Far from being impractical, we
demonstrate a synergistic relationship between security auditing and predictable
RTS workloads – Ellipsis is able to faithfully audit suspicious activities while
incurring almost no log generation during benign typical activity.

The contributions of this work are:

– Ellipsis, an audit framework, uniquely-tailored to RT environments (§3).
– Detailed evaluations (§4) and security analysis (§5) to demonstrate that

Ellipsis retains relevant information while reducing event/log volume.

Ellipsis source code1 and an online appendix2 are available.
1https://gitlab.engr.illinois.edu/rts-auditing/ellipsis
2https://gitlab.engr.illinois.edu/rts-auditing/ellipsis/-/blob/main/Appendices.pdf

https://gitlab.engr.illinois.edu/rts-auditing/ellipsis
https://gitlab.engr.illinois.edu/rts-auditing/ellipsis/-/blob/main/Appendices.pdf


Towards Efficient Auditing for Real-Time Systems 3

Audit log Generation
(Synchronous)

Audit log
Maintenance

(Asynchronous)

Syscall
start

Netlink

Audit
Log

Kernel
Space

Syscall
exit

Application auditd

Syscall Handler

Audit Filters kauditdkaudit buffer

User
Space 1

2 4

3

5

Fig. 1: Architecture of Linux Audit Framework [1].

2 Background and System Model

Linux Audit Framework. The Linux Audit system [63] provides a way to audit
system activities. An overview of the Linux Audit architecture is presented in
Fig. 1. When an application invokes a syscall 1 , the subsequent kernel control
flow eventually traverses an audit_filter hook 2 . Linux Audit examines the
context of the event, compares it to pre-configured audit rules, generating a log
event if there is a match and enqueueing it in a message buffer 3 before returning
control to the syscall handler 4 and then to the application 5 . Asynchronous
from this workflow, a pair of (non-RT) audit daemons (kauditd and auditd)
transmit the message buffer to user space for storage and analysis. Because the
daemons are asynchronous, the message buffer can overflow if syscalls occur
faster than the daemon flushes to user space, resulting in event loss.

Although it is well-established that Linux Audit can incur large computa-
tional and storage overheads in traditional software [50], its impacts on RT
applications were unclear. Encouragingly, upon conducting a detailed analysis 3

we observed that Linux Audit does not introduce significant issues of priority
inversion or contention over auditing resources shared across applications (e.g.,
kaudit buffer). Further, except for limited outlier cases, the latency introduced
by auditing syscalls can be measured and bounded. Hence it is a good candidate
for firm and soft deadline RTS as supported by RT Linux [65]. However, audit
events were lost, making auditing incomplete and ineffectual while still costly
for the RTS due to large storage space required to store the audit log.

RTS Properties. Ellipsis leverages properties unique to RT environments,
as described in Table 1. 4 In contrast to traditional applications where determin-
ing all possible execution paths is often undecidable, knowledge about execution
paths is an essential component of RT application development. RTS are spe-
cial purpose machines that execute well formed tasksets to fulfill predetermined

3 Detailed analysis available as Online Appendix A: Audit Framework Analysis
4 A supporting literature survey is available as Online Appendix B: RTS Survey

https://gitlab.engr.illinois.edu/rts-auditing/ellipsis/-/blob/main/Appendices.pdf
https://gitlab.engr.illinois.edu/rts-auditing/ellipsis/-/blob/main/Appendices.pdf


4 A. Bansal and A. Kandikuppa, et al.

Table 1: RTS properties relevant to Ellipsis
Property Relevance to Ellipsis

Periodic
tasks

Most RT tasks are periodically activated, leading to repeating behaviors.
Ellipsis templates describe the most common repetitions.

Aperiodic
tasks

Second most common form of RT tasks, Aperiodic tasks also lead to re-
peating behaviors, but with irregular inter-arrival times.

Code Cover-
age

High code coverage analyses are part of existing RTS development pro-
cesses, Ellipsis’ automated template generation adds minimal cost.

Timing Pre-
dictability

A requirement for safety and correct functioning of RTS, naïvely enabling
auditing can violate this by introducing overheads and variability.

Isolation Resources are commonly isolated in RTS to improve timing predictability.
RTS auditing mechanisms should not violate resource isolation.

Special Pur-
pose

RTS are special purpose machines, tasks are known at development i.e.,
templates can be created before system deployment.

Longevity Once deployed RTS can remain functional for years. Ellipsis’ can save
enormous log storage and transmission costs over the lifetime of the RTS.

tasks. Various techniques are employed to analyze the tasksets e.g., worst case
execution time (WCET) analysis [18,29,34,44,56,58,75]. All expected behaviors
of the system must be accounted for at design time in conjunction with the sys-
tem designers. Any deviation is an unforeseen fault or malicious activity, which
needs to be audited in full detail.

Threat Model. We consider an adversary that aims penetrate and impact
an RTS through exfiltrating data, corrupting actuation outputs, degrading per-
formance, causing deadline violations, etc.. This attacker may install modified
programs, exploit a running process or install malware on the RTS to achieve
their objectives. To observe this attacker, our system adopts an aggressive audit
configuration intended to capture all forensically-relevant events, as identified
in prior works.5 We assume that the underlying OS and the audit subsystem
therein are trusted. This is a standard assumption in system auditing literature
[11,32,45,47,55]. Far from being impractical on RTS, prior works such as Trusted
Timely Computing Base provide a secure kernel that meets both the trust and
temporal requirements for hosting Ellipsis in RT Linux [20,23,68,69]. Ellipsis’
goal is to capture evidence of an attacker intrusion/activity without losing rel-
evant information and hand it off to a tamper proof system. Although audit
integrity is an important security goal, it is commonly explored orthogonally to
other audit research due to the modularity of security solutions (e.g., [11,53,74]).
Therefore, we assume that once recorded to kaudit buffer, attackers cannot
compromise the integrity of audit logs Finally, we assume that applications can
be profiled in a controlled benign environment prior to being the target of attack.

5 Specifically, our ruleset audits execve, read, readv, write, writev, sendto, recvfrom,
sendmsg, recvmsg, mmap, mprotect, link, symlink, clone, fork, vfork, open, close, creat,
openat, mknodat, mknod, dup, dup2, dup3, bind, accept, accept4, connect, rename, setuid,
setreuid, setresuid, chmod, fchmod, pipe, pipe2, truncate, ftruncate, sendfile, unlink,
unlinkat, socketpair,splice, init_module, and finit_module.



Towards Efficient Auditing for Real-Time Systems 5

Step 1 

Step 2

S1() 
S2() 
S1() 

nanosleep() 
S1() 
S2() 
S1() 

nanosleep()

S1 (args)

S2 (args)

Application 
Binary

Trace Intermediate 
Template

TPL-1

S1 (args)

S1 (args)

S2 (args)

S1 (args) 

Ellipsis
Trace

Fig. 2: Ellipsis template creation.

0,
{1,2}

1, 
{1,2}

2,{2}

S1

S3
TPL-2

2,{1}
S2

TPL-13,{1}

3,{2}

S1

S1

Full
Log

Full
Log

Fig. 3: Runtime template matching as
an FSA with states as [syscalls matched
count, {set of reachable templates}].
TPL-1 (S1, S2, S1) and TPL-2 (S1, S3,
S1) are shown as example. Template
matches (TPL-1, TPL-2) emit a single
record, failure leads to full log store.

