
RESCUE: A Reconfigurable Scheduling Framework for
Securing Multi-Core Real-Time Systems

ZAIN A. H. HAMMADEH, German Aerospace Center (DLR), Germany

MONOWAR HASAN,Washington State University, USA

MOHAMMAD HAMAD, Technical University of Munich, Germany

Modern real-time systems face increasing vulnerabilities to cyber-attacks, particularly those that use multi-core

chips, where safety-critical and non-safety-critical tasks execute concurrently. Existing solutions for multicore

systems often lack either determinism or cost-efficiency. This paper introduces an offline analysis technique that

computes all feasible schedules for real-time tasks running on multi-core platforms. Our proposed technique

isolates compromised tasks while ensuring a fail-operational system and supports low-cost, reconfigurable

scheduling. The analytical models presented in this paper guarantee the hard real-time constraints of safety-

critical tasks while allowing bounded deadline misses for some non-safety-critical tasks during an attack to

enhance security. We name our scheme RESCUE. We conduct a comprehensive design-space exploration and

evaluate its real-world efficacy using a UAV autopilot system case study deployed on a quad-core platform

(Raspberry Pi). Results show that the proposed scheme introduces minimal recovery overhead, measured in

microseconds on a Raspberry Pi, and achieves 100% coverage in reconfiguration responses to compromised

tasks in synthetic test cases.

CCS Concepts: • Computer systems organization→ Real-time systems.

Additional Key Words and Phrases: Schedule Reconfiguration, Multicore, Security

ACM Reference Format:

Zain A. H. Hammadeh, Monowar Hasan, and Mohammad Hamad. 2025. RESCUE: A Reconfigurable Scheduling

Framework for SecuringMulti-Core Real-Time Systems.ACMTrans. Cyber-Phys. Syst. 1, 1, Article 1 (April 2025),
23 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Real-time systems are essential to various critical applications, including automotive, aerospace,

smart grids, industrial control, and space exploration. To ensure safe operation, real-time systems

must meet strict timing requirements, commonly referred to as deadlines. However, due to their
reliance on off-the-shelf components, increased connectivity, and high value to adversaries, these

This research is an extended version of the work published in the proceedings of ISORC 2024 [1]. The major improvement

from the previous paper is the enhancement of the partitioning algorithm to be deadline-miss-tolerant for non-safety-critical

tasks. The relaxation of the sufficient schedulability condition proposed in this work (see §3.4) significantly improves the

coverage of RESCUE and improves the graceful degradation of the reconfiguration mechanism. To evaluate our proposed

ideas, we added a new set of experiments (§4.1). Our results are reported in new figures (see Figure 4, Figure 6, Figure 7,

Figure 9, and Figure 10). We also revised related work (§6) with the most up-to-date literature and made several revisions

throughout the paper to improve clarity and readability.

Authors’ addresses: Zain A. H. Hammadeh, zain.hajhammadeh@dlr.de, German Aerospace Center (DLR), Braunschweig,

Germany; Monowar Hasan, monowar.hasan@wsu.edu, Washington State University, Pullman, USA; Mohammad Hamad,

mohammad.hamad@tum.de, Technical University of Munich, Munich, Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 ACM.

ACM 2378-962X/2025/4-ART1

https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2025.

HTTPS://ORCID.ORG/0000-0001-7539-2393
HTTPS://ORCID.ORG/0000-0002-2657-0402
HTTPS://ORCID.ORG/0000-0002-9049-7254
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0001-7539-2393
https://orcid.org/0000-0002-2657-0402
https://orcid.org/0000-0002-9049-7254
https://doi.org/XXXXXXX.XXXXXXX

1:2 Zain A. H. Hammadeh, Monowar Hasan, and Mohammad Hamad

Fig. 1. Our proposed reconfiguration process (RESCUE) — offline analysis evaluates safety-critical (green)
and non-safety-critical (blue) tasks and core counts, generating reconfiguration plans: a base schedule (𝜒0)
and compromised task responses. 𝜒0 remains in use until a task compromise, e.g., 𝜏𝑛 , triggers core 𝑞0 isolation
and activates recovery plan 𝜒𝑛 .

systems are becoming increasingly vulnerable to cyber-attacks. This vulnerability has been

demonstrated by recent cyber-attacks targeting automobiles [2], drones [3], and medical robots [4].

A recent trend in real-time system design is the adoption of multi-core chips to improve

performance and energy efficiency. Typically, safety-critical and non-safety-critical tasks coexist

on a multi-core platform [5]. However, sharing resources between critical and non-critical tasks

introduces security risks [6]. As demonstrated by researchers [2], compromising a non-critical task

could potentially allow attackers to take control of the entire system [7]

Safety-critical applications require autonomy to withstand security attacks and operate in

a “fail-safe” manner. Existing response options to thwart security breaches include run-time

reconfiguration [8], task redundancy deployment [9], or task restart procedures [10, 11]. However,

run-time reconfiguration lacks determinism — a critical requirement for real-time systems. Besides,

implementing task redundancy can be prohibitively expensive and increases task response times,

leading to missed deadlines. Moreover, restarting a malicious task (or the entire platform) does not

eliminate the underlying vulnerability, as an adversary can repeat the attack. Furthermore, they

are platform-dependent, require architectural modifications, and increase system downtime.

Due to the limitations of existing solutions, this paper investigates the following problem:

How can a real-time system running on a multi-core platform remain safe and operational (i.e.,
meet temporal constraints of all tasks) under security breaches where attackers compromise one
or more tasks?

In response to the above problem, we propose a reconfigurable scheduling approach (named

RESCUE) that operates at the software (viz., scheduler) level (i.e., does not require custom hardware).

Our proposed technique autonomously adjusts task schedules and core allocation based on pre-

computed “recovery plans.” Our idea stems from the fact that rather than immediately restarting

a compromised task, it may be more beneficial to accumulate comprehensive insights into the

attacker’s motives and the root cause of the attack. At the same time, the system is functional

with the same level of autonomy (viz., does not miss any deadlines). This entails monitoring the

compromised task to gain valuable information for devising effective attack mitigation strategies

[12]. Hence, our technique will aid in systems forensics. Task termination becomes imperative at a

certain stage due to escalated risks, a predefined threshold being reached, or sufficient information

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2025.

