
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/311300046

ReSecure:	A	Restart-Based	Security	Protocol	for
Tightly	Actuated	Hard	Real-Time	Systems

Conference	Paper	·	November	2016

CITATION

1

READS

29

5	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Restart-Based	Security	and	Fault-Tolerance	View	project

Fardin	Abdi	Taghi	Abad

University	of	Illinois,	Urbana-Champaign

9	PUBLICATIONS			24	CITATIONS			

SEE	PROFILE

Monowar	Hasan

University	of	Illinois,	Urbana-Champaign

19	PUBLICATIONS			427	CITATIONS			

SEE	PROFILE

Marco	Caccamo

University	of	Illinois,	Urbana-Champaign

131	PUBLICATIONS			3,461	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Monowar	Hasan	on	02	December	2016.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/311300046_ReSecure_A_Restart-Based_Security_Protocol_for_Tightly_Actuated_Hard_Real-Time_Systems?enrichId=rgreq-8a68eaadb6b58efecbc56b5b7d35fd0d-XXX&enrichSource=Y292ZXJQYWdlOzMxMTMwMDA0NjtBUzo0MzQ2ODUxOTgyNDU4OTBAMTQ4MDY0ODQzNTg0Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/311300046_ReSecure_A_Restart-Based_Security_Protocol_for_Tightly_Actuated_Hard_Real-Time_Systems?enrichId=rgreq-8a68eaadb6b58efecbc56b5b7d35fd0d-XXX&enrichSource=Y292ZXJQYWdlOzMxMTMwMDA0NjtBUzo0MzQ2ODUxOTgyNDU4OTBAMTQ4MDY0ODQzNTg0Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Restart-Based-Security-and-Fault-Tolerance?enrichId=rgreq-8a68eaadb6b58efecbc56b5b7d35fd0d-XXX&enrichSource=Y292ZXJQYWdlOzMxMTMwMDA0NjtBUzo0MzQ2ODUxOTgyNDU4OTBAMTQ4MDY0ODQzNTg0Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-8a68eaadb6b58efecbc56b5b7d35fd0d-XXX&enrichSource=Y292ZXJQYWdlOzMxMTMwMDA0NjtBUzo0MzQ2ODUxOTgyNDU4OTBAMTQ4MDY0ODQzNTg0Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fardin_Abdi_Taghi_Abad?enrichId=rgreq-8a68eaadb6b58efecbc56b5b7d35fd0d-XXX&enrichSource=Y292ZXJQYWdlOzMxMTMwMDA0NjtBUzo0MzQ2ODUxOTgyNDU4OTBAMTQ4MDY0ODQzNTg0Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fardin_Abdi_Taghi_Abad?enrichId=rgreq-8a68eaadb6b58efecbc56b5b7d35fd0d-XXX&enrichSource=Y292ZXJQYWdlOzMxMTMwMDA0NjtBUzo0MzQ2ODUxOTgyNDU4OTBAMTQ4MDY0ODQzNTg0Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Illinois_Urbana-Champaign?enrichId=rgreq-8a68eaadb6b58efecbc56b5b7d35fd0d-XXX&enrichSource=Y292ZXJQYWdlOzMxMTMwMDA0NjtBUzo0MzQ2ODUxOTgyNDU4OTBAMTQ4MDY0ODQzNTg0Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fardin_Abdi_Taghi_Abad?enrichId=rgreq-8a68eaadb6b58efecbc56b5b7d35fd0d-XXX&enrichSource=Y292ZXJQYWdlOzMxMTMwMDA0NjtBUzo0MzQ2ODUxOTgyNDU4OTBAMTQ4MDY0ODQzNTg0Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Monowar_Hasan?enrichId=rgreq-8a68eaadb6b58efecbc56b5b7d35fd0d-XXX&enrichSource=Y292ZXJQYWdlOzMxMTMwMDA0NjtBUzo0MzQ2ODUxOTgyNDU4OTBAMTQ4MDY0ODQzNTg0Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Monowar_Hasan?enrichId=rgreq-8a68eaadb6b58efecbc56b5b7d35fd0d-XXX&enrichSource=Y292ZXJQYWdlOzMxMTMwMDA0NjtBUzo0MzQ2ODUxOTgyNDU4OTBAMTQ4MDY0ODQzNTg0Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Illinois_Urbana-Champaign?enrichId=rgreq-8a68eaadb6b58efecbc56b5b7d35fd0d-XXX&enrichSource=Y292ZXJQYWdlOzMxMTMwMDA0NjtBUzo0MzQ2ODUxOTgyNDU4OTBAMTQ4MDY0ODQzNTg0Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Monowar_Hasan?enrichId=rgreq-8a68eaadb6b58efecbc56b5b7d35fd0d-XXX&enrichSource=Y292ZXJQYWdlOzMxMTMwMDA0NjtBUzo0MzQ2ODUxOTgyNDU4OTBAMTQ4MDY0ODQzNTg0Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marco_Caccamo?enrichId=rgreq-8a68eaadb6b58efecbc56b5b7d35fd0d-XXX&enrichSource=Y292ZXJQYWdlOzMxMTMwMDA0NjtBUzo0MzQ2ODUxOTgyNDU4OTBAMTQ4MDY0ODQzNTg0Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marco_Caccamo?enrichId=rgreq-8a68eaadb6b58efecbc56b5b7d35fd0d-XXX&enrichSource=Y292ZXJQYWdlOzMxMTMwMDA0NjtBUzo0MzQ2ODUxOTgyNDU4OTBAMTQ4MDY0ODQzNTg0Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Illinois_Urbana-Champaign?enrichId=rgreq-8a68eaadb6b58efecbc56b5b7d35fd0d-XXX&enrichSource=Y292ZXJQYWdlOzMxMTMwMDA0NjtBUzo0MzQ2ODUxOTgyNDU4OTBAMTQ4MDY0ODQzNTg0Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marco_Caccamo?enrichId=rgreq-8a68eaadb6b58efecbc56b5b7d35fd0d-XXX&enrichSource=Y292ZXJQYWdlOzMxMTMwMDA0NjtBUzo0MzQ2ODUxOTgyNDU4OTBAMTQ4MDY0ODQzNTg0Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Monowar_Hasan?enrichId=rgreq-8a68eaadb6b58efecbc56b5b7d35fd0d-XXX&enrichSource=Y292ZXJQYWdlOzMxMTMwMDA0NjtBUzo0MzQ2ODUxOTgyNDU4OTBAMTQ4MDY0ODQzNTg0Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Proceedings of 

 

  

the 1st Workshop on 

Security and Dependability of  

Critical Embedded Real-Time Systems  

 

November 28th, 2016 in Porto, Portugal 

 

in conjunction with 

 

IEEE Real-Time Systems Symposium 
29th November 2016 – 2nd December 2016 

 

 

 

 Editors: 

 Marcus Völp 

 Paulo Esteves-Veríssimo 

  António Casimiro 

  Rodolfo Pellizzoni 

2016 



ReSecure: A Restart-Based Security Protocol for
Tightly Actuated Hard Real-Time Systems

Fardin Abdi†∗, Monowar Hasan†∗, Sibin Mohan†, Disha Agarwal‡ and Marco Caccamo†
†Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA

‡Dept. of Computer Science and Engineering, PES University, India
Email: {†abditag2, †mhasan11, †sibin, †mcaccamo}@illinois.edu, ‡agarwal.disha21@gmail.com

*These authors have made equal contribution to this work.