3 Ellipsis

The volume of audit events is the major limiting factor for auditing RTS. High
event volume can result in event record loss, high log storage costs and large
maintenance overheads [50]. We present Ellipsis, an audit event reduction tech-
nique designed specifically for RTS. Ellipsis achieves this through templatization
of the audit event stream. Templates represent learned expected behaviors of RT
tasks, described as a sequence of syscalls with arguments and temporal profile.
6 These templates are generated in an offline profiling phase, similar to common
RTS analyses like WCET [18,43]. At runtime, the application’s syscall stream is
compared against its templates; if a contiguous sequence of syscalls matches a
template, only a single record indicating the template match is inserted into the
event stream (kaudit buffer). Significantly, while a sequence of audited syscall
events is replaced by a single record, relevant information is not lost (§5).

Model. Consider a system in which the machine operator wishes to audit a
single RT task τ . An RT task here corresponds to a thread in Linux systems,
identified by a combination of process and thread ids. We can limit this discus-
sion to a single task, without losing generality, as Ellipsis’ template creation,
activation and runtime matching treat each task as independent. RT tasks are
commonly structured with a one time init component and repeating loops. Let
si denote a syscall sequence the task exhibits in a loop execution and N the
count of different syscall execution paths τ might take (i.e., 0 < i ≤ N). A tem-
plate describes these sequences (si), identifying the syscalls and arguments. As
noted in Section 2, RT applications are developed to have limited code paths and
bounded loop iterations. Extensive analysis of execution paths is a standard part

6 Template examples are available as Online Appendix C: Templates for ArduPilot

https://gitlab.engr.illinois.edu/rts-auditing/ellipsis/-/blob/main/Appendices.pdf


6 A. Bansal and A. Kandikuppa, et al.

of the RTS development process. Thus, for RTS, N is finite and determinable.
Let function len(si) return the number of syscalls in the sequence si. Further,
let pi be the probability that an iteration of τ exhibits syscall sequence si.

Sequence Identification. The first step towards template creation is identi-
fication of sequences and their probability of occurrences. Identification of cyclic
syscall behaviors has been addressed in the auditing literature [41,49], with past
solutions require binary analysis, code annotations, stack analysis or a combina-
tion. While any technique that yields si and pi can be employed here, including
the prior mentioned ones, we developed a highly automated process, leverag-
ing RT task structure and Linux Audit itself. The application is run for long
periods of time and audit trace collected. We observe that RT tasks typically
end with calls to sleep or yield that translate to nanosleep and sched_yield
syscalls in Linux. Periodic behaviors can also be triggered by polling timerfds
to read events from multiple timers by using select and epoll_wait syscalls.
We leverage these syscalls to identify boundaries of task executions within the
audit log and then extract sequences of syscall invocations. Figure 2 provides an
overview of this process. We also modified Linux Audit to include the Thread
ID in log messages helping disambiguate threads belonging to a process, yielding
thread level sequences. This first step yields the per task syscall sequences exhib-
ited by the application and their properties: length, probability of occurrence,
and the arguments. These syscall sequences are then converted into intermedi-
ate thread-level templates, each entry of which includes the syscall name along
with the arguments. This first step can also be iterated with intermediate tem-
plates loaded to reduce previously extracted sequences, though in practice such
iterations were not required.

Sequence Selection. A subset of intermediate templates are chosen to be
converted to final templates. This choice is based on the tradeoff between the
benefit of audit event volume reduction and the memory cost as defined later
in eq. (3) and (5), respectively. As we discuss in detail in Section 5 the security
tradeoff is minimal. Let’s assume n sequences are chosen to be reduced, where
0 ≤ n ≤ N . As noted earlier, Ellipsis treats each task independently, the value
of n is also independent for each task.

Template Creation. For the next step, Fig. 2 Step 2, these n templates
are loaded and application profiled again to collect temporal profile for each
template i.e., the expected duration and inter-arrival intervals for each template.
The intermediate templates are enriched with this temporal information, to yield
the final templates. Templates are stored in the form of text files and occupy
negligible disk space, e.g., ArduPilot templates used for evaluation (§4) occupied
494 bytes of space on disk total. This whole process is highly automated, given an
application binary with necessary inputs, using the template creation toolset.1

Ellipsis Activation. We extend the Linux Audit command-line auditctl
utility to transmit templates to kernel space. Once templates are loaded, Ellip-
sis can be activated using auditctl to start reducing any matching behaviors.
This extended auditctl can also be used to activate/deactivate Ellipsis and
load/unload templates, however, these operations are privileged, identical to de-



Towards Efficient Auditing for Real-Time Systems 7

Table 2: Parameters from Case Study
Task Name N I len(si) pi f

arducopter 5 100 [14, 15, 17, 17, 18] [0.95, 0.02, 0.01, 0.01, 0.01] 679
ap-rcin 1 182 [16] [1] 2
ap-spi-0 5 1599 [1, 1, 1, 2, 2] [0.645, 0.182, 0.170, 0.001, 0.001] 0

activating Linux Audit itself. System administrators can use this utility to easily
update templates as required, e.g., in response to application updates.

Runtime Matching. Given the template(s) of syscall sequences, an Ellipsis
kernel module, extending from Linux Audit syscall hooks, filters syscalls that
match a template. The templates are modeled as a finite state automaton (FSA),
(Figure 3), implemented as a collection of linked lists in kernel memory. While
the RT task is executing, all syscall sequences allowed by the automaton are
stored in a temporary task-specific buffer. If the set of events fully describes
an automaton template, Ellipsis discards the contents of the task-specific buffer
and enqueues a single record onto the kaudit buffer to denote the execution of
a templatized activity. Alternatively, Ellipsis enqueues the entire task-specific
buffer to the main kaudit buffer if (a) a syscall occurs that is not allowed by the
automaton, (b) the template is not fully described at the end of the task instance
or (c) the task instance does not adhere to the expected temporal behavior of the
fully described template. Thus, the behavior of each task instance is reduced to
a single record when the task behaves as expected. For any abnormal behavior,
the complete audit log is retained.

Audit Event Reduction. Let the task τ be executed for I iterations and
f denote the number of audit events in init phase. The number of audit events
generated by τ when audited by Linux Audit (EA), when Ellipsis reduces n out
of total N sequences (EE), and the reduction (EA − EE) are given by

EA = I ∗ (
∑N
i=1(pi ∗ len(si))) + f (1)

EE = I ∗ (
∑n
i=1 pi +

∑N
i=n+1(pi ∗ len(si))) + f (2)

EA − EE = I ∗ (
∑n
i=1(pi ∗ len(si)) −

∑n
i=1 pi ) (3)

Ellipsis’ Event reduction

Iterations

Audit events for n sequences

Ellipsis events for n sequences

As evident from eq. (3), to maximize reduction, long sequences with large
pi values must be chosen as the n sequences for reduction. RT applications, like
control systems, autonomous systems and even video streaming, feature limited
execution paths for majority of their runtimes [38]. This property has been uti-
lized by Yoon et al. in a prior work [75]. Therefore, for RT applications the
distribution of pi is highly biased i.e., certain sequences si have high proba-
bility of occurrence. Table 2 provides example values for the parameters used,
determined during the Sequence Identification step in template creation for the
evaluation application ArduPilot(§4).