RESCUE: A Reconfigurable Scheduling Framework for Securing Multi-Core Real-Time Systems 1:3

being acquired. However, one concern is ensuring the attack’s repercussions do not extend to other

tasks allocated to the same resource (i.e., processor cores). Thus, we need a recovery plan. This
plan outlines the steps to reschedule these tasks onto alternative resources, ensuring the system’s

continued functionality and security.

Contributions.We propose an offline analysis technique (RESCUE) that (a) explores the space of all
feasible scheduling for a given set of real-time autonomous tasks running on a multi-core platform,

and (b) computes the necessary recovery plans invoked during a suspicion of an attack. Each plan

(we refer to it configuration) represents a feasible schedule of at least the safety-critical tasks while
isolating compromised tasks on other cores. Figure 1 shows a case when the safety-critical task

𝜏𝑛 is got compromised. The system will be autonomously rescheduled to the recovery plan 𝜒𝑛 in

which 𝜏𝑛 is isolated on core 𝑞0, and the other tasks, including a fresh instant of 𝜏𝑛 are scheduled on

the other three cores.

In this paper, we made the following contributions.

• An offline analysis that explores the space of feasible scheduling for different compromised

tasks (§3).

• A graceful degradation reconfiguration and security-aware deadline-miss-tolerant

partitioning algorithm that allows the designers to integrate security constraints with

guaranteeing maximum number of consecutive deadline misses. (§3.3).

• We performed a comprehensive evaluation using synthetic workloads and an autonomous

system case study (UAV autopilot systems running on Raspberry Pi). Our approach enables

run-time reconfiguration with microsecond-level overhead while covering up to 100% of

potential responses for compromised tasks (§4).

2 MODEL AND ASSUMPTIONS
2.1 System Model
We consider a real-time system equipped with𝑀 identical cores 𝑄 = {𝑞0, 𝑞1, . . . , 𝑞𝑀−1} running a
finite set of 𝑁 independent real-time tasks T under a real-time operating system (RTOS). Tasks are

periodic and each task 𝜏𝑖 is defined as a tuple {𝐶𝑖 , 𝐷𝑖 ,𝑇𝑖 , 𝜋𝑖 , 𝛼𝑖 }, where𝐶𝑖 is the worst-case execution

time (WCET); 𝐷𝑖 is the relative deadline; 𝑇𝑖 is the period, such that 𝐶𝑖 ≤ 𝐷𝑖 ≤ 𝑇𝑖 ; 𝜋𝑖 is the priority;
𝛼𝑖 is the affinity set, which contains the indices of the cores on which 𝜏𝑖 can run. The affinity set

can change during run-time. We consider the task level fixed-priority preemptive scheduling, i.e.,

each task 𝜏𝑖 is assigned a fixed priority 𝜋𝑖 that does not change at run-time. The task set T is sorted

by task priorities, i.e., ∀𝑖 : 𝜋𝑖 ≤ 𝜋𝑖+1 where 0 is the highest priority.
The worst-case response time 𝑅+𝑖 of a task 𝜏𝑖 is then the maximum response time among all jobs

of 𝜏𝑖 . We consider a constrained deadline model, i.e., 𝐷𝑖 ≤ 𝑇𝑖 . A task 𝜏𝑖 misses its deadline if and

only if: ∃ℓ ∈ N+ : 𝑅ℓ𝑖 > 𝐷𝑖 , where 𝑅
ℓ
𝑖 is the response time of the job ℓ . All tasks ∈ T can be assigned

to any core. However, the worst-case execution time of 𝜏𝑖 does not change.

The tasks are classified into safety-critical and non-safety-critical tasks. We denote by 𝜏𝑠 (resp.

𝜏𝑠) the safety-critical (resp. non-safety-critical) task. Consequently, we denote by T 𝑠
(resp. T 𝑠

) the

set of all safety-critical (resp. non-safety-critical) tasks, where

T = T 𝑠
⋃
T 𝑠

: T 𝑠 = {𝜏𝑠𝑖 |∀𝜏𝑖 ∈ T }, T 𝑠 = {𝜏𝑠𝑖 |∀𝜏𝑖 ∈ T }.

We assign the tasks to the cores using partitioned scheduling with a task-level fixed priority

scheduling policy. Hence, ∀𝜏𝑖 ∈ T : |𝛼𝑖 | = 1. Our partitioning algorithm is implemented as

Satisfiability Modulo Theories (SMT) constraints (§3.3). The system may have security constraints
(SC) that the partitioning algorithm has to consider. For example, a security constraint may state

that two tasks 𝜏𝑖 and 𝜏 𝑗 with different criticality must not be allocated on the same core. The system

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2025.

1:4 Zain A. H. Hammadeh, Monowar Hasan, and Mohammad Hamad

may have any number of security constraints. The partitioned scheduling is backed by a sufficient
schedulability condition to guarantee the hard real-time constraints of the safety-critical tasks. A

non-safety-critical task is scheduled such that every at most 𝜇𝑖 consecutive deadline misses are

followed by a deadline hit.

We assume that the tasks are subject to attacks. If a task got compromised, denoted 𝜏 , it will

be isolated from other tasks. On the one hand, all non-safety-critical compromised tasks will be

assigned to only one core 𝑞𝜌 . Formally, if 𝜏𝑠𝑖 and 𝜏
𝑠
𝑗 then 𝛼𝑖

⋃
𝛼 𝑗 = {𝑞𝜌 }. In other words, we have

a best-effort approach to isolate non-safety critical tasks, such that we isolate only what can be

scheduled to one core; other tasks are ignored. On the other hand, we isolate every compromised

safety-critical task on one core alone. Formally: if 𝜏𝑠𝑖 then: ∀𝜏 𝑗 ∈ T : 𝛼𝑖
⋂
𝛼 𝑗 = 𝜙 . The system has a

safe-mode, in which only the safety-critical tasks run on some cores to guarantee a fail-operational

system. Table 1 includes all the notations used in the paper.

Table 1. Key mathematical notations used in this work.