Abstract—In this paper we present ReSecure, a framework
that uses the concept of system restart to secure hard real-time
systems (RTS). ReSecure is used to improve the security of RTS
without violating safety or temporal constraints. We also show how
designers of systems can customize (or even optimize) system
parameters to achieve the best trade-offs between security and
control system performance. We demonstrate our concepts using
a prototype on an ARM-based embedded platform as well as a
3 degree of freedom (3 DOF) helicopter system.

I. INTRODUCTION

Physical systems have limitations and restrictions that need
to be respected during operation. Otherwise, the system itself
or the environment around them, including humans, can be
damaged. These physical systems are usually controlled by
embedded real-time controllers and require consistent avail-
ability and reliable execution in order to operate safely. These
limitations, therefore, need to be taken into account when
designing the controllers for these systems. With the growing
complexity of these controllers due to the use of sophisticated
operating systems (OS), vendor developed drivers and open
source libraries as well as increased connectivity makes it very
challenging to verify that those physical restrictions are always
respected.

Despite the fact that sensors and actuators that interact
with the physical world may open up composite sources of
vulnerabilities, security issues in real-time systems (RTS),
however, have received relatively little attention by academia
or industry. The sophistication of recent attacks, limited com-
puting resources due to the embedded architecture as well
as exceptionally high reliability and availability requirements
make it harder to build effective intrusion detection and
prevention mechanisms in RTS.

Recent RTS are more interconnected and even controlled
over unreliable mediums such as the Internet. In addition, there
is more monetary and adversarial incentives for malicious
activities. The Stuxnet worm that highlighted the possibility
and effectiveness of an attack on critical infrastructure [1] and
malicious code injection into the telematics units of modern
automobiles [2], [3] are some instances of such attacks.
Without considering the safety-critical and embedded nature
of these systems, simply adding security mechanisms (such as
encryption, message authentication, etc.) will not be effective
to ensure both safety and security.

Hence we intend to provide designers a flexible yet unified
framework that allows to customize system parameters (secu-
rity policies and preference over security and performance).
In this paper we present ReSecure, a runtime restart-based
protection approach to ensure security in RTS. In traditional
computing systems (e.g., servers, smart phones, etc.), software
problems are often resolved by restarting, either the application
process or the platform [4]–[6]. We use a similar concept to
improve security guarantees in RTS. In particular, we propose
to restart the platform periodically/asynchronously and load a

fresh image of the applications and OS after each reboot with
the objective of wiping out the intruder or malicious entity.

Unlike conventional computing systems restart-based re-
covery mechanisms are not straightforward in RTS due to
additional real-time constraints, as well as interactions of the
control system with the physical world. Besides, most physical
systems need consistent actuation with tight timing constraints
(e.g., a helicopter can quickly destabilize if the controller
restarts). The ReSecure framework is specifically designed to
improve security of safety-critical RTS with physical systems
in need of constant actuation. In order to guarantee the phys-
ical safety requirements, we use the Simplex architecture [7],
[8], a method that utilizes a minimal, verified controller as
backup when the complex, high-performance controller is not
available or malfunctioning. In particular, ReSecure is a set
of software and hardware mechanisms that enable a trade-off
between the security guarantees and control performance while
guaranteeing the safety1 of the physical system at all times.
Specifically, the contributions of this work can be summarized
as follows.
• We introduce ReSecure, a restart-based architectural

framework to improve security in RTS. We discuss how
triggering restart events through several system com-
ponents can enhance security without sacrificing safety
(Section IV).

• To configure system parameters based on the design
requirements, we provide an analytical framework that
calculates the best trade-off between security and con-
troller performance (Section IV-C).

• We evaluate the system with a proof-of-concept imple-
mentation on an ARM-based development board and
embedded real-time Linux (Section VI).

The ReSecure framework proposed in this paper is based
on Simplex [7], [8] that enables the safe restart mechanisms.
Specifically, we utilize a variant of Simplex, viz., system-level
Simplex [9]. We present first a brief overview of Simplex and
our assumptions on adversarial capabilities before we elaborate
the design details of ReSecure.

II. OVERVIEW OF SIMPLEX ARCHITECTURE

Simplex [8], [10]–[12] is a well-known architecture that
uses a simple verified subsystem (Fig. 1) to ensure safety of
the plant. This conservative safety subsystem is then comple-
mented by a high-performance complex control subsystem that
is concerned with mission-critical requirements. A decision
module then uses the high-performance complex controller
whenever possible, but will switch to the safety controller
when system safety is jeopardized. Using Lyapunov stability
properties from control theory, there exists a set of states that

1By the term ‘safety’ we refer to ensure that the limitations and restrictions
of the physical system (e.g., actuator limits, maximum pressure, maximum
temperature, etc.) are always respected.

47



within those set, safety control is always able to stabilize the
system and keep it safe. The goal of Simplex method it to
guarantee that under any behavior of the complex subsystem,
the physical system would remain safe.

Complex 
Controller

Safety 
Controller

Decision 
Logic

Physical 
Plant

Fig. 1. Logical view of Simplex architecture. Decision module chooses the
control that does not jeopardize the safety.

Our proposed approach is based on variants of Simplex such
as system-level Simplex [9] and reset-based recovery [13] that
have moved the safety subsystem and the decision module into
a dedicated hardware unit. This isolates the trusted components
from the faults and misbehavior of the complex subsystem.

III. ADVERSARY MODEL

RTS face threats in various forms depending on the system
and the goals of an adversary. For instance, adversaries may
insert, eavesdrop on or modify messages exchanged by system
components. Besides, attackers may manipulate the processing
of sensor inputs and actuator commands, could try to modify
the control flow of the system as well as extract sensitive
information through side-channels. The adversarial capabilities
we consider in this work are as follows.

i) Integrity violation: We assume that the adversary can
compromise all the software components on the complex
unit including underlying real-time OS (RTOS) as well
as the real-time applications. For example, an adversary
may insert a malicious task that respects the real-time
guarantees of the system to avoid immediate detection,
compromise one or more existing real-time tasks and/or
may override parts of the underlying RTOS itself that may
eventually threaten overall safety of the system.

ii) Denial of Service (DoS): The attacker may take control
of the real-time task(s) in the complex controller and
perform system-level resource (e.g., CPU, disk, memory,
etc.) exhaustion. In addition, an advanced attacker may
capture I/O or network ports and perform network-level
attacks to tamper with the confidentiality and integrity
(viz., safety) of the system.

iii) Information leakage through side-channels: The adversary
may also aim to learn important information by side
or covert-channel attacks by simply lodging themselves
in the system and extracting sensitive information. For
example, the intruder may utilize side-channels to monitor
the system behavior and infer certain degree of system
information (e.g., hardware/software architecture, user
tasks and thermal profiles, etc.) that eventually leads to
the attacker actively taking control, manipulating and/or
crashing the system.