8 A. Bansal and A. Kandikuppa, et al.

Storage Size Reduction. Let BA denote the average cost of representing a
syscall event in audit log andBE denote the average cost of representing Ellipsis’
template match record. By design, BE <= BA; BE is a constant 343 bytes, while
BA averaged 527 bytes (1220 max) in our evaluation. Noting that the init events
(f) are not reduced by Ellipsis, the disk size reduction i.e., difference in sizes of
τ ’s audit log for Linux Audit (LA) and Ellipsis (LE) is:

LA − LE = I ∗ (BA ∗
∑n
i=1(pi ∗ len(si))−BE ∗

∑n
i=1 pi) (4)

From Equation (3) and (4), Ellipsis’ benefits come from the audit events
count and log size becoming independent of sequence size (len(si)) for the chosen
n sequences, multiplied further by repetitions of these sequences (I ∗pi). Ellipsis
behaves identical to Linux Audit for any sequence that is not included as a
template, i.e., i ≥ n+ 1 in Equation (2).

Memory Tradeoff. The tradeoff for Ellipsis’ benefits are computational
overheads (evaluated in §4.5 and §4.6) and the memory cost of storing templates
(Mτ ). Let Mfixed be memory required per template, excluding syscalls, while
Msyscall be the memory required for each syscall in the template. On 32 bit ker-
nelMfixed = 116 andMsyscall = 56 bytes, determined by sizeof data structures.
As an example, 3 templates from evaluation occupied 2 KB in memory.6

Mτ =Mfixed ∗ n+Msyscall ∗
∑n
i=1 len(si) (5)

Extended Reduction Horizon. Until now we have limited the horizon of
reduction to individual task loop instances. We can further optimize by creating
a single record that describes multiple consecutive matches of a template. This
higher performance system is henceforth referred to as Ellipsis-HP. When a
Ellipsis-HP match fails, a separate record is logged for each of the base template
matches along with complete log sequence for the current instance (i.e., the base
behavior of Ellipsis). Ellipsis-HP performs best when identical sequences occur
continuously, capturing all sequence repetitions in one entry.

EBestEllipsis-HP = n+ I ∗
∑N
i=n+1(pi ∗ len(si)) + f (6)

4 Evaluation

We evaluate Ellipsis and Ellipsis-HP using ArduPilot [9], a safety-critical firm-
deadline autopilot application. We show that our auditing systems (a) perform
lossless auditing within the application’s temporal requirements, where Linux Au-
dit would lose audit events or violate application’s safety constraints (§4.3), (b)
achieve high audit log volume reduction during benign activity, (c) enjoy mini-
mal computational overhead even in an artificially created worst case scenarios
(§4.5). Using a set of synthetic tasks we also show that the Ellipsis’ overhead
per syscall scales independent of the size of template (§4.6).



Towards Efficient Auditing for Real-Time Systems 9

4.1 Setup

All measurements were conducted on 4GB Raspberry Pi 4 running Linux 4.19.
The RT kernel from raspberrypi/linux [2] was used with AUDIT and AUDIT-
SYSCALL kconfigs enabled. To reduce computational variability due to external
perturbations we disabled power management, directed all kernel background
tasks/interrupts to core 0 using the isolcpu kernel argument, and set CPU fre-
quency Governor to Performance. Audit rules for capturing syscall events were
configured to match against our benchmark application (i.e., background pro-
cess activity was not audited). We set the kaudit buffer size to 50K as any larger
values led to system panic and hangs.

4.2 ArduPilot

ArduPilot is an open source autopilot application that can fully control various
classes of autonomous vehicles such as quadcopters, rovers, submarines and fixed
wing planes [9]. It has been installed in over a million vehicles and has been
the basis for many industrial and academic projects. We chose the quadcopter
variant of ArduPilot, called ArduCopter, as it has the most stringent temporal
requirements within the application suite. For this application the RPi4 board
was equipped with a Navio2 Autopilot hat [6] to provide real sensors and actuator
interfaces for the application. We instrumented the application for measuring the
runtime overheads introduced by auditing. Among the seven tasks spawned by
ArduPilot, we focus primarily on a task named FastLoop for evaluating temporal
overheads as it includes the stability and control tasks that need to run at a high
frequency to keep the QuadCopter stable and safe.

Among the syscalls observed in the trace of ArduPilot, we found that only a
small subset of syscalls were relevant to forensic analysis [27]: execve, openat,
read, write, close and pread64. Upon running the template generation script
on the application binary, we obtained the most frequently occuring templates
for three tasks (n = 1, for each task), consisting of 14 write, 16 pread64 calls
and 1 read call, respectively. These templates include expected values corre-
sponding to the file descriptor and count arguments of the syscalls.6 Templates
were loaded into the kernel when evaluating Ellipsis or Ellipsis-HP .

4.3 Audit Completeness

Experiment.We ran the application for 100K iterations at task frequencies of 100
Hz, 200 Hz, 300 Hz and 400 Hz7 , measuring audit events lost. The fast dynamics
of a quadcopter benefit from the lower discretization error in the ArduPilot’s PID
controllers at higher frequencies [70] leading to more stable vehicle control.

Observations. Figure 4 compares the log event loss for Linux Audit, Ellipsis
and Ellipsis-HP across multiple task frequencies. We observe that Linux Audit

7Frequency values are chosen based on application support:
https://ardupilot.org/copter/docs/parameters-Copter-stable-V4.1.0.html#
sched-loop-rate-scheduling-main-loop-rate

https://ardupilot.org/copter/docs/parameters-Copter-stable-V4.1.0.html#sched-loop-rate-scheduling-main-loop-rate
https://ardupilot.org/copter/docs/parameters-Copter-stable-V4.1.0.html#sched-loop-rate-scheduling-main-loop-rate


10 A. Bansal and A. Kandikuppa, et al.

100 200 300 400
Task Frequency (Hz)

0

50 k

100 k

150 k

200 k

250 k

Au
di

t L
og

s L
os

t

Linux Audit
Ellipsis
Ellipsis-HP

Fig. 4: (§4.3) Number of audit events
lost vs. frequencies of the primary loop
in ArduPilot, for 100K iterations.

101 102 103 104 105

Iterations

0

200 M

400 M

600 M

800 M

1 G

Au
di

t L
og

 S
ize

 (b
yt

es
)

Linux Audit
Ellipsis
Ellipsis-HP
Linux Audit Lossless

Fig. 5: (§4.4) Total size on disk of the
audit log (Y-axis), captured for differ-
ent number of iterations (X-axis).

lost log events at all task frequencies above 100 Hz. In contrast, Ellipsis and
Ellipsis-HP did not lose audit event log at any point in the experiment.