Notation Description Notation Description

𝑀 Number of cores 𝑄 Set of all cores

𝑞𝜌 The 𝜌-th core in 𝑄 𝑁 Number of tasks

T The set of all tasks 𝜏𝑖 Task

𝐶𝑖 Worst-case execution time of 𝜏𝑖 𝐷𝑖 Relative deadline of 𝜏𝑖
𝑇𝑖 Period of 𝜏𝑖 𝜋𝑖 Priority of 𝜏𝑖
𝛼𝑖 Affinity set of 𝜏𝑖 𝜏𝑠𝑖 Compromised non-safety-critical task

𝜏𝑠𝑖 Safety-critical task T 𝑠
Set of all safety-critical tasks

𝜏𝑠𝑖 Non-safety-critical task T 𝑠
Set of all non-safety-critical tasks

𝜏 Compromised task 𝜏𝑠𝑖 Compromised safety-critical task

𝜒𝑙 Configuration (see Def. 1) C𝑙 Combination (see Def. 2)

𝜒𝜎 Safe-mode configuration (see Def. 4) L Length of the critical path (see Def. 5)

D Degradation of efficiency of RESCUE 𝐵𝑊𝑖 Level-𝑖 Busy-window

𝜇𝑖 Tolerable consecutive deadline misses

2.2 Threat Model
We assume that an adversary may compromise one or several specific tasks. For instance, the

attacker can compromise tasks through memory corruption attacks, such as illegal memory writes,

buffer overflows, and control-flow hijacking. Once a task is compromised, the attacker can attempt

to manipulate its execution or interfere with other tasks running on the same core. However, we do

not consider attacks that exploit shared system resources among different cores, such as last-level

cache side-channel attacks, bus snooping, or other side/covert-channel attacks. Since these attacks

operate across cores, they require additional mitigation strategies beyond our proposed solution. It

is important to note that we do not make explicit assumptions about the methods by which a task

could become malicious. For example, an attacker might exploit existing system vulnerabilities or

bugs or use social engineering tactics [13]. The specific means by which a task can be compromised

is outside the scope of this paper. Further, for multi-vendor systems, a rogue vendor could inject

malicious logic that may trigger at run-time [14]. Our focus here is to “isolate” anomalous tasks

and ensure other, time-critical, benign tasks can meet their temporal requirements, and hence, the

system remains safe. We assume that the RTOS provides mechanisms that support the isolation

of various processes. We further assume the existence of a detection mechanism running on a

protected space (say, within the kernel) that triggers the reconfiguration process when a task has

been compromised.

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2025.

RESCUE: A Reconfigurable Scheduling Framework for Securing Multi-Core Real-Time Systems 1:5

Off-line Analysis

Build
Configurations
(Algorithm I)

On-line Analysis

Reconfiguration
(Algorithm IV)

q0 q1 qm

τ5 τn-1
τ3

τ2

τ4
τ1

Configuration X1

τn

Security-Aware
Scheduling
(Algorithm II)

q0 q1 qm

 τn is compromised

τn

τn

X0

X1 X2 Xn

Xn+2 Xn+3 XkXn+1

X0
X1

X2
Xn

Xn+2 Xn+3

XkXn+1

Connect
Configurations
(Algorithm III)τ5 τn-1

τ3

τ2
τ4

τ1 τn

X0
Current Configuration

Fig. 2. Offline and online analysis phases and the various steps used in RESCUE.

Table 2. A toy system configuration (seven tasks running on four cores).

Task 𝐶𝑖 𝐷𝑖 = 𝑇𝑖 𝜋𝑖 𝛼𝑖 𝑡𝑜𝑢𝑡𝑖 Type

𝜏0 10 50 0 [1] 20 Critical

𝜏1 10 50 1 [0] 20 Critical

𝜏2 15 50 2 [0] 30 Critical

𝜏3 40 200 3 [0] 80 NonCritical

𝜏4 60 150 4 [1] 120 NonCritical

𝜏5 110 1000 5 [2] 220 NonCritical

𝜏6 65 400 6 [3] 130 NonCritical

3 RESCUE: SECURITY-COGNIZANT SCHEDULING
This paper proposes a reconfigurable scheduling technique, RESCUE, that reacts to security attacks

on real-time tasks. Our goal is to reschedule the non-compromised tasks on a subset of cores to

isolate the compromised task/s on the other cores while guaranteeing the real-time requirements

of other tasks. The compromised task will be isolated for a predefined period.

Table 2 shows a real-time taskset running on a quad-core platform (𝑀 = 4). In the task set,

𝜏0 and 𝜏2 must not be scheduled on the same core as a design requirement. Consider that 𝜏3 got

compromised. Letting 𝜏3 continue running on 𝑞
0
with the safety-critical tasks 𝜏1, 𝜏2 is dangerous.

Our solution aims to reconfigure the system to a new configuration in which we re-schedule the

non-compromised tasks on cores 𝑞0, 𝑞1, 𝑞2 and isolate the compromised task 𝜏3 on 𝑞
3
. Such isolation

may save more auditing logs on the activity of 𝜏3 for forensics analysis.
1
When 𝜏3 is isolated, it

cannot read/write to I/O and not interfere with any non-compromised task.

We now present how to compute the configuration, the reconfiguration methodology, and the

timing analysis. We start with a few definitions.

3.1 Configurations
Defining a feasible schedule for the real-time tasks under partitioned scheduling requires finding

feasible partitions. We must allocate each task to one core where its schedulability is guaranteed.

Note that there might be more than one feasible schedule for a task set and a multi-core platform.

Definition 1. For a given task set and a multi-core platform, a configuration, denoted by 𝜒𝑙 , is an
allocation of the tasks to the cores such that all the real-time tasks are schedulable.

Hence, there might be more than one configuration for a given task set and a multi-core platform.

We propose an SMT-based partitioning algorithm to compute a configuration. The algorithm uses

a “busy-window”-like analysis as SMT constraints (§3.3). The schedule of tasks to the cores where

1
Post isolation forensics, however, is not within the scope of this work.

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2025.

1:6 Zain A. H. Hammadeh, Monowar Hasan, and Mohammad Hamad

no compromised tasks might be given or computed using our partitioning algorithm. We refer to

this configuration as the basic configuration 𝜒0.

Definition 2. For a given task set, a combination, denoted by C𝑙 , is a set of tasks where each
task could be compromised or not, i.e., the compromised safety-critical task will be represented by its
compromised instance.

Definition 3. If 𝜏𝑖 is not compromised in C𝑙 and 𝜏𝑖 is also not compromised in C𝑘 , we say C𝑘 ≥ C𝑙 .
For every combination, we need to compute a new configuration. There are 2

𝑁
combinations

representing a lattice equipped by the partial order ≥. However, we cannot find a feasible schedule

for every combination because we aim to isolate the compromised tasks on some cores. Also, a

minimum set of cores is needed for the safety-critical tasks to keep them running. Hence, we can

compute configurations for a subset of the lattice before moving to a safe-mode configuration.