In addition to these adversarial capabilities, we also make
the following assumptions.

i) Sensor reading manipulation: We consider that an intel-
ligent adversary can only attack the external sensors via
physical access. Since this may not be the obvious attempt
in practice, we assume that the sensor readings are not
compromised.

ii) Safety unit integrity: Safety unit has simple and verified
software that has no interaction with the outside world
except reading the complex controller command and sen-
sor values in every cycle, and sending the final command
to the actuators. Therefore, we assume that safety unit
remains uncompromised during system operation2.

iii) Read-only memory unit: We assume that the attacker
cannot modify the content of the read-only memory unit
that stores the uncompromised image of the RTOS and
real-time applications. For example, this can be achieved
by using an E2PROM storage unit.

IV. RESTARTABLE DESIGN: APPROACH AND OVERVIEW

We consider a real-time control application, viz., a system
consisting of a set of sporadic, fixed priority3, independent
tasks executing on the complex unit. Each real-time task τi
is characterized by (Ci, Ti, Di), where Ci is the worst-case
execution time, Ti is the minimum inter-arrival time (or period)
between successive releases and Di is the relative deadline.
Although we limit ourselves to fixed-priority scheduling in this
paper, the concepts of restarting to secure RTS can be extended
to dynamic priority schemes without loss of generality. The
schedulability of the real-time application tasks are assumed
to be guaranteed by offline analysis [15]. Our design goal
is to enable the complex subsystem to restart and reload
an uncompromised image containing all the applications and
the underlying RTOS/firmware while guaranteeing that the
physical plant stays safe during restart.

The high level overview of ReSecure is illustrated in Fig.
2. As mentioned earlier, we use the system-level Simplex [9]
as the basis of our design. In this architecture, safety and
complex subsystems are on isolated hardware units such that
faults or exploits in the complex subsystem does not affect
the functionality of the safety unit. The only interaction of
the safety subsystem has with the outside world is limited to
reading the complex controller commands and sensor values
in a controlled format and sending the control commands to
actuators. Therefore, we do assume that the safety unit always
remains trusted during system operation and there is no ma-
licious entity embedded in it4. The entire security framework
can be collapsed if the safety unit itself is compromised in the
first place.

The decision module switches the control to the safety
controller when the commands from the complex controller
may jeopardize safety or when there is no command from
the complex controller (e.g., during a restart). The Safety
controller maintains (a somewhat degraded) performance until
a safe command is available from complex controller (e.g.,
the restart completes and the original controller can resume
its operation)5.

One may argue why complex unit does not receive the
same level of protection as the safety unit. The complex unit,
however, is often exposed to external sources (e.g., user input,
I/O or network peripherals, software update, etc.) that opens
it up to the potential sources of vulnerabilities. As mentioned
earlier, the binary or control logic in the safety unit will not
often change. Therefore, it makes sense to harden security
mechanisms in the complex unit.

2This assumption is clarified further in Section IV.
3One approach to assign priority could be using the Rate Monotonic

algorithm [14].
4Similar assumptions are not uncommon in literature [16], [17].
5For the detailed description of safety controller and decision module design

procedure we refer the readers to [9] and [13].

48



Fig. 2. The ReSecure architecture produces a verified system despite the use
of an unverified complex controller. The decision module switches between
the controllers to provide overall system safety.

A. Triggering Restarts
In ReSecure platform, the attacker can compromise the

complex unit but cannot violate the physical safety because
of the decision module and safety unit. However, the system
may not made progress towards the mission with only the
safety controller. In order to recover the complex controller
from a compromised state, we choose the following set of
events to trigger a full restart of the complex unit and reload
an uncompromised image of both OS and control applications
from read-only memory: i) failure of critical components, ii)
at predefined periodic times and iii) upon detection of an
intrusion by the monitoring unit. In the following we elaborate
the above choices and discuss the mechanisms to implement
each one.

1) Watchdog Timer: Watchdog timers ensure that the com-
ponents in the complex unit are alive and have not crashed.
Hence, the complex controller and monitoring unit should
update a watchdog timer at every execution loop. Thus, the
platform needs to provide at least one watchdog timer. The
watchdog must be independent of everything else in the system
(except power). It is important to mention that most watchdog
timers are “no way out”, meaning that once activated, they
cannot be deactivated. However, this must be verified on the
specific platform which is being used. If the watchdog can be
disabled after activation, an attacker might be able to disable
the watchdog and prevent a restart.

2) Monitoring Unit: Monitoring unit can act as an attack
detector and look for signs of malicious behavior in the system.
Alternatively, it can look for signs of fault in the system before
they occur. For instance, it can perform tests that can cover
resource availability (e.g., sufficient memory and file handles,
reasonable CPU time, etc.), evidence of expected process
activity (e.g., system processes running, specific files being
presented or updated, etc.), overheating, network activity,
system-specific tests as well as monitoring for specific attack
or security threats. For each one of the above, there is a large
body of work in the literature that can be plugged in. Thus,
we do not consider the specific design/functionality of the
monitoring unit. Our flexible framework enables designers to
implement their own monitoring methods to improve security
depending on system requirements.

3) Periodic Timer: No matter how effective the monitoring
strategy is, it can never detect all compromises in the system.
A sophisticated attacker may even be able to disable the
monitoring unit. Besides, not all the intrusions necessarily
crash the complex controller and/or initiate a restart through
watchdog timers. For example, an attacker may just modify the
complex controller logic. The external timers trigger periodic
restarts and reload uncompromised system image independent
of all the components and events in the system. This allows the
system to recover from the unforeseen attacks (e.g., zero-day

vulnerabilities) that all the other restart-triggering mechanisms
(e.g., watchdog timers and monitoring unit) fail to detect.

Note that ReSecure does not make any assumptions with
regards to the detectability of attacks. An attack can remain
undetected by monitoring unit or even may compromise the
monitoring unit. However, even such sophisticated attacks
will be removed when the periodic timers trigger the restart.
Needless to say that a more effective monitoring mechanism
leads to a faster detection and recovery and consequently a
lesser loss of control performance.