Discussion. Because this ArduCoptor task performs critical stability and
control function, reducing task frequency to accomodate Linux Audit may hay
considerable detrimental effects. Further investigation revealed that Linux Audit
dropped log events due to kaudit buffer overflow, despite the buffer size being
50K. In contrast, Ellipsis is able provide auditing for the entire frequency range
without suffering log event loss. Better yet, throughout the experiment the max
buffer occupancy was just 2.5K for Ellipsis and 1.5K for Ellipsis-HP .8

4.4 Audit Log Size Reduction

Experiment. We ran the ArduCopter application over multiple iterations in 10
to 100K range to simulate application behavior over varying runtimes. For each
iteration count, we measure the size on disk of the recorded log.

Observations. Figure 5 compares the storage costs in terms of file size on
disk in bytes. The storage costs for all systems over shorter runs was found to
be comparable, as the cost of auditing the initialization phase of the application
(BA ∗ f) tends to dominate over the periodic loops. Over a 250 second runtime
(105 iterations) the growth of log size in Ellipsis was drastically lower compared
to vanilla Linux Audit, with storage costs reducing by 740 MB, or 80%, when
using Ellipsis. Ellipsis-HP provides a more aggressive log size reduction option
by lowering storage costs by 860MB, or 93%, compared to Linux Audit. Linux
Audit Lossless estimates the log size had Linux Audit not lost any log events.

Discussion. The observations line up with our initial hypothesis that the
bulk of the audit logs generated during a loop iteration would exactly match the
templates. Thus, in Ellipsis by reducing all the log messages that correspond to a
template down to a single message, we see a vast reduction in storage costs while
ensuring the retention of all the audit data. Ellipsis-HP takes this idea further by

8 Detailed investigation available as Online Appendix D: Audit Buffer Utilization

https://gitlab.engr.illinois.edu/rts-auditing/ellipsis/-/blob/main/Appendices.pdf


Towards Efficient Auditing for Real-Time Systems 11

Unaudited Linux Audit Ellipsis Ellipsis-HP Ellipsis NR
Scenarios

200

400

600

800

1000

1200

1400
Ex

ec
ut

io
n 

Ti
m

e 
(

s)

Fig. 6: (§4.5) Comparison of runtime
overheads of ArduPilot main loop.
Task period and deadline is 2500 µs.

0 50 100 150 200 250 300

Task/Template Syscall Count

0

5

10

15

20

25

30

35

40

Av
g.

 T
im

e 
pe

r S
ys

ca
ll 

(
s)

Linux Audit
Ellipsis
Ellipsis NR

Fig. 7: (§4.6) Avg. execution latency of
getpid syscall (Y-axis) with varying
task/template lengths (X-axis)

eliminating audit log generation over extended periods of time if the application
exhibits expected behaviors only. For RTS that are expected to run for months or
even years without failing, these savings are crucial for continuous and complete
security audit of the system. Motion, a soft deadline application with numerous
execution paths (N = 26) achieved similarly high reduction rations (81%−98%)
under varying configurations options and inputs. 9

4.5 ArduPilot: Runtime Overheads

Experiment. This evaluation measures the execution time in microseconds (µs),
for the Fast Loop task of ArduPilot, for 1000 iterations, under various auditing
setups. The small number of iterations kept the generated log volume within
kaudit buffer capacity, avoiding overflows and audit events loss in any sce-
nario. This avoids polluting the overhead data with instances of event loss. The
time measurement is based on the monotonic timer counter. This process was
repeated 100 times. To evaluate the absolute worst case for Ellipsis, the Ellipsis
NR (No Reduction) scenario modifies the ArduCopter template so that it always
fails at the last syscall. Ellipsis NR is also the worst case for Ellipsis-HP .

Observations. Figure 6 shows the distribution of 100 execution time sam-
ples for each scenario. Ellipsis, Ellipsis-HP and Ellipsis NR have nearly the
same overhead as Linux Audit. On average, Ellipsis’s overhead is 0.93x and
Ellipsis-HP ’s overhead is 0.90x of Linux Audit. The observed maximum over-
heads show a greater improvement. Ellipsis’s observed maximum overhead is
0.87x and Ellipsis-HP ’s 0.70x of Linux Audit. Ellipsis NR shows a 1.05x in-
crease in average overhead and 1.07x increase in maximum observed overhead.

Discussion. Ellipsis adds additional code to syscall auditing hooks, which in-
curs small computational overheads. When template matches fail (Ellipsis NR),
this additional overhead is visible, although the overhead is not significantly

9 Detailed evaluation available as Online Appendix E: Motion: Audit Log Reduction

https://gitlab.engr.illinois.edu/rts-auditing/ellipsis/-/blob/main/Appendices.pdf


12 A. Bansal and A. Kandikuppa, et al.

worse the baseline Linux Audit. However, in the common case where audit events
are reduced by Ellipsis, this cost is masked by reducing the total amount of log
collection and transmission work performed by Linux Audit. This effect is further
amplified in Ellipsis-HP owing to its greater reduction potential (§4.4). Thus,
Ellipsis’s runtime overhead depends on the proportion of audit information re-
duced in the target application. Thus, while reducing the runtime overhead of
auditing is not Ellipsis’ primary goal, it nonetheless enjoys a modest perfor-
mance improvement by reducing the total work performed by the underlying
audit framework.

4.6 Synthetic Tasks: Overhead Scaling

Experiment. Because Ellipsis adds template matching logic in the critical execu-
tion path of syscalls, a potential concern is the overhead growth for tasks with
long syscall sequences. In this experiment we measure execution time for tasks
that execute varying counts of getpid syscalls (10, 20, 30 ... 300). getpid is
a low latency non-blocking syscall, which allows us to stress-test the auditing
framework. As the max template length (i.e., syscall count) observed in real ap-
plication loops was 29, we analyze workloads of roughly 10 times that amount,
i.e., 300. The execution time for each task is measured 100 times. Since the tasks
have a single execution path i.e., a fixed count of getpid syscalls, Ellipsis’ au-
dit events reduction always succeeds. For Ellipsis NR (No Reduction) we force
template matches to fail at the last entry (same as §4.5).

Observations. Figure 7 shows the average syscall response time as the number
of syscalls in the task loop increases. The primary observation of interest is that
the time to execute a syscall is roughly constant, independent of the number of
syscalls in the task and template. The higher value at the start is due to the non
syscall part of the task that quickly becomes insignificant for tasks with higher
number of syscalls. We only show average latency as the variance is negligible
(< 1.3µs). 10

Discussion. Ellipsis scales well as the overhead per syscall remains indepen-
dent of template size, even in the worst case scenario of Ellipsis NR. When log
reduction succeeds the overhead is reduced. When the log reduction fails the
overhead is not significantly worse than Linux Audit.

4.7 Summary of Results

Ellipsis provides complete audit events retention while meeting temporal re-
quirements of the ArduPilot application, with significantly reduced storage costs.
Ellipsis-HP further improves the reduction ratios.The temporal constraint allows
additional temporal checks, detecting anomalous latency spikes with effectively
no additional log size overhead during normal operation. 11

10 Where isolcpu is not used, Ellipsis has especially low execution time variability,
detailed evaluation available as Online Appendix F: Overhead Variability

11 Detailed evaluation available as Online Appendix G: Temporal Constraint Policy

https://gitlab.engr.illinois.edu/rts-auditing/ellipsis/-/blob/main/Appendices.pdf
https://gitlab.engr.illinois.edu/rts-auditing/ellipsis/-/blob/main/Appendices.pdf


Towards Efficient Auditing for Real-Time Systems 13

5 Security Analysis

The security goal of Ellipsis, indeed auditing in general, is to record all forensically-
relevant information, thereby aiding in the investigation of suspicious activities.
The previous section established Ellipsis’ ability to dramatically reduce audit
event generation for benign activities, freeing up auditing capacity. We now dis-
cuss the security implications of Ellipsis.