Definition 4. A safe-mode configuration 𝜒𝜎 is a configuration where only the safety-critical tasks,
T 𝑠 , are scheduled.

For a combination C𝑙 , if there is no feasible schedule, we assign the safe-mode configuration 𝜒𝜎 .

The configurations also can be ordered in a similar way to the combinations: 𝜒𝑘 ≥ 𝜒𝑙 if C𝑘 ≥ C𝑙 .
RESCUE builds on three algorithms to compute and connect the configurations in a lattice form.

Figure 2 shows the interactions between the algorithms. Alg. I computes the feasible configuration

by utilizing the security-aware scheduling presented in Alg. II. Alg. III illustrates the procedure to

connect the configurations to compose the final output of the offline phase of RESCUE.

Algorithm I (BuildConfigurations). We define the configuration 𝜒𝑙 as a data structure as

Line 3 shows:

• key is a unique name given to 𝜒𝑙 ;

• comb is the associated combination C𝑙 ;
• schedule is the affinity set of the tasks according to 𝜒𝑙 ;

• previous is a pointer to the previous configuration 𝜒𝑘 where 𝜒𝑘 ≥ 𝜒𝑙 ; and
• next is a pointer to the next configuration 𝜒𝑚 , where 𝜒𝑙 ≥ 𝜒𝑚 .

Note that 𝜒𝑙 may have multiple configurations in its next and previous fields. We start with

computing the basic configuration 𝜒0 (Lines 6-10), in which we try to balance the load on the cores.

The comb is assigned an empty set because there are no compromised tasks. Next, we compute the

safe-mode configuration 𝜒𝜎 (Lines 11-13). For 𝜒𝜎 , we follow Definition 4 and consider only the

safety-critical tasks (T 𝑠
) and try to schedule them on the minimum number of cores. The rest of

the algorithm tries to compute a feasible configuration 𝜒𝑙 for every combination C𝑙 (Lines 15-31).
For every combination C𝑙 : First, we check if there is a feasible schedule of the non-compromised

tasks (Line 16). We try to minimize the number of cores needed to schedule them to make room

to isolate the compromised tasks. If (a) there is no feasible schedule or the schedule uses all the

cores, and (b) there is no room to isolate any compromised task, we skip this combination (Lines

17-20), i.e., we assign the safe-mode configuration 𝜒𝜎 to C𝑙 . Second, we start with isolating as much

as possible of the compromised safety-critical tasks (Lines 22-27). We isolate, i.e., schedule, each

compromised safety-critical task 𝜏𝑠𝑖 on one core. Third, we try to isolate (schedule) as much as

possible of compromised non-safety-critical tasks on one core (Lines 28, 29). Finally, we call Alg. III

to connect the computed configurations.

Algorithm II (SecurityAwareSched). This algorithm represents the partitioning approach

and the schedulability test, which is called in five places in Alg. I. The partitioning approach and

the schedulability test are security-aware and SMT-based solutions (§3.3). However, we present

Alg. II here for better readability.

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2025.

RESCUE: A Reconfigurable Scheduling Framework for Securing Multi-Core Real-Time Systems 1:7

Algorithm I: BuildConfigurations

1 Input: taskset T , cores 𝑄 , 𝑆𝐶
2 Output: lattice of configurations

3 Declare struct 𝜒 {key, comb, schedule, previous, next}

4 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 ← {}

5 𝑀 ← |𝑄 |
/* create the basic configuration */

6 𝑠𝑐ℎ𝑒𝑑 ← 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝐴𝑤𝑎𝑟𝑒𝑆𝑐ℎ𝑒𝑑 (T , 𝑄, 𝑆𝐶,𝑏𝑎𝑙𝑎𝑛𝑐𝑒)
7 if not 𝑠𝑐ℎ𝑒𝑑 then

8 return 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 /* not schedulable */

9 𝜒0 ← 𝜒(key=ConfigBasic, comb={}, schedule = 𝑠𝑐ℎ𝑒𝑑 , previous = None)

10 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 ← 𝑙𝑎𝑡𝑡𝑖𝑐𝑒
⋃
𝜒0

/* create the safe-mode*/

11 𝑠𝑐ℎ𝑒𝑑 ← 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝐴𝑤𝑎𝑟𝑒𝑆𝑐ℎ𝑒𝑑 (T 𝑠 , 𝑄, 𝑆𝐶,𝑏𝑒𝑠𝑡)
12 𝜒𝜎 ← 𝜒(key=ConfigSafe, comb=T , schedule = 𝑠𝑐ℎ𝑒𝑑 , next=𝜒0)
13 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 ← 𝑙𝑎𝑡𝑡𝑖𝑐𝑒

⋃
𝜒𝜎

14 𝐶𝑜𝑚𝑏𝑠 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐴𝑙𝑙𝐶𝑜𝑚𝑏𝑠 (T)
/* create other configurations */

15 for C𝑙 ∈ 𝐶𝑜𝑚𝑏𝑠 do
16 𝑠𝑐ℎ𝑒𝑑,𝑄𝑎 ← 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝐴𝑤𝑎𝑟𝑒𝑆𝑐ℎ𝑒𝑑 (T 𝑠 ⋃{𝜏𝑠

𝑖
|∀𝜏𝑖 ∈ C𝑙 }, 𝑄, 𝑆𝐶,𝑏𝑒𝑠𝑡)

17 if not 𝑠𝑐ℎ𝑒𝑑 then

18 continue /* not schedulable */

19 if 𝑄𝑎 = ∅ then
20 continue

21 𝑠𝑐ℎ𝑒𝑑𝑠 ← {}
22 for 𝜏𝑖

𝑠 ∈ {𝜏𝑠 |∀𝜏𝑠 ∈ C} do
23 while 𝑄𝑎 ≠ ∅ do
24 𝑞 ← 𝑄𝑎 .𝑝𝑜𝑝

25 𝛼𝑖
𝑠 ← 𝑞.𝑖𝑛𝑑𝑒𝑥

26 𝑠𝑐ℎ𝑒𝑑𝑠 ← 𝛼𝑖
𝑠

27 break

28 if 𝑄𝑎 ≠ ∅ then
29 𝑠𝑐ℎ𝑒𝑑

ˆ𝑠 ← 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝐴𝑤𝑎𝑟𝑒𝑆𝑐ℎ𝑒𝑑 ({𝜏𝑠 |∀𝜏𝑠 ∈ C}, 𝑄𝑎, 𝑏𝑒𝑠𝑡)