B. Restartable Components
Since aforementioned triggers can occur asynchronously at

any time during operation, all the components on the complex
unit must be designed to be restarted at any arbitrary time.
In conventional software systems that are not designed for
restartability, restarting the component or the entire system
at states where the restart is not expected might result in
unrecoverable data-dependent failures. This can occur in two
main ways: i) due to logic data corruption, and ii) due to
file system corruption. The case of logic data corruption may
occur if the system is being restarted while an application
was updating a unit of storage (e.g., a file). In this case, the
semantics of the partially updated storage may be affected,
leading to the permanent inability to restart an application
correctly. Conversely, file system corruption can occur as the
system is forcefully restarted after the execution of disk-cached
I/O operations and before cached file changes are synchronized
with the disk.

For this paper, we make the following considerations about
the restartability of software components. First, many micro-
controller-based systems as well as many embedded OS pro-
vide no support for persistent storage and thus provide no
file systems. In these class of systems, a fresh image of the
OS and applications is loaded into main memory from a
read-only memory resource (typically a flash memory) during
a restart. Second, for those platforms with support for file
systems, restartability can be achieved if a read-only partition
is designated for the storage of the OS and control application
binaries. This will ensure that the OS and application images
will not be impacted by file system corruption during restart.

C. Securing RTS by Restarting
Restarting the entire complex unit and loading the fresh

image of all the framework and applications restores the
system into a functional and uncompromised state. However,
it does not fix the vulnerabilities that were exploited in the first
place by the attacker. That is why that a single restart cannot
be considered as an effective attack prevention mechanisms
by itself.

The main idea of restart-based protection is that, if we
restart the system frequently enough, it is less likely that the
attacker will have time to become effective and cause mean-
ingful damage to the system. After every restart, there will
be a predictable down time (during the system reboot), some
operational time (before system is compromised again) and
some compromised time (until the compromise is detected or
periodic timer expires). The periodic timer sets an upperbound
on the compromised time of the system.

The length of each one of the above intervals depends
on the type and configuration of the platform, adversary
models, effectiveness of the monitoring unit and complexity
of the exploits. As a general rule, the effectiveness of the
restarting mechanism increases i) as the time to re-launch the
attacks increases or ii) the time to detect attacks and trigger a
restart decreases. In the Appendix, we provide a probabilistic

49



method6 to evaluate the expected unavailability due to restarts
and attacks and the expected damage from the attacks/exploits
given a certain restart configuration. We also show how to find
an optimal configuration to balance lack of availability and
damage.

V. ReSecure AND ATTACK RESILIENCY

Most of the existing security mechanisms protect the system
from specific categories of attack and providing high security
assurance requires a mixture of multiple mechanisms. Even
then, there are always unknown vulnerabilities that can be
exploited by an attacker to perform zero-day attacks. On
the other hand, patching the OS in embedded controllers
and programmable logic controllers (PLCs) against (un)known
bugs and vulnerabilities is very challenging. Due to the safety-
critical nature of the applications in industrial controllers, any
updates to the software needs to undergo extensive testing and
verification before being deployed. ReSecure on the other
hand, guarantees complete safety of physical unit along with
some graceful degradation and restoration of functionality in
the presence of any type of exploits.

In the following, we review some examples of security
threats that ReSecure can recover.

1) Malicious Software: Sophisticated adversaries can create
malware that seeks to infect the external media used for
transfers and updates. This opens the opportunities for pos-
sible exploits and may infect the system unknowingly to the
human operator [19]. Some malicious code injections requires
time, resources and sometime physical intervention to spread
through systems. For example, the Stuxnet worm [1] was able
to successfully subvert industrial control systems and infect
PLCs. The worm was able to get in once an infected peripheral
device was connected to the main system. After gaining access,
the malware gradually inflicted damage to the physical plant
by substituting legitimate actuation commands with infected
ones over a period of time. Flame [20] is another example
of malware designed specifically for espionage that spreads
through USB devices and local networks.

Such malwares get into the system from removable drives
that requires physical access and later slowly spread over the
network by replicating themselves. In practice, however, it
is unlikely that malicious entities can gain frequent physical
access to the system after every reboot.

2) Stealing Sensitive Information: An adversary may want
to track side-channel signals generated by the complex con-
troller tasks with the intention of stealing sensitive information
and secrets of the system. As a matter of fact, due to the deter-
ministic schedules of most RTS, an attacker can extract certain
system information using signals such as timing parameters
of the task [21], thermal profiles [22], secret keys [23] and
cache access pattern [24]. Such side channel attacks require the
adversary to perform monitoring activities for a certain period
of time to improve the accuracy of the extracted information.
Restarting make it possible to prevent from stabilizing the
attacker task before it can extract a certain degree of useful
information.

3) Denial-of-Service (DoS) Attacks: DoS attacks is a cate-
gory of attacks where the attacker exhausts the resources of the
system thereby preventing the access for the legitimate user.
DoS attacks can occur in two forms; i.e., system-level and
network-level. In system-level attacks, attacker tries to exhaust
all the memory, consume all the processor utilization or fill
all the disk spaces. These eventually prevent the real-time
applications from functioning. The network-level DoS relies

6A similar probabilistic analysis is performed in literature [18] to find the
optimal restart time for software rejuvenation purposes.

on sending an overwhelming influx of request to overflow the
target’s resources. Flood of TCP/SYN packets, overflowing the
data buffer and reflective pings are examples of network DoS
attacks.

Restarting can always claim all the stale resources back and
enable the system to continue operation. In the RTS context,
in order to perform a system-level DoS attack, the attacker
may need to monitor the execution profile for the tasks using,
say, side-channel attacks and then override the task code with
malicious DoS routines. Besides, the DoS routines also need
some time to saturate the system resources. It is worth noting
that combining all these steps to launch successful attacks
requires considerable time.

With a correct estimation of the capabilities of the attacker
(how much traffic they generate or at what rate they can
exhaust system resources), the system designer can formulate
the cost function for the attack and find an optimal restart
time (refer to Appendix). Thus we assert that the restart-based
method can be a potential solution to prevent (as well as
recover) the system from many DoS attacks.

VI. IMPLEMENTATION AND EVALUATION

In this section we evaluate ReSecure with a proof-of-
concept implementation. Although our prototype is imple-
mented on an ARM-based development board and embedded
Linux, the proposed method can be ported into different RTOS
and platforms without loss of generality. Source codes used
in the experiments are available online7. Table I lists the
details about the implementation and parameters used in the
experiments.

TABLE I
IMPLEMENTATION PLATFORM AND EXPERIMENTAL PARAMETERS

Artifact/Parameter Values
Complex unit platform ARM Cortex-A8 1GHz,

512MB RAM
Safety unit platform Intel Core i7, 8GB RAM
Complex unit OS Real-time Linux kernel

4.4.12-ti-rt-r30
Complex unit reboot time, TR 13 s
Periodic restart timeout, TTimer 120 s
Period of the controller tasks, Tct [10 ms, 100 ms]
Watchdog timeout Control task period

A. Experimental Setup
Our prototype implementation is developed in C and com-

piled using the GNU C compiler with optimization level 2
(e.g., option -O2). We do not use any nonstandard external
libraries and the implementation has no dynamic memory
allocations or recursion.