Stealthy Evasion. If a malicious process adheres to the expected behav-
ior of benign tasks, the associated logs will be reduced. The question, then, is
whether a malicious process can perform meaningful actions while adhering to
the benign templates. If Ellipsis exclusively matched against syscall IDs only,
such a feat may be possible; however, Ellipsis also validates syscalls’ arguments
and temporal constraints, effectively validating both the control flow and data
flow before templatization. Thus making it exceedingly difficult for a process to
match a template while affecting the RTS in any meaningful way. For example,
an attacker might try to substitute a read from a regular file with a read from a
sensitive file; however, doing so would require changing the file handle argument,
failing the template match. Thus, at a minimum Ellipsis provides comparable
security to commodity audit frameworks, and may actually provide improved
security by avoiding the common problem of log event loss. A positive side ef-
fect of Ellipsis is built in partitioning of execution flows, benefiting provenance
techniques that utilize such partitions [41,48,49].

Information Loss. Another concern is whether Ellipsis templates remove
forensically-relevant information. The following is an example write as would
be recorded by Linux Audit.
type=SYSCALL msg=audit (1601405431.612391366:5893333): arch =40000028 syscall =4
per =800000 success=yes exit=7 a0=4 a1=126 ab0 a2=1 a3=3 items=0 ppid =1513 pid

=1526 tid =1526 auid =1000 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0
fsgid =0 tty=pts0 ses=1 comm=" arducopter" exe ="/ home/pi/ardupilot/build/navio2
/bin/arducopter" key=(null)

The record above, if reduced with Ellipsis and reconstructed 12 using the
Ellipsis log and templates, yields:
type=SYSCALL msg=audit ([1601405431.612391356 , 1601405431.612391367]:∅): arch
=40000028 syscall =4 per =800000 success=yes exit=7 a0=4 a1=∅ a2=1 a3=∅ items =0
ppid =1513 pid =1526 tid =1526 auid =1000 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid

=0 sgid=0 fsgid=0 tty=pts0 ses=1 comm=" arducopter" exe="/ home/pi/ardupilot/
build/navio2/bin/arducopter" key=(null)

∅ denotes values that could not be reconstructed and [min, max] denote
where a range is known but not the exact value. Nearly all of the information in
an audit record can be completely reconstructed, including (a) all audit events
executed by a task, in order of execution, (b) forensically relevant arguments. On
the other hand, information not reconstructed is (a) accurate timestamps, (b) a
monotonically increasing audit ID, (c) forensically irrelevant syscall arguments.
The effect of this lost information is that fine grained inter-task event ordering

12Detailed example available as Online Appendix H: Audit Log Reconstruction

https://gitlab.engr.illinois.edu/rts-auditing/ellipsis/-/blob/main/Appendices.pdf


14 A. Bansal and A. Kandikuppa, et al.

basharducopter

/sys/.../pwm0/duty_cycle

pwm_attackbash

/sys/.../pwm1/duty_cycle

Fig. 8: (§5) Attack graph created using Ellipsis audit logs.

and interleaving cannot be reconstructed. This loss of information is minimal
and at worst increases the size of attack graph of a malicious event. We now
demonstrate Ellipsis’s ability to retain forensically relevant information.

Demonstration: Throttle Override Attack. Autopilot applications are
responsible for the safe operation of autonomous vehicles. ArduPilot periodically
updates actuation signals that control rotary speed of motors that power rotors.
The periodic updates are responsible for maintaining vehicle stability and safety.

Attack Scenario. Let’s consider a stealthy attacker who wants to destabilize
or take control over the unmanned drones. To achieve this, the attacker first
gains control of a task on the system and attempts to override the control sig-
nals. An actuation signal’s effect depends on the duration for which it controls
the vehicle, therefore, naïvely overriding an actuation signal is not a very effec-
tive attack as the control task may soon update it to the correct value, reducing
the attack’s effect. The attacker instead leverages side channel attacks such as
Scheduleak [22] during the reconnaissance phase of the attack to learn when the
control signals are updated. Armed with this knowledge, the attacker overrides
the actuation signals immediately after the original updates, effectively tak-
ing complete control, with little computational overhead. We use the ArduPilot
setup as in described earlier (§4.2). Using tools provided with Scheduleak [22], a
malicious task is able to override actuation signals generated by ArduPilot. This
setup is run for 250 seconds and audit logs collected with Ellipsis.

Results. Overriding throttle control signals involves writing to files in sysfs.
This attack behavior can be observed in audit logs as sequences of openat,
write and close syscalls. Combining templates with the obtained audit log
yields the attack graph in Figure 8. Ellipsis correctly identifies that ArduPilot
is only exhibiting benign behaviors, reducing its audit logs. Ellipsis preserves
detailed attack behaviors for the malicious syscall sequences. Ellipsis did not
lose audit events throughout the application runtime. In contrast, Linux Audit
loses audit events (§4.3), potentially losing critical forensic evidence.

Discussion. Scheduleak [22] invokes clock_gettime syscall frequently to in-
fer task activation times. Such syscalls are irrelevant for commonly used forensic
analysis as they don’t capture critical information flows. Despite the lack of vis-
ibility in the reconnaissance phase of the attack, auditing can capture evidence
of attacker interference that creates new information flows, as shown in Fig-



Towards Efficient Auditing for Real-Time Systems 15

ure 8. We have demonstrated that when a process deviates from the expected
behaviors, e.g., due to an attack, Ellipsis provides the same security as Linux
Audit. Additionally, Ellipsis all but eliminates the possibility of losing portions
of the malicious activity due to kaudit buffer overflow. However, it is impossible
to guarantee that no events will ever be lost with malicious activities creating
unbounded new events. Ellipsis improves upon Linux Audit by (a) freeing up
auditing resources which can then audit malicious behaviors, and (b) reducing
the audit records from benign activities that must be analyzed as part of forensic
provenance analysis. Stealthy attacks like this also show the role of auditing in
improving vulnerability detection and forensic analysis on RTS. 13

6 Discussion

System Scope & Limitations. Ellipsis is useful for any application that has
predictable repeating patterns. When sequence sets are too large with no high
probability sequences, it may be possible that too much of system memory would
be required to achieve significant log reduction. That said, a large number of
possible sequences is not detrimental to Ellipsis as long as there exist some
high probability sequences. Ellipsis’s efficacy is also not dependent on specific
scheduling policies unless tasks share process and thread ids; if task share pro-
cess/thread ids and the scheduler can reorder them, Ellipsis cannot distinguish
between event chains, leading to unnecessary template match failures.