30 𝜒𝑙 ← 𝜒(key=Config+C, comb=C, schedule = 𝑠𝑐ℎ𝑒𝑑 ∪ 𝑠𝑐ℎ𝑒𝑑𝑠 ∪ 𝑠𝑐ℎ𝑒𝑑 ˆ𝑠)
31 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 ← 𝑙𝑎𝑡𝑡𝑖𝑐𝑒

⋃
𝜒

/* connect configurations */

32 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 ← 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝐶𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝑙𝑎𝑡𝑡𝑖𝑐𝑒)
33 return 𝑙𝑎𝑡𝑡𝑖𝑐𝑒

The algorithm can work in two modes: balance and best. In the balance mode, the algorithm calls

the call_smt procedure to allocate the tasks into all cores (Lines 4, 5). This mode is used for the basic

configuration 𝜒0. In the best mode, the algorithm calls the call_smt procedure in a loop (Lines 6-13).

In each iteration, one more core is added to the set of cores given to the SMT solver. It stops once

the SMT solver can find a solution, which guarantees that the tasks are scheduled on the minimum

number of cores. It stops with an empty schedule, i.e., it fails if there are no more cores exist.

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2025.

1:8 Zain A. H. Hammadeh, Monowar Hasan, and Mohammad Hamad

Algorithm II: SecurityAwareSched

1 Input: taskset T , cores 𝑄 , 𝑆𝐶 , approach
2 Output: sched, 𝑄

3 New smt_solver

4 if approach = balance then
5 success, sched = call_smt(T , 𝑄 , 𝑆𝐶)
6 if approach = best then
7 success← False

8 𝑄𝑢 ← {}

9 while not success do
10 if 𝑄 = ∅ then
11 break

12 𝑄𝑢 ← 𝑄𝑢 ∪𝑄.𝑝𝑜𝑝 ()
13 success, sched = call_smt(T , 𝑄𝑢 , 𝑆𝐶)

14 𝑄𝑎 ← 𝑄

15 return 𝑠𝑐ℎ𝑒𝑑,𝑄𝑎

16

17 call_smt(T , 𝑄 , 𝑆𝐶):
18 for 𝑞𝜌 ∈ 𝑄 do

19 for 𝜏𝑖 ∈ T do

20 smt_solver.add_constraint(

∑
𝑗≤𝑖

⌈
𝐷𝑖

𝑇𝑗

⌉
.𝐶 𝑗 .𝑥

𝜌

𝑗
≤ 𝐷𝑖)

21 for sc ∈ 𝑆𝐶 do

22 smt_solver.add_constraint(sc)

23 success, sched = smt_solver.solve()

24 return success, sched

Lines 17-24 present the call_smt procedure. It builds the scheduling constraints (Lines 18-20) and
the security constraints (Lines 21, 22). We call the SMT solver in Line 23.

Algorithm III (ConnectConfigurations). This is the last algorithm in the offline phase of

RESCUE. It takes the configurations generated by Alg. I and connects them depending on the

≥ relation. For each configuration 𝜒𝑙 , we search in the lattice for a parent configuration 𝜒𝑘 , i.e.,

𝜒𝑘 ≥ 𝜒𝑙 . We update the previous attribute of the child (𝜒𝑙) and the next of the parent (𝜒𝑘), where the
key is the index of the compromised task (Lines 5-8). The configuration 𝜒𝑙 may have more than one

parent depending on the number of compromised tasks in C𝑙 . If the configuration has no parents,

we delete the configuration (Lines 9, 10). For each configuration 𝜒𝑙 that does not have any child, it

has to connect to the safe-mode configuration 𝜒𝜎 , i.e., add 𝜒𝜎 to 𝜒𝑙 .𝑛𝑒𝑥𝑡 . Also, if the length of the

next attribute of 𝜒𝑙 is smaller than the number of compromised tasks in C𝑙 (Line 19), then there

are unfeasible configurations that had to be children of 𝜒𝑙 . In this case, we add the 𝜒𝜎 to replace

the missing children. In other words, the unfeasible configurations are replaced by the safe-mode

configuration.

In the example task set (Table 2), the schedule of tasks to cores represents the basic configuration

𝜒0. In this example, there are 128 feasible configurations. If 𝜏3 is compromised, the system will move

to the configuration 𝜒4 in which 𝜏3 is isolated on 𝑞3. According to the proposed algorithms (Alg. I -

Alg. III) we have: 𝜒0.𝑛𝑒𝑥𝑡 [3] = 𝜒4 and 𝜒4 .𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 [3] = 𝜒0. The proposed algorithms generated

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2025.

RESCUE: A Reconfigurable Scheduling Framework for Securing Multi-Core Real-Time Systems 1:9

Algorithm III: ConnectConfigurations

1 Input: lattice

2 Output: lattice

3 for 𝜒𝑙 ∈ 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 do
4 for 𝜒𝑘 ∈ 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 do
5 if 𝜒𝑘 ≥ 𝜒𝑙 then
6 𝑘𝑒𝑦 = 𝜒𝑘 .𝑐𝑜𝑚𝑏 \ 𝜒𝑙 .𝑐𝑜𝑚𝑏
7 𝜒𝑙 .𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 [𝑘𝑒𝑦] = 𝜒𝑘

8 𝜒𝑘 .𝑛𝑒𝑥𝑡 [𝑘𝑒𝑦] = 𝜒𝑙

/* delete orphan configurations */

9 if 𝜒𝑙 ≠ 𝜒0 & 𝜒𝑙 ≠ 𝜒𝜎 & !𝜒𝑙 .𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 then

10 delete 𝜒𝑙

/* connect to the safe-mode */

11 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 0

12 for 𝜒𝑙 ∈ 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 do
13 if 𝜒𝑙 ≠ 𝜒𝜎 then

14 if !𝜒𝑙 .𝑛𝑒𝑥𝑡 then

15 𝜒𝑙 .𝑛𝑒𝑥𝑡 [𝑎𝑙𝑙] = 𝜒𝜎

16 𝜒𝜎 .𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 [𝑎𝑙𝑙 + 𝑐𝑜𝑢𝑛𝑡𝑒𝑟] = 𝜒𝑙

17 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1
18 else

19 if |T | − |{𝜏 |∀𝜏 ∈ C}| > |𝜒𝑙 .𝑛𝑒𝑥𝑡 | then
20 𝜒𝑙 .𝑛𝑒𝑥𝑡 [𝑎𝑙𝑙] = 𝜒𝜎

21 𝜒𝜎 .𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 [𝑎𝑙𝑙 + 𝑐𝑜𝑢𝑛𝑡𝑒𝑟] = 𝜒𝑙

22 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1

23 return 𝑙𝑎𝑡𝑡𝑖𝑐𝑒

the full connected lattice of configurations within 1.3 seconds. The size of the generated lattice is

4.696 kilobytes.