1) Physical Plant: As a physical system we consider a 3
degree of freedom (3 DOF) helicopter. We use a known model
of the system obtained from prior work [25] and perform
hardware-in-the-loop (HIL) simulations [26] to capture the
exact behavior of the sensors and physical plant. Pitch, eleva-
tion and travel angle are reported to the safety and complex
controller as sensor readings.

This plant is considered safe as long as the wings of the
fans do not hit the horizontal surface on which the 3-DOF
helicopter is fixated. The linear inequality in Eq. (1) defines
the set of states in which system is safe.

elevation± 1/3× pitch > −0.3. (1)

7https://github.com/mnwrhsn/restart n secure cps.

50



By applying the Simplex method to the linear model of the
system and the safety condition, we obtain the safety controller
(i.e., a proportional feedback controller) and the decision logic
for decision module.

2) Complex Unit: We use a BeagleBone Black (BBB) de-
velopment board8 (ARM Cortex-A8 1GHz processor, 512MB
RAM, 4GB on-board eMMC storage) as our complex unit. The
complex unit uses an embedded Debian GNU/Linux console
image as the OS. Since the vanilla Linux kernel is poorly
suited for executing real-time applications directly, we enable
the real-time capabilities by applying the RT-PREEMPT patch
[27] (kernel version 4.4.12-ti-rt-r30) that is known to respect
real-time constraints in embedded platforms such as ARM
[28].

The OS in the complex unit uses priority-based preemptive
scheduling powered by RT-PREEMPT patch. The highest
priority task that is eligible to run in the system is always
scheduled by the OS. Each real-time controller task has a
period Tct ∈ [10 ms, 100 ms]. The periodic controller tasks
are suspended after the completion of corresponding instances
using the clock_nanosleep() system call. Also we set
the program executable as a startup cron job (using crontab
utility) so that it can execute as soon as the system reboots.
After reboot we load the fresh (viz., uncompromised) OS
image from the BBB’s on-board eMMC storage9. From our
experiments we find that, it takes at most 13 seconds (on
average 12.1379 seconds with 0.3509 standard deviation) to
restart the BBB and make the complex controller’s code
operational.

In order to prevent unauthorized disk access and protect the
file systems from corruption during the asynchronous restart
events, we mount the file systems of the complex unit’s OS
as read-only. For this, we modify the /etc/fstab file and
ensure that the root file systems will always be mounted as
read-only10 after each reboot.

3) Safety Unit: The safety unit (e.g., safety controller and
decision module) is implemented on a x86 machine11 (Intel
Core i7 processor, 8GB RAM) running Ubuntu Linux 14.04.
In our current implementation, the complex unit communicates
with the safety unit using a fixed IP. The sensor and actuation
commands (viz., travel, elevation and pitch angle of the he-
licopter) are fed into both safety and complex controller. We
implement the decision module as a multithreaded application
that toggles the control between safety and complex controller
according to i) availability of complex unit and ii) the decision
logic obtained from applying Simplex method to the system
model and the safety conditions.

4) Monitoring Unit: As we have mentioned in Section
IV-A2, the flexible architecture of ReSecure allows the
designer to integrate the desired security methods in order
to monitor the system resources/components that they care
about. For illustration purposes only, we develop a minimal-
istic monitoring unit. The monitoring unit is implemented
as a periodic task of its own (with a period of 2 seconds).
Specifically, the monitoring unit in our current implementation
stores the legitimate kernel modules on startup. Later, during

8https://beagleboard.org/black.
9Technically it is possible to override/corrupt the on-board OS image of

BBB. However, this requires physical intervention to hard-flash the board by
using the reset (viz., USER/BOOT) switch and may not be easily doable in
practice. Hence, we consider on-board eMMC as a secure storage to load the
OS image after each restart.

10By some careful engineering it could be possible to make file system
writable even if it is mounted as read-only. In our current prototype, however,
we do not consider this issue. As we have mentioned in Section IV, the OS
in complex unit can also be loaded from read-only physical disc that can only
be modifiable by external access.

11We intend to port the safety unit in an embedded platform in future work.

each of its periodic invocation at time t, it scans the currently
running kernel modules at time t (e.g., available through
/proc/modules interface) and compares with the stored
information. In the event when any mismatch or anomaly is
detected the monitoring unit issues a restart request through
SysRq command (e.g., using /proc/sysrq-trigger).

5) Implementation of Restart Events: As mentioned in
Section IV-A, the restart events in the complex unit are
triggered by the watchdog and periodic timers. We implement
the watchdog timer using ualarm() system call and update
the timer in each periodic invocation of controller tasks. Once
activated, the watchdog timer is periodically accessed. Failing
to update the watchdog within the timeout duration will force
the system to restart.

External periodic hardware timers can be implemented by
using the BBB’s general purpose input/outputs (GPIO) pins.
For instance, one can interface a hardware timer with BBB’s
GPIO interface and generate an interrupt to trigger the restart
when the timer expires. Our current prototype, however, does
not use any external hardware timers. Instead, we use Linux
high resolution timers (viz., hrtimers [29]) to implement the
periodic restart. In particular, we develop a loadable kernel
module that activates the timer on startup and restarts the
system as soon as the timer expires. In our experiments we
set the timeout for periodic restart TTimer = 120 seconds.

B. Experience and Evaluation
In the following we analyze the effectiveness of ReSecure

by mimicking some of the attacks described in the preceding
section. In particular we illustrate how different restarting
strategies can be useful to recover from these attacks.

1) Recovery by Watchdog Timeout: As mentioned in Sec-
tion III, an attacker can capture the control tasks by tracking
the execution profile using side channel attacks [21] that
exploit the deterministic behavior of the real-time scheduling.
We perform system-level DoS by launching a fork bomb12

attack on the complex controller. This DoS attack utilizes
Linux fork() system call and recursively replicate itself.
Due to the CPU overload some (or all) of the control tasks
may miss their deadlines. In this experiment we assume that
the attacker hijacks the highest priority real-time control task
and is able to execute malicious codes with the privilege
similar to those of legitimate tasks (viz., root). Recall that
we update the watchdog timer once during every invocation
of controller tasks. Since the highest priority controller task is
itself compromised with self-replicating malicious codes, the
watchdog timer is not updated and a restart event is triggered.
The system is recovered from the attack within less than
approximately 14 seconds (including TR = 13 seconds reboot
time). Again, the safety constraints in Eq. (1) are not violated
since the safety controller takes the control during restart.