Auditing Hard RTS. Ellipsis, like Linux Audit and Linux itself, is unsuit-
able for hard-deadline RTS. All synchronous audit components must meet the
temporal requirements for Hard RTS with bounded WCET, including syscall
hooks and Ellipsis template matching. Additionally the kaudit buffer occu-
pancy must have a strict upper bound. In this paper Ellipsis takes a long step
forward, deriving high confidence empirical bounds (§4.5) to enable Ellipsis’ use
in firm- or soft-deadline RTS, which are prolific [7]. However, the strict bounds
required for Hard RTS are a work in progress.

Unfavorable Conditions. We consider here the impact of using Ellipsis
to audit hypothetical RTS where our assumptions about RTS properties do
not hold. If the RTS may execute previously unknown syscall sequences, extra
events would exist in the audit log. The audit log recorded by Ellipsis would
thus be larger. Since safety, reliability and timing predictability are important
requirements for RTS [7] the gaps in code coverage can only be small. Hence
the unknown syscall sequences will not have a major impact on audit events
and log size. If known syscall sequences have near uniform probability of occur-
rence, simply using templates for them all achieves high reduction (n = N). The
tradeoff is additional memory required to store templates which is a small cost
(Eq. (5)). Finally, if the above are combined, sequences with substantial prob-
ability of occurrence would remain untested during the RTS development. For
such a system, functional correctness, reliability, safety or timing predictability
cannot be established, making this RTS unusable.

13Another demonstration is available as Online Appendix I: Data Exfiltration Attack

https://gitlab.engr.illinois.edu/rts-auditing/ellipsis/-/blob/main/Appendices.pdf


16 A. Bansal and A. Kandikuppa, et al.

7 Related Work

Auditing RTS. Although auditing has been widely acknowledged as an impor-
tant aspect of securing embedded devices [8,25,37], challenges unique to auditing
RTS have received limited attention. Wang et al. present ProvThings, an audit-
ing framework for monitoring IoT smart home deployments [71], but rather than
audit low-level embedded device activity their system monitors API-layer flows
on the IoT platform’s cloud backend. Tian et al. present a block-layer auditing
framework for portable USB storage that can be used to diagnose integrity vi-
olations [67]. Their embedded device emulates a USB flash drive, but does not
consider syscall auditing of RT applications. Wu et al. present a network-layer
auditing platform that captures the temporal properties of network flows and
can thus detect temporal interference [72]. Whereas their system uses auditing
to diagnose performance problems in networks, the presented study considers
the performance problems created by auditing within real-time applications.

Forensic Reduction. Significant effort has been dedicated to improving the
cost-utility ratio for system auditing by pruning or compressing audit data that
is unlikely to be of use during investigations [10,12,14,21,31,36,42,46,62,64,73].
However these approached address the log storage overheads and not the volu-
minous event generation that is prohibitive to RTS auditing (§4.3). KCAL [50]
and ProTracer [48] systems are among the few that, like Ellipsis, inline their
reduction methods into the kernel. Regardless of their layer of operation, these
approaches are often based on an observation that certain log semantics are not
forensically relevant (e.g., temporary file I/O [42]), but it is unclear whether
these assumptions hold for real-time cyber-physical environments, e.g., KCAL
or ProTracer would reduce multiple identical reads syscalls to a single entry.
However, a large number of extra reads can cause catastrophic deadline misses.
Forensic reduction in RTS, therefore, needs to be cognizant of the characteristics
of RTS or valuable information can be lost. Our approach to template gener-
ation in Ellipsis shares similarities with the notion of execution partitioning of
log activity [32,33,39,41,49], which decomposes long-lived applications into au-
tonomous units of work to reduce false dependencies in forensic investigations.
Unlike past systems, however, our approach requires no instrumentation to facil-
itate. Further, leveraging the well-formed nature of real-time tasks ensures the
correctness of our execution units i.e., templates.

8 Conclusion

Ellipsis is a novel audit event reduction system that exemplifies synergistic
application-aware co-design of security mechanisms for RTS. Ellipsis allows RT
applications to be audited while meeting the temporal requirements of the ap-
plication. The role of auditing in securing real-time applications can now be
explored and enhanced further. As showcased with Auditing in this work, other
security mechanisms from general purpose systems warrant a deeper analysis for
their use in RTS.



Towards Efficient Auditing for Real-Time Systems 17

References

1. System auditing (2018), https://access.redhat.com/documentation/en-us/red_
hat_enterprise_linux/6/html/security_guide/chap-system_auditing

2. Raspberry Pi Linux 4.19 Preempt RT (2019), https://github.com/raspberrypi/
linux/tree/rpi-4.19.y-rt

3. Embedded linux (2020), https://elinux.org/Main_Page
4. The instrumented microkernel (2020), https://www.qnx.com/developers/docs/6.

4.1/neutrino/sys_arch/trace.html
5. Tracealyzer for vxworks (2020), https://percepio.com/docs/VxWorks/manual/
6. Navio2 board (2021), https://navio2.emlid.com/
7. Akesson, B., et al.: An empirical survey-based study into industry practice in real-

time systems. In: IEEE Real-Time Systems Symposium. IEEE (2020)
8. Anderson, M.: Securing embedded linux (2020), https://elinux.org/images/5/54/

Manderson4.pdf
9. ArduPilot Development Team and Community: Ardupilot (2020), https://

ardupilot.org/
10. Bates, A., et al.: Take Only What You Need: Leveraging Mandatory Access Control

Policy to Reduce Provenance Storage Costs. In: 7th Workshop on the Theory and
Practice of Provenance. TaPP’15 (Jul 2015)

11. Bates, A., et al.: Trustworthy Whole-System Provenance for the Linux Kernel. In:
Proceedings of 24th USENIX Security Symposium (Aug 2015)

12. Bates, A., et al.: Taming the Costs of Trustworthy Provenance through Policy
Reduction. ACM Trans. on Internet Technology 17(4), 34:1–34:21 (sep 2017)

13. Begg, R.: Step up cyber hygiene: Secure access to medical devices
(2020), https://www.machinedesign.com/medical-design/article/21128232/
step-up-cyber-hygiene-secure-access-to-medical-devices

14. Ben, Y., et al.: T-tracker: Compressing system audit log by taint tracking. In:
2018 IEEE 24th International Conference on Parallel and Distributed Systems
(ICPADS). pp. 1–9 (Dec 2018)

15. Böhm, K., et al.: New developments on edr (event data recorder) for automated
vehicles. Open Engineering 10(1), 140–146 (2020)

16. Bose, U.: The black box solution to autonomous liability. Wash. UL Rev. (2014)
17. Brandenburg, B., Anderson, J.: Feather-trace: A lightweight event tracing toolkit.