3.2 Reconfiguration Methodology
As explained earlier, the configurations, including the safe-mode configuration, are computed

offline. We define a time-out for each task, denoted 𝑡𝑜𝑢𝑡𝑖 , which designers can specify based on the

application. The time-out period represents how long we keep the compromised tasks isolated

before killing the job and keeping the new job of the safety-critical task or starting a fresh job of the

non-safety-critical task. The reconfiguration is a procedure triggered when a task is compromised

and after the time-out. Alg. IV presents the reconfiguration procedure. During the reconfiguration,

we move from the configuration 𝜒𝑘 to 𝜒𝑙 after the task 𝜏𝑖 got compromised if 𝜒𝑘 ≥ 𝜒𝑙 . Similarly,

we move from the configuration 𝜒𝑙 to 𝜒𝑘 after 𝑡𝑜𝑢𝑡𝑖 .

Algorithm IV (Reconfiguration). This algorithm represents the online phase of RESCUE and

is integrated with the scheduler. The algorithm utilizes the lattice of configurations (generated by

the offline phase) and an event. If the event is Isolate, i.e., 𝜏𝑖 got compromised, then the algorithm

moves to the child configuration in the next attribute of the current configuration depending on the

index of the compromised task 𝑖 (Lines 5-11). After a timeout 𝑡𝑜𝑢𝑡𝑖 , a new event will be triggered

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2025.

1:10 Zain A. H. Hammadeh, Monowar Hasan, and Mohammad Hamad

Algorithm IV: Reconfiguration

1 Input: lattice, current config: 𝜒 , event, taskID: 𝑖

2 Output: schedule

3 𝜒0 ← lattice[ConfigBasic]

4 𝜒𝜎 ← lattice[ConfigSafe]

/* task got compromised */

5 if event is Isolate then
6 if 𝜒 .key is ConfigSafe then
7 return 𝜒𝜎 .schedule

8 if 𝑖 in 𝜒 .next then
9 return 𝜒 .next[𝑖].schedule

10 else

11 return 𝜒𝜎 .schedule

/* time-out */

12 if event is Integrate then
13 if 𝜒 .key is ConfigSafe then
14 return 𝜒0.schedule

15 if 𝑖 in 𝜒 .previous then
16 return 𝜒 .previous[𝑖].schedule

to Integrate 𝜏𝑖 . In this case, the algorithm moves to the parent configuration in the previous of the
current configuration (Lines 12-16).

In our example (Table 2), if 𝜏3 got compromised, the schedule moves to the configuration 𝜒4.

After a timeout = 𝜏𝑜𝑢𝑡
3

= 80, a new reconfiguration is triggered, in which the scheduler moves back

to the configuration 𝜒0.

Let𝑀𝑚𝑖𝑛 denote the minimum number of cores needed to schedule all tasks; hence,𝑀𝑚𝑖𝑛 ≤ 𝑀 .

We bound the number of isolated tasks using the following lemma.

Lemma 1. The maximum number of compromised safety-critical tasks that RESCUE can isolate is
𝑀 −𝑀𝑚𝑖𝑛 .

Proof. We isolate each compromised safety-critical task 𝜏𝑠 on one core, and we need at least

𝑀𝑚𝑖𝑛 cores to schedule the task set. If some non-safety-critical tasks got compromised, we give the

priority to isolate the safety-critical tasks first. □

Lemma 2. RESCUE can cover all 2𝑁 combinations and isolate all compromised tasks if 1 + |T 𝑆 | +
𝑀𝑚𝑖𝑛 ≤ 𝑀 and the compromised non-safety-critical tasks can fit in one core.

Proof. If such an over-provisioned system exists, the proposed approach could cover all

combinations and isolate all compromised task. □

An interesting indicator of the resilience of the schedule reconfigurability against security attacks

is the length of the critical path, denoted by L, as we formally define below.

Definition 5. The critical path is a sequence of configurations starting from the basic configuration
with no compromised tasks and ending in the safe-mode.

The length of the critical path indicates the number of compromised tasks the system can

tolerate before entering the safe-mode. This length, L, depends on the number of cores 𝑀 , the

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2025.

RESCUE: A Reconfigurable Scheduling Framework for Securing Multi-Core Real-Time Systems 1:11

schedulability of the task set, and the security constraints. For systems not equipped with proper

reaction mechanisms like RESCUE, the best case scenario is that the system will move to the

safe-mode after the first attack. Hence, the length of the critical path is equal to one. We use

the maximum number of compromised non-safety-critical tasks that may be excluded after a

reconfiguration, i.e., neither executed nor isolated, as an indicator of the degradation of the efficiency

of RESCUE, denoted by D. In the experiments, we use these two indicators, L and D to study the

efficiency of RESCUE.

3.3 Partitioning Algorithm
The busy-window [15] under the fixed priority preemptive (FPP) scheduling is computed as follows:

𝐵𝑊 𝑛+1
𝑖 =

∑︁
𝑗≤𝑖

⌈𝐵𝑊 𝑛
𝑖

𝑇𝑗

⌉
×𝐶 𝑗 , (1)

with 𝐵𝑊 0

𝑖 = 𝐶𝑖 . The recurrence stops at the convergence (i.e., 𝐵𝑊 𝑛+1
𝑖 = 𝐵𝑊 𝑛

𝑖) or when when

𝐵𝑊𝑖 > 𝐷𝑖 (i.e., the task 𝑡𝑎𝑢𝑖 is unschedulable).