2) Recovery by Monitoring Unit and Periodic Restart:
Similar to previous experiment, we assume that attacker can
hijack the control tasks and is able to inject malicious codes.
However, unlike Section VI-B1 where the attacker overrides
the highest priority task, here the attacker may take control
over any arbitrary priority task (referred to as victim task).
This is particularly useful for the attacker to simply lodge
itself in the system and glean sensitive information [21]. To
demonstrate the attack, we inject malicious code (viz., a kernel-
level malware [30] that intercepts every read() system call)
inside victim task. Since the original malware was developed
for the x86 architecture, we modify the source code and port
it for ARM. We also slightly modify the malware logic so
that instead of making any changes, it silently lodges in the

12http://malware.wikia.com/wiki/Fork bomb.

51



system and extracts information (i.e., representing side channel
attacks).

The system can recover from this attack by two means,
either the monitoring unit detects the presence of unauthorized
entity and/or by periodic restart. We experiment with both
alternatives. In our experiments we consider that monitoring
unit remains uncompromised and periodically (with period
TMU = 2 seconds) scans the currently running kernel modules
and triggers a restart if any malicious entity is found. In both
cases, the system recovers from the intrusion within TR + δ
seconds of attack where δ = TMU−t if the restart is triggered
by monitoring unit13 or δ = TTimer − t when system reboots
due to periodic timeout where t ∈ [0, TTimer] represents
relative point of intrusion.

VII. DISCUSSION

Despite the fact that ReSecure provides an integrated
approach to guarantee safety and security in real-time CPS,
this is obviously not a silver bullet for solving all security
problems. In what follows we briefly discuss the defense
mechanisms of ReSecure against different threat model as
well as the limitations of the current framework with possible
directions of improvements.

A. Threat Model
The underlying detection algorithm used in the monitoring

unit may have false positives that will trigger unwanted
restarts. A few false positives will not have a significant impact
on the performance. False negatives are also mitigated by the
periodic timers that set an upper bound on the detection time
and restart the system independent of the monitoring unit or
watchdog timers. Hence, the basic safety and security premise
of ReSecure does not depend on having a perfect monitoring
unit.

There may be cases where an advanced attacker performs
a series of attacks with a view to destabilizing the system.
Whether the attack is being detected by the monitoring unit
and/or by watchdog timeout, this will cause the system to be
restarted frequently. Despite the fact that frequent restart may
affect (or degrade) system performance, ReSecure ensures
that the system will still remain safe during the sporadic un-
availability of the complex unit. This kind of attack, however,
will require the adversary to intrude into the system and launch
series of attacks as soon as the fresh OS image is loaded.
Again, we can argue that this will be difficult and unlikely in
practice.

B. Limitations and Improvement
ReSecure requires a dedicated computing module as a

safety unit due to periodic/asynchronous unavailability of
complex unit. However, this overhead and performance loss
comes with increased security guarantees – that might be
acceptable for many security-critical RTS.

Although ReSecure can recover from certain types of DoS,
code injection and side channel attacks, the restart mechanism
does not prevent intrusion. As we have illustrated in the Ap-
pendix, the frequency of periodic restarts is calculated based
on the prior knowledge of exploits. Therefore, ReSecure
may not work as expected for zero-day vulnerabilities. For
instance, the attacker may launch successful attacks between
two consecutive restart events. However, compared to non-
restart based mechanisms, the proposed framework ensures a

13To be specific, the actual recovery time in this case is TR + TDetect
where TDetect < TMU refers the time to detect the attack by the monitoring
unit. However, in our experiments we do not profile exact detection time and
provide an upper bound instead.

clean (e.g., uncompromised) system state every once in a while
with guaranteed safety at the cost of restarts.

Given that certain side channel attacks are less effective
if we are utilizing the restart mechanism, ReSecure in its
current form, however, does not ensure zero information
leakage from such attacks. This is because, there is always the
possibility that the attacker can extract sensitive information
between consecutive restarts. This issue can be mitigated
by randomizing execution patterns and system configurations
after every restart. For example, researchers have proposed
schedule obfuscation method aiming at randomizing the real-
time task schedule [31], cache random-eviction and cache
random permutation [32] as well random key distribution [33].
Such techniques can be utilized along with ReSecure to
randomize system parameters after each restart and further
reduces the chance of information leakage. We intend to in-
corporate such techniques on top of the restart-based recovery
mechanism in future work.

VIII. RELATED WORK

The Simplex architecture [10], [34] has been used exten-
sively to provide verified design with unverified logic. Variants
of Simplex have been proposed to account for physical system
failures [35], as well as faults in OS or processor [9]. These
works have focused on fault-tolerance and are not concerned
with the security issues in RTS.

The notion of restarting has been used in some studies
to recover from faults in safety-critical systems. System-level
Simplex is the first architecture that is able to restart the com-
plex controller [9] with formal safety guarantees. Reset-based
recovery for safety-critical systems [13] has further analyzed
restarting as a recovery mechanism. Both of these approaches
utilize extra hardware to isolate safety subsystem from faults
in complex subsystem. The objective is to recover the system
safely from non-adversarial software faults in the controller
and underlying layers (OS and firmware). To our knowledge,
ReSecure is the first work that extensively considers enabling
systematic restart-based recovery with guaranteed safety to
secure the RTS.

Although sophisticated adversaries and malware developers
are able to overcome air-gaps in recent years, security issues
considering hard real-time constraints have not been studied
comprehensively in literature. Recent work [16], [17], [36]
on dual-core based hardware/software architectural frame-
works aim to protect RTS against security vulnerabilities. A
similar line of work exists [37] where authors leverage the
deterministic execution behavior of RTS and use Simplex
architecture to detect intrusion while guaranteeing the safety.
However the solution proposed by that work is limited to time-
based intrusion detection methods only. In contrast, ReSecure
utilizes the concept of restarting on top of Simplex and able
to prevent and/or recover from large classes of attacks.

IX. CONCLUSION

The evidence from recent successful attacks on UAVs [38],
automobiles [39] and industrial control systems [1] indicate
that security violations are becoming more common in RTS.
In this work, we are moving towards developing an integrated
security-aware RTS and illustrate restart as a viable mechanism
to ensure security in such safety-critical systems. Designers
of such systems can now evaluate the necessary trade-offs be-
tween control system performance degradation and increased
security guarantees – thus improving the overall design of RTS
in the future.

52



REFERENCES

[1] N. Falliere, L. O. Murchu, and E. Chien, “W32. stuxnet dossier,” White
paper, Symantec Corp., Security Response, vol. 5, p. 6, 2011.

[2] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno et al.,
“Comprehensive experimental analyses of automotive attack surfaces.”
in USENIX Security Symposium. San Francisco, 2011.

[3] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham et al., “Experimental
security analysis of a modern automobile,” in IEEE Symposium on
Security and Privacy. IEEE, 2010, pp. 447–462.

[4] G. Candea and A. Fox, “Crash-only software,” 2003.
[5] G. Candea, E. Kiciman, S. Zhang, P. Keyani, and A. Fox, “Jagr: An

autonomous self-recovering application server,” in Proceedings of the
Autonomic Computing Workshop. IEEE, 2003, pp. 168–177.