In: Proceedings of the third international workshop on operating systems platforms
for embedded real-time applications. pp. 19–28 (2007)

18. Burguiere, C., Rochange, C.: History-based schemes and implicit path enumer-
ation. In: 6th International Workshop on Worst-Case Execution Time Analysis
(WCET’06). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2006)

19. Carbon Black: Global incident response threat report. https://www.carbonblack.
com/global-incident-response-threat-report/november-2018/ (November 2018),
last accessed 04-20-2019

20. Casimiro, A., et al.: How to build a timely computing base using real-time linux.
In: 2000 IEEE International Workshop on Factory Communication Systems. Pro-
ceedings (Cat. No. 00TH8531). pp. 127–134. IEEE (2000)

21. Chen, C., et al.: Distributed provenance compression. In: Proceedings of the 2017
ACM International Conference on Management of Data. pp. 203–218 (2017)

22. Chen, C.Y., et al.: Schedule-based side-channel attack in fixed-priority real-time
systems. Tech. rep. (2015)

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security_guide/chap-system_auditing
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security_guide/chap-system_auditing
https://github.com/raspberrypi/linux/tree/rpi-4.19.y-rt
https://github.com/raspberrypi/linux/tree/rpi-4.19.y-rt
https://elinux.org/Main_Page
https://www.qnx.com/developers/docs/6.4.1/neutrino/sys_arch/trace.html
https://www.qnx.com/developers/docs/6.4.1/neutrino/sys_arch/trace.html
https://percepio.com/docs/VxWorks/manual/
https://navio2.emlid.com/
https://elinux.org/images/5/54/Manderson4.pdf
https://elinux.org/images/5/54/Manderson4.pdf
https://ardupilot.org/
https://ardupilot.org/
https://www.machinedesign.com/medical-design/article/21128232/step-up-cyber-hygiene-secure-access-to-medical-devices
https://www.machinedesign.com/medical-design/article/21128232/step-up-cyber-hygiene-secure-access-to-medical-devices
https://www.carbonblack.com/global-incident-response-threat-report/november-2018/
https://www.carbonblack.com/global-incident-response-threat-report/november-2018/


18 A. Bansal and A. Kandikuppa, et al.

23. Correia, M., et al.: The design of a cots real-time distributed security kernel. In:
European Dependable Computing Conference. pp. 234–252. Springer (2002)

24. Crane, C.: Automotive cyber security: A crash course on protect-
ing cars against hackers (2020), https://www.thesslstore.com/blog/
automotive-cyber-security-a-crash-course-on-protecting-cars-against-hackers/

25. Day, R., Slonosky, M.: Securing connected embedded devices us-
ing built-in rtos security (2020), http://mil-embedded.com/articles/
securing-connected-embedded-devices-using-built-in-rtos-security/

26. Department of Homeland Security: Cyber physical systems security (2020), https:
//www.dhs.gov/science-and-technology/cpssec

27. Gehani, A., Tariq, D.: SPADE: Support for Provenance Auditing in Distributed
Environments. In: Proceedings of the 13th International Middleware Conference.
Middleware ’12 (Dec 2012)

28. Gurgen, L., et al.: Self-aware cyber-physical systems and applications in smart
buildings and cities. In: 2013 Design, Automation & Test in Europe Conference &
Exhibition (DATE). pp. 1149–1154. IEEE (2013)

29. Gustafsson, J., Ermedahl, A.: Experiences from applying wcet analysis in indus-
trial settings. In: 10th IEEE International Symposium on Object and Component-
Oriented Real-Time Distributed Computing. pp. 382–392. IEEE (2007)

30. Hahad, M.: Iot proliferation and widespread 5g: A perfect botnet storm
(2020), https://www.scmagazine.com/home/opinion/executive-insight/
iot-proliferation-and-widespread-5g-a-perfect-botnet-storm/

31. Hassan, W.U., et al.: Towards Scalable Cluster Auditing through Grammatical In-
ference over Provenance Graphs. In: Proceedings of the 25th ISOC Network and
Distributed System Security Symposium. NDSS’18, San Diego, CA, USA (Febru-
ary 2018)

32. Hassan, W.U., et al.: NoDoze: Combatting Threat Alert Fatigue with Automated
Provenance Triage. In: 26th ISOC Network and Distributed System Security Sym-
posium. NDSS’19 (February 2019)

33. Hassan, W.U., et al.: OmegaLog: High-Fidelity Attack Investigation via Trans-
parent Multi-layer Log Analysis. In: 27th ISOC Network and Distributed System
Security Symposium. NDSS’20 (February 2020)

34. Hatton, L.: Safer language subsets: an overview and a case history, misra c. Infor-
mation and Software Technology 46(7), 465–472 (2004)

35. Hayes, J.: Hackers under the hood (2020), https://eandt.theiet.org/content/
articles/2020/03/hackers-under-the-hood/

36. Hossain, M.N., et al.: Dependence-preserving data compaction for scalable forensic
analysis. In: Proceedings of the 27th USENIX Conference on Security Symposium.
pp. 1723–1740. SEC’18, USENIX Association, Berkeley, CA, USA (2018)

37. Kohei, K.: Recent security features and issues in embedded systems (2020), https:
//elinux.org/images/e/e2/ELC2008_KaiGai.pdf

38. Konrad, S., Cheng, B.H.: Real-time specification patterns. In: Proceedings of the
27th international conference on Software engineering. pp. 372–381 (2005)

39. Kwon, Y., et al.: Mci: Modeling-based causality inference in audit logging for at-
tack investigation. In: Proc. of the 25th Network and Distributed System Security
Symposium (NDSS’18) (2018)

40. Lee, I., et al.: Challenges and research directions in medical cyber–physical systems.
Proceedings of the IEEE 100(1), 75–90 (2011)

41. Lee, K.H., et al.: High Accuracy Attack Provenance via Binary-based Execution
Partition. In: Proceedings of NDSS ’13 (Feb 2013)

https://www.thesslstore.com/blog/automotive-cyber-security-a-crash-course-on-protecting-cars-against-hackers/
https://www.thesslstore.com/blog/automotive-cyber-security-a-crash-course-on-protecting-cars-against-hackers/
http://mil-embedded.com/articles/securing-connected-embedded-devices-using-built-in-rtos-security/
http://mil-embedded.com/articles/securing-connected-embedded-devices-using-built-in-rtos-security/
https://www.dhs.gov/science-and-technology/cpssec
https://www.dhs.gov/science-and-technology/cpssec
https://www.scmagazine.com/home/opinion/executive-insight/iot-proliferation-and-widespread-5g-a-perfect-botnet-storm/
https://www.scmagazine.com/home/opinion/executive-insight/iot-proliferation-and-widespread-5g-a-perfect-botnet-storm/
https://eandt.theiet.org/content/articles/2020/03/hackers-under-the-hood/
https://eandt.theiet.org/content/articles/2020/03/hackers-under-the-hood/
https://elinux.org/images/e/e2/ELC2008_KaiGai.pdf
https://elinux.org/images/e/e2/ELC2008_KaiGai.pdf


Towards Efficient Auditing for Real-Time Systems 19

42. Lee, K.H., et al.: LogGC: Garbage Collecting Audit Log. In: Proceedings of the
2013 ACM SIGSAC conference on Computer and Communications Security. pp.
1005–1016. CCS ’13, ACM, New York, NY, USA (2013)

43. Li, Y.T.S., Malik, S.: Performance analysis of embedded software using implicit
path enumeration. In: Proceedings of the ACM SIGPLAN 1995 workshop on Lan-
guages, compilers, & tools for real-time systems. pp. 88–98 (1995)

44. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM 20(1), 46–61 (Jan 1973)

45. Liu, Y., et al.: Towards a timely causality analysis for enterprise security. In: NDSS
(2018)

46. Ma, S., et al.: Accurate, low cost and instrumentation-free security audit logging
for windows. In: Proceedings of the 31st Annual Computer Security Applications
Conference. pp. 401–410. ACSAC 2015, ACM, New York, NY, USA (2015)