Lemma 3. For constrained-deadline periodic tasks, 𝜏𝑖 meets its deadline in the worst-case if:

𝐵𝑊𝑖 ≤ 𝐷𝑖 . (2)

Proof. In FPP, if 𝐵𝑊𝑖 ≤ 𝑇𝑖 then 𝐵𝑊𝑖 has one job and 𝐵𝑊𝑖 = 𝑅+𝑖 . Hence, if Eq. (2) holds,
schedulability is guaranteed. □

Lemma 4. Let us consider a fixed-size window of 𝐷𝑖 . For constrained-deadline periodic tasks, 𝜏𝑖
meets its deadline if: ∑︁

𝑗≤𝑖

⌈𝐷𝑖

𝑇𝑗

⌉
×𝐶 𝑗 ≤ 𝐷𝑖 . (3)

Proof. For constrained-deadline periodic tasks, if the accumulative load within a window of 𝐷𝑖

can finish before 𝐷𝑖 , then 𝜏𝑖 meets its deadline, i.e., the condition in Eq. (2) is satisfied. □

The sufficient condition in Eq. (3) does not need iteration to be computed. However, it is more

pessimistic than the sufficient condition in Eq. (2), because, if 𝜏𝑖 meets its deadline, i.e., Eq. (2) is

satisfied:

𝐵𝑊𝑖 ≤
∑︁
𝑗≤𝑖

⌈𝐷𝑖

𝑇𝑗

⌉
×𝐶 𝑗 . (4)

3.3.1 SMT constraints. Now, we have a linear non-iterative sufficient schedulability condition for

𝜏𝑖 . To map 𝜏𝑖 to the core 𝑞
𝜌
, we have to guarantee that Eq. (3) is satisfied for all higher priority tasks

already mapped to 𝑞𝜌 . We can formulate the sufficient condition in Eq. (3) as a linear constraint as

follows: ∑︁
𝑗≤𝑖

⌈𝐷𝑖

𝑇𝑗

⌉
×𝐶 𝑗 × 𝑥𝜌𝑗 ≤ 𝐷𝑖 , (5)

where 𝑥
𝜌

𝑗
∈ {0, 1} a binary variable indicates whether 𝜏 𝑗 is mapped to the core 𝑞𝜌 or not. Hence, we

can define the partitioned scheduling for periodic tasks under FPP as an SMT with𝑀 ×𝑁 variables

and constraints for𝑀 cores and 𝑁 tasks.

The SMT-based partitioned scheduling has the following constraints:

∀𝑞𝜌 ∈ 𝑄 ∀𝜏𝑖 ∈ T :

∑︁
𝑗≤𝑖

⌈𝐷𝑖

𝑇𝑗

⌉
×𝐶 𝑗 × 𝑥𝜌𝑗 ≤ 𝐷𝑖 . (6)

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2025.

1:12 Zain A. H. Hammadeh, Monowar Hasan, and Mohammad Hamad

Also, the SMT integrates security constraints, e.g., 𝜏𝑖 and 𝜏 𝑗 are not allowed to run on the same

core as follows:

¬(𝑥𝜌
𝑗
∧ 𝑥𝜌

𝑖
). (7)

3.4 Graceful Degradation
As stated in our system model (see §2.1), non-safety-critical tasks can tolerate few deadline misses,

namely 𝜇𝑖 consecutive deadline misses, as long as they are followed by at least one deadline hit.

Therefore, non-safety-critical tasks follow the weakly-hard real-time model [16]. The partitioning
algorithm presented so far is pessimistic in scheduling the non-safety-critical tasks, as it considers

them all as hard real-time tasks. Besides, RESCUE sacrifices one or more non-safety-critical tasks

to schedule safety-critical tasks. The conservative scheduling of the partitioning algorithm limits

the feasible configurations, which pushes RESCUE to sacrifice non-safety-critical tasks. However,

as we present next, it is possible to provide some graceful degradation of RESCUE by relaxing the

sufficient scheduling condition.

To achieve graceful degradation, we update the partitioning algorithm such that it schedules a

non-safety-critical task as long as it has at least one deadline hit after at most 𝜇𝑖 consecutive deadline

misses. In the weakly-hard real-time model, the task is allowed to miss at most 𝜇𝑖 deadlines in every

window of 𝐾 consecutive executions. In our case, the non-safety-critical task has the weakly-hard

constraint (𝜇𝑖 , 𝜇𝑖 +1). Such tasks are known in the literature as high-tolerance weakly-hard tasks [17]
because 𝜇𝑖/𝜇𝑖 + 1 ≥ 0.5. To update the constraints in the SMT-based scheduling, we consider

henceforth that each task 𝜏𝑖 has a parameter 𝜇𝑖 that represents the maximum allowed number of

consecutive deadline misses. For all safety critical tasks 𝜇𝑖 = 0. For all non-safety-critical tasks

𝜇𝑖 ≥ 0.

Lemma 5. For deadline-constrained periodic tasks, 𝜏𝑖 misses only at most 𝜇𝑖 deadlines in a row if:

𝐵𝑊𝑖 ≤ (𝜇𝑖 + 1)𝐷𝑖 (8)

Proof. For deadline-constrained tasks, 𝐵𝑊𝑖 extends to include the next job if and only if the

previous jobs missed their deadlines. When 𝐵𝑊𝑖 ≤ (𝜇𝑖 + 1)𝐷𝑖 , then 𝐵𝑊𝑖 contains at most 𝜇𝑖 + 1 jobs.
Also, ∀ ≥ 0 the last job meets its deadline because the response time of the (𝜇𝑖 + 1)-th job in 𝐵𝑊𝑖

is equal to 𝐵𝑊𝑖 − 𝜇𝑖 × 𝐷𝑖 . Hence, there are at most 𝜇𝑖 consecutive deadline misses followed by one

deadline hit. □

As 𝐵𝑊𝑖 is computed as a fixed-point equation, the following condition is satisfied for deadline-

constrained periodic tasks.