[6] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox,
“Microreboot-a technique for cheap recovery.” in Proceedings of the
6th Conference on Symposium on Operating Systems Design & Imple-
mentation - Volume 6, ser. OSDI, vol. 4, 2004, pp. 31–44.

[7] L. Sha, “Using simplicity to control complexity,” IEEE Software, vol. 18,
no. 4, pp. 20–28, 2001.

[8] L. Sha, R. Rajkumar, and M. Gagliardi, “Evolving dependable real-time
systems,” in IEEE Aerospace Applications Conference, vol. 1. IEEE,
1996, pp. 335–346.

[9] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and
L. Sha, “The system-level simplex architecture for improved real-time
embedded system safety,” in IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE, 2009, pp. 99–107.

[10] L. Sha, “Dependable system upgrade,” in IEEE Real-Time Systems
Symposium (RTSS). IEEE, 1998, pp. 440–448.

[11] ——, “Using simplicity to control complexity.” IEEE Software, 2001,
pp. 20–28.

[12] T. L. Crenshaw, E. Gunter, C. L. Robinson, L. Sha, and P. Kumar, “The
simplex reference model: Limiting fault-propagation due to unreliable
components in cyber-physical system architectures,” in IEEE Real-Time
Systems Symposium (RTSS). IEEE, 2007, pp. 400–412.

[13] F. Abdi, R. Mancuso, S. Bak, O. Dantsker, and M. Caccamo, “Reset-
based recovery for real-time cyber-physical systems with temporal safety
constraints,” in IEEE Conference on Emerging Technologies Factory
Automation (ETFA), 2016.

[14] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp. 46–61,
Jan. 1973.

[15] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings,
“Applying new scheduling theory to static priority pre-emptive schedul-
ing,” Software Engineering Journal, vol. 8, no. 5, pp. 284–292, 1993.

[16] M.-K. Yoon, S. Mohan, J. Choi, J.-E. Kim, and L. Sha, “Securecore: A
multicore-based intrusion detection architecture for real-time embedded
systems,” in IEEE Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS). IEEE, 2013, pp. 21–32.

[17] M.-K. Yoon, S. Mohan, J. Choi, and L. Sha, “Memory heat map:
anomaly detection in real-time embedded systems using memory behav-
ior,” in ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE,
2015, pp. 1–6.

[18] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software rejuve-
nation: Analysis, module and applications,” in International Symposium
on Fault-Tolerant Computing (FTCS-25). IEEE, 1995, pp. 381–390.

[19] J. Viega and H. Thompson, “The state of embedded-device security
(spoiler alert: It’s bad),” IEEE Security & Privacy, vol. 5, no. 10, pp.
68–70, 2012.

[20] B. Bencsáth, G. Pék, L. Buttyán, and M. Felegyhazi, “The cousins of
stuxnet: Duqu, flame, and gauss,” Future Internet, vol. 4, no. 4, pp.
971–1003, 2012.

[21] C.-Y. Chen, R. B. Bobba, and S. Mohan, “Schedule-based side-channel
attack in fixed-priority real-time systems,” University of Illinois at
Urbana Champaign, http://hdl.handle.net/2142/88344, Tech. Rep., 2015,
[Online].

[22] C. Bao and A. Srivastava, “A secure algorithm for task scheduling
against side-channel attacks,” in International Workshop on Trustworthy
Embedded Devices. ACM, 2014, pp. 3–12.

[23] K. Jiang, L. Batina, P. Eles, and Z. Peng, “Robustness analysis of real-
time scheduling against differential power analysis attacks,” in IEEE
Computer Society Annual Symposium on VLSI. IEEE, 2014, pp. 450–
455.

[24] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in Proceedings of the Annual
International Symposium on Computer Architecture, ser. ISCA. New
York, NY, USA: ACM, 2007, pp. 494–505. [Online]. Available:
http://doi.acm.org/10.1145/1250662.1250723

[25] S. Rajappa, A. Chriette, R. Chandra, and W. Khalil, “Modelling and
dynamic identification of 3 DOF Quanser helicopter,” in International
Conference on Advanced Robotics (ICAR), 2013, pp. 1–6.

[26] J. A. Ledin, “Hardware-in-the-loop simulation,” Embedded Systems
Programming, vol. 12, pp. 42–62, 1999.

[27] L. Fu and R. Schwebel, “Real-time linux wiki,” https://rt.wiki.kernel.
org/index.php/rt preempt howto, [Online].

[28] J. Altenberg, “Using the realtime preemption patch on ARM CPUs,” in
Real-Time Linux Workshop, 2009, pp. 28–30.

[29] J. Corbet, “The high-resolution timer (API),” Article on LWN. net, http:
//lwn.net/Articles/167897, 2006, [Online].

[30] M. Phillips, “Attack via kernel module,” https://github.com/mrrrgn/
simple-rootkit, [Online].

[31] M.-K. Yoon, S. Mohan, C.-Y. Chen, and L. Sha, “TaskShuffler: A
schedule randomization protocol for obfuscation against timing infer-
ence attacks in real-time systems,” in IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2016, pp. 1–
12.

[32] T. Zhang and R. B. Lee, “New models of cache architectures character-
izing information leakage from cache side channels,” in Proceedings of
the 30th Annual Computer Security Applications Conference. ACM,
2014, pp. 96–105.

[33] H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes
for sensor networks,” in Security and Privacy, 2003. Proceedings. 2003
Symposium on. IEEE, 2003, pp. 197–213.

[34] D. Seto and L. Sha, “A case study on analytical analysis of the inverted
pendulum real-time control system,” DTIC Document, Tech. Rep., 1999.

[35] X. Wang, N. Hovakimyan, and L. Sha, “L1simplex: fault-tolerant
control of cyber-physical systems,” in Proceedings of the ACM/IEEE
4th International Conference on Cyber-Physical Systems. ACM, 2013,
pp. 41–50.

[36] D. Lo, M. Ismail, T. Chen, and G. E. Suh, “Slack-aware opportunistic
monitoring for real-time systems,” in IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2014, pp.
203–214.

[37] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, and M. Caccamo, “S3a:
Secure system simplex architecture for enhanced security and robustness
of cyber-physical systems,” in ACM international conference on High
confidence networked systems. ACM, 2013, pp. 65–74.

[38] D. P. Shepard, J. A. Bhatti, T. E. Humphreys, and A. A. Fansler,
“Evaluation of smart grid and civilian uav vulnerability to gps spoofing
attacks,” in Proceedings of the ION GNSS Meeting, vol. 3, 2012.

[39] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham et al., “Experimental
security analysis of a modern automobile,” in IEEE Symposium on
Security and Privacy. IEEE, 2010, pp. 447–462.