47. Ma, S., et al.: Protracer: Towards practical provenance tracing by alternating be-
tween logging and tainting. In: NDSS (2016)

48. Ma, S., et al.: ProTracer: Towards Practical Provenance Tracing by Alternating
Between Logging and Tainting. In: Proceedings of NDSS ’16 (Feb 2016)

49. Ma, S., et al.: MPI: Multiple Perspective Attack Investigation with Semantic Aware
Execution Partitioning. In: 26th USENIX Security Symposium (August 2017)

50. Ma, S., et al.: Kernel-supported cost-effective audit logging for causality tracking.
In: 2018 USENIX Annual Technical Conference (USENIX ATC 18). pp. 241–254.
USENIX Association, Boston, MA (2018)

51. Milajerdi, S.M., et al.: Holmes: Real-time apt detection through correlation of
suspicious information flows. In: 2019 2019 IEEE Symposium on Security and
Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA (may 2019)

52. Monostori, L., et al.: Cyber-physical systems in manufacturing. Cirp Annals 65(2),
621–641 (2016)

53. Paccagnella, R., et al.: Custos: Practical Tamper-Evident Auditing of Operating
Systems Using Trusted Execution. In: 27th ISOC Network and Distributed System
Security Symposium. NDSS’20 (February 2020)

54. Perlroth, N., Sanger, D.E.: Cyberattacks Put Russian Fingers on the Switch
at Power Plants, U.S. Says. https://www.nytimes.com/2018/03/15/us/politics/
russia-cyberattacks.html (2018)

55. Pohly, D., et al.: Hi-Fi: Collecting High-Fidelity Whole-System Provenance. In:
Proceedings of the 2012 Annual Computer Security Applications Conference. AC-
SAC ’12, Orlando, FL, USA (2012)

56. Puschner, P., Burns, A.: Writing temporally predictable code. In: Proceedings of
the Seventh IEEE International Workshop on Object-Oriented Real-Time Depend-
able Systems.(WORDS 2002). pp. 85–91. IEEE (2002)

57. Rajkumar, R., et al.: Cyber-physical systems: the next computing revolution. In:
Design Automation Conference. pp. 731–736. IEEE (2010)

58. Sandell, D., et al.: Static timing analysis of real-time operating system code. In:
International Symposium On Leveraging Applications of Formal Methods, Verifi-
cation and Validation. pp. 146–160. Springer (2004)

59. Shepherd, D.: Industry 4.0: the development of unique cyber-
security (2020), https://www.manufacturingglobal.com/technology/
industry-40-development-unique-cybersecurity

60. Slabodkin, G.: Coronavirus chaos ripe for hackers to exploit medi-
cal device vulnerabilities (2020), https://www.medtechdive.com/news/
coronavirus-chaos-ripe-for-hackers-to-exploit-medical-device-vulnerabilitie/
575717/

https://www.nytimes.com/2018/03/15/us/politics/russia-cyberattacks.html
https://www.nytimes.com/2018/03/15/us/politics/russia-cyberattacks.html
https://www.manufacturingglobal.com/technology/industry-40-development-unique-cybersecurity
https://www.manufacturingglobal.com/technology/industry-40-development-unique-cybersecurity
https://www.medtechdive.com/news/coronavirus-chaos-ripe-for-hackers-to-exploit-medical-device-vulnerabilitie/575717/
https://www.medtechdive.com/news/coronavirus-chaos-ripe-for-hackers-to-exploit-medical-device-vulnerabilitie/575717/
https://www.medtechdive.com/news/coronavirus-chaos-ripe-for-hackers-to-exploit-medical-device-vulnerabilitie/575717/


20 A. Bansal and A. Kandikuppa, et al.

61. Song, J., Parmer, G.: C’mon: a predictable monitoring infrastructure for system-
level latent fault detection and recovery. In: 21st IEEE Real-Time and Embedded
Technology and Applications Symposium. pp. 247–258. IEEE (2015)

62. Sundaram, V., et al.: Prius: Generic hybrid trace compression for wireless sensor
networks. In: Proceedings of the 10th ACM Conference on Embedded Network
Sensor Systems. pp. 183–196 (2012)

63. SUSE LINUXAG: Linux Audit-Subsystem Design Documentation for Linux
Kernel 2.6, v0.1. Available at http://uniforum.chi.il.us/slides/HardeningLinux/
LAuS-Design.pdf (2004)

64. Tang, Y., et al.: Nodemerge: Template based efficient data reduction for big-data
causality analysis. In: Proceedings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security. pp. 1324–1337. CCS ’18, ACM, New York,
NY, USA (2018)

65. The Linux Foundation: Real-Time Linux (2018), https://wiki.linuxfoundation.org/
realtime/start

66. The MITRE Corporation: Medical device cybersecurity
(2018), https://www.mitre.org/sites/default/files/publications/
pr-18-1550-Medical-Device-Cybersecurity-Playbook.pdf

67. Tian, D.J., et al.: Provusb: Block-level provenance-based data protection for usb
storage devices. In: Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security. ACM, New York, NY, USA (Oct 2016)

68. Veríssimo, P., Casimiro, A.: The timely computing base model and architecture.
IEEE Transactions on Computers 51(8), 916–930 (2002)

69. Veríssimo, P., et al.: The timely computing base: Timely actions in the presence
of uncertain timeliness. In: Proceeding International Conference on Dependable
Systems and Networks. DSN 2000. pp. 533–542. IEEE (2000)

70. Wang, L.: PID control system design and automatic tuning using MAT-
LAB/Simulink. John Wiley & Sons (2020)

71. Wang, Q., et al.: Fear and Logging in the Internet of Things. In: Proceedings of
the 25th ISOC Network and Distributed System Security Symposium. NDSS’18
(February 2017)

72. Wu, Y., et al.: Zeno: Diagnosing performance problems with temporal provenance.
In: 16th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19). pp. 395–420. USENIX Association, Boston, MA (2019)

73. Xu, Z., et al.: High fidelity data reduction for big data security dependency analy-
ses. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security. pp. 504–516. CCS ’16, ACM, New York, NY, USA (2016)

74. Yagemann, C., et al.: Validating the integrity of audit logs against execution repar-
titioning attacks. In: Proceedings of the 2021 ACM SIGSAC Conference on Com-
puter and Communications Security. CCS ’21 (2021)

75. Yoon, M.K., et al.: Learning execution contexts from system call distribution for
anomaly detection in smart embedded system. In: Proceedings of the Second In-
ternational Conference on Internet-of-Things Design and Implementation (2017)

http://uniforum.chi.il.us/slides/HardeningLinux/LAuS-Design.pdf
http://uniforum.chi.il.us/slides/HardeningLinux/LAuS-Design.pdf
https://wiki.linuxfoundation.org/realtime/start
https://wiki.linuxfoundation.org/realtime/start
https://www.mitre.org/sites/default/files/publications/pr-18-1550-Medical-Device-Cybersecurity-Playbook.pdf
https://www.mitre.org/sites/default/files/publications/pr-18-1550-Medical-Device-Cybersecurity-Playbook.pdf