APPENDIX
ANALYZING THE IMPACT OF RESTART

For a given system we represent the set of possible exploits
with E = {e1, e2, ..., eN}. Each, ej is associated with a
probability of occurrence P (ej) which specifies how common
the exploit is. From definition we have ΣjP (ej) = 1. Here,
TR is the time for a full complex unit restart, TCom is the
time the attacker needs to re-launch the attack (During this
time system is not compromised yet), TDetect is the time it
takes for the monitoring unit to detect the attack and initiate
a restart; TTimer is the fixed time for the periodic timer to
restart the system.

For each exploit, T jCom and T jDetect are defined as ran-
dom variables associated with a probability density function
P jCom(t) and P jDetect(t). The shape of P jCom(t) depends on
vulnerability level of the platform and the effectiveness of ej .
In a similar fashion, the shape of the P jDetect(t) depends on the
effectiveness of the intrusion detection techniques used in the
monitoring unit for detecting ej . Furthermore, a monotonically
increasing function called Damagej(t), is associated with
each exploit that defines how much damage ej causes within t
seconds after being effective. The probability density functions
and damage function are assumed to be provided by the system
designer using the analytic and experimental data and from the
knowledge of the system, exploits and detection mechanisms.

In this setting, the only configurable variable is the restart
period of the periodic timer, i.e., TTimer. Very short restart
periods can limit the attackers; however, it also reduces the
time that the complex unit is available. On the other hand, a
long TTimer can increase the risk of damage to the system by
the exploits. In what follows, we show how to find the optimal
TTimer for a given system.

53



The expected time that the complex unit is available and
not compromised can be computed from the following:

Exp(T jCom) =

∫ TTimer

t=0

t · P jCom(t) · dt+

TTimer ·
∫ ∞
t=TTimer

P jCom(t) · dt.
(2)

Besides, the expected time that it takes for the monitoring unit
to detect an exploit is given by

Exp(T jDetect) =∫ TTimer

t=0

(∫ TTimer−t

τ=0

τ · P jDetect(τ) · dτ+

(TTimer − t) ·
∫ ∞
τ=TTimer−t

P jDetect(τ) · dτ
)
· P jCom(t) · dt.

(3)

The expected restart period for an exploit can be obtained as
follows

Exp(T jPeriod) = TR + Exp(T jCom) + Exp(T jDetect). (4)

Restarting the system, increases the unavailable time of the
system. The expected percent of the time that the system is
not available can be computed as follows

Exp(Unavailability) =
∑
ej∈E

P (ej)
(

1−
Exp(T jCom)

Exp(T jPeriod)

)
.

For a fixed TTimer value, the expected damage of an exploit
can be computed using the following probabilistic distribution
of the time to compromise and the time to detect the exploit.

Exp(Damagej) =∫ TTimer

t=0

(∫ TTimer−t

τ=0

Damagej(τ) · P jDetect(τ) · dτ+

Damagej(TTimer − t)
∫ ∞
τ=TTimer−t

P jDetect(τ) · dτ
)
P jCom(t) · dt.

(5)

Therefore, total expected damage from all the exploits on the
system is given by

Exp(Total Damage) =
∑
ej∈E

P (ej) · Exp(Damagej).

The expected total damage of exploits and the unavailable
time of the system are inversely related. Restarting the system
more frequently would decrease the expected damage from se-
curity exploits and at the same time will reduce the availability
of complex controller. We formulate this as a minimization
problem to find a TTimer that minimizes the following Cost
function:

Cost(TTimer) = Exp(Total Damage)+α·Exp(Unavailability).

In the above, parameter α determines the importance of
availability versus the of risk being compromised. This is a
design choice based on the applications of the physical systems
under control. Note that, more available time for the complex
controller can increase system performance. For systems in
which security is far more important than performance, a small
value for α is desirable. This leads to a smaller value for
TTimer, thus leading to a higher security but less available
time and control performance.

In Figs. 3 and 4, we illustrate the above analysis for two
examples. In both examples two possible exploits are consid-
ered with P (e1) = P (e2) = 0.5. Both exploits in Example 1
have a longer compromise time and shorter detection time than
the exploits in the Example 2 (Based on PCom and PDetect
functions).

Time (s)
0 100 200 300 400 500 600

D
am

ag
e 

F
u

n
ct

io
n

0

20

40

60

80

100

Attack A
Attack B

Time (s)
0 100 200 300 400 500 600

P
C

o
m

 P
D

F

0

0.002

0.004

0.006

0.008

0.01

Attack A
Attack B

Time (s)
0 100 200 300 400 500 600

P
D

et
ec

t P
D

F

0

0.005

0.01

0.015

0.02

0.025

Attack A
Attack B

T
Timer

 (s)
0 50 100 150 200 250 300

E
xp

('
 D

am
ag

e
j )

0

5

10

15

20

25

(d) Cumulative stress = 14

T
Timer

 (s)
0 50 100 150 200 250 300E

xp
(U

n
av

ai
la

b
lit

y)
 (

%
)

0

0.2

0.4

0.6

0.8

1

T
Timer

 (s)
0 50 100 150 200 250 300

C
o

st
 F

u
n

ct
io

n

0

100

200

300

, 10
, 20
, 40

, 80
, 160
, 320

Fig. 3. Example 1, TR = 10s, P(A) = P(B) = 0.5

Time (s)
0 100 200 300 400 500 600

D
am

ag
e 

F
u

n
ct

io
n

0

20

40

60

80

100

Attack A
Attack B

Time (s)
0 100 200 300 400 500 600

P
C

o
m

 P
D

F

0

0.005

0.01

0.015

Attack A
Attack B

Time (s)
0 100 200 300 400 500 600

P
D

et
ec

t P
D

F

0

0.005

0.01

0.015

0.02

Attack A
Attack B

T
Timer

 (s)
0 50 100 150 200 250 300

E
xp

('
 D

am
ag

e
j )

0

10

20

30

T
Timer

 (s)
0 50 100 150 200 250 300E

xp
(U

n
av

ai
la

b
lit

y)
 (

%
)

0.2

0.4

0.6

0.8

1

T
Timer

 (s)
0 50 100 150 200 250 300

C
o

st
 F

u
n

ct
io

n

0

100

200

300

, 10
, 20
, 40

, 80
, 160
, 320

Fig. 4. Example 2, TR = 10s, , P(A) = P(B) = 0.5

As seen in the plot of the cost functions for two examples,
the optimal TTimer (the value of TTimer that minimizes the
Cost function) for Example 1 is smaller than the Example
2. Intuitively, the system in Example 1 needs less frequent
restarts. Moreover, the different patterns in the compromise
and detection times in the two examples, leads to a larger cost
for the system in the second example for the same values of
α. For instance, in case of α = 160 (plotted with cyan color),
minimum cost is 11.2 for TTimer = 103 seconds in Example
1 and 65.7 for TTimer = 30 seconds in Example 2.

54

View publication statsView publication stats

https://www.researchgate.net/publication/311300046