𝐵𝑊𝑖 ≤
∑︁
𝑗≤𝑖

⌈ (𝜇𝑖 + 1)𝐷𝑖

𝑇𝑗

⌉
×𝐶 𝑗 . (9)

Lemma 6. For deadline-constrained periodic tasks, 𝜏𝑖 misses only at most 𝜇𝑖 deadlines in a row if:∑︁
𝑗≤𝑖

⌈ (𝜇𝑖 + 1)𝐷𝑖

𝑇𝑗

⌉
×𝐶 𝑗 ≤ (𝜇𝑖 + 1)𝐷𝑖 (10)

Proof. Similar to Lemma 4. □

The SMT-based partitioned scheduling considering missing deadlines has the following

constraints:

∀𝑞𝜌 ∈ 𝑄 ∀𝜏𝑖 ∈ T :

∑︁
𝑗≤𝑖

⌈ (𝜇𝑖 + 1)𝐷𝑖

𝑇𝑗

⌉
×𝐶 𝑗 × 𝑥𝜌𝑗 ≤ (𝜇𝑖 + 1)𝐷𝑖 (11)

Note that the new set of constraints is more general than the constraints in Eq. (6) as we can get

Eq. (6) from Eq. (11) by substituting 𝜇𝑖 by zero for all non-safety-critical tasks.

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2025.

RESCUE: A Reconfigurable Scheduling Framework for Securing Multi-Core Real-Time Systems 1:13

2 2.5 3 3.5
0

20

40

60

80

100

N=16

N=20

N=24N=24

𝑁=16

𝑁=20

𝑁=24

𝑁=28

Utilization

S
c
h
e
d
u
l
a
b
i
l
i
t
y
R
a
t
i
o RESCUE

APA

(a) 4 cores

3 3.5 4 4.5 5

0

20

40

60

80

100

𝑁=16

𝑁=20

𝑁=24

𝑁=28

Utilization

S
c
h
e
d
u
l
a
b
i
l
i
t
y
R
a
t
i
o RESCUE

APA

(b) 6 cores

4 4.5 5 5.5 6 6.5
0

20

40

60

80

100

N=16

𝑁=16

𝑁=20

𝑁=24

𝑁=28

Utilization

S
c
h
e
d
u
l
a
b
i
l
i
t
y
R
a
t
i
o RESCUE

APA

(c) 8 cores

Fig. 3. The schedulability ratio of RESCUE vs the APA scheduling [19]. RESCUE outperforms the APA
scheduling for high utilization. The schedulability ratio of RESCUE and APA scheduling decreases when𝑈 /𝑁
increases.

2 2.5 3 3.5
0

20

40

60

80

100

N=16

N=20

N=24N=24

𝑁=16

𝑁=20

𝑁=24

𝑁=28

Utilization

S
c
h
e
d
u
l
a
b
i
l
i
t
y
R
a
t
i
o 𝜇 = 0

𝜇 = 1

(a) 4 cores

3 3.5 4 4.5 5

0

20

40

60

80

100

𝑁=16

𝑁=20

𝑁=24

𝑁=28

Utilization

S
c
h
e
d
u
l
a
b
i
l
i
t
y
R
a
t
i
o 𝜇 = 0

𝜇 = 1

(b) 6 cores

4 4.5 5 5.5 6 6.5
0

20

40

60

80

100

N=16

𝑁=16

𝑁=20

𝑁=24

𝑁=28

Utilization

S
c
h
e
d
u
l
a
b
i
l
i
t
y
R
a
t
i
o 𝜇 = 0

𝜇 = 1

(c) 8 cores

Fig. 4. The schedulability ratio of RESCUE considering tolerable deadline misses. The schedulability ratio of
RESCUE decreases when𝑈 /𝑁 increases.

4 EXPERIMENTAL EVALUATION
We evaluate RESCUE on two fronts: (a) synthetically generated workload for broader design-space

exploration (§4.1) and (b) case study on a real-time platform (§4.2).

4.1 Synthetic Test Cases
Workload Generation. We randomly generated synthetic test cases to carry out our experiments

as follows: we distributed the utilization over the 𝑁 tasks using the UUniFast algorithm [18].

Periods were generated randomly as follows: 𝑇𝑖 = 𝑓 × 𝑝 where 𝑓 ∈ {1, 2, 3, 4, 5, 6, 7, 8}, and 𝑝 ∈
{280, 340, 450, 500}. Therefore, the periods of the task set or a subset of it can be harmonic. Relative

deadlines were implicit 𝐷𝑖 = 𝑇𝑖 . Priorities were assigned according to the deadline monotonic (DM)

approach. The number of critical tasks was decided randomly so that it is at most 40% of the total

tasks.

4.1.1 Schedulability of the Partitioning Algorithm. The proposed security-aware SMT-based

partitioning scheduling utilizes a linear sufficient condition of schedulability using Eq. (3), which is

more pessimistic than, e.g., the original busy-window analysis, i.e., Eq. (2). This experiment tests

the schedulability of our partitioning algorithm compared to the Arbitrary Processor Affinity (APA)

scheduling [19]. APA scheduling dominates partitioned scheduling. However, the schedulability test

of APA scheduling, which depends on the response time analysis of global scheduling [20], is very

pessimistic. Hence, it may report a lower schedulability ratio than the partitioned scheduling. In

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2025.

1:14 Zain A. H. Hammadeh, Monowar Hasan, and Mohammad Hamad

0

0.5

1

N
o
S
C

1.0 1.5 2.0 2.5 3.0 3.5

0

0.5

1

Utilization

S
C

(a) 𝑁 = 8

0

0.5

1

N
o
S
C

1.0 1.5 2.0 2.5 3.0 3.5

0

0.5

1

Utilization

S
C

(b) 𝑁=10

0

0.5

1

N
o
S
C

1.0 1.5 2.0 2.5 3.0 3.5

0

0.5

1

Utilization

S
C

(c) 𝑁=12

0

0.5

1

N
o
S
C

1.0 1.5 2.0 2.5 3.0 3.5

0

0.5

1

Utilization

S
C

(d) 𝑁=14

Fig. 5. Coverage ratio of RESCUE for𝑀 = 4. The coverage ratio represents the ratio between the number of
feasible configurations, i.e., the size of the lattice, over 2𝑁 . The green line represents the median. RESCUE
can achieve coverage ratio of 100% for low utilization. The coverage ratio is related to the schedulability ratio.

this experiment, we support our decision to use SMT-based partitioned scheduling by showing the

schedulability ratio of the APA scheduling, namely the heuristic-based scheduling, presented in [19],

and RESCUE. We ran the experiments for𝑀 = {4, 6, 8}. Figure 3 shows the results. We generated

100 synthetic test cases for each value of the utilization between 𝑀/2 ≤ 𝑈 ≤ 𝑀 with step=0.5.

Figure 3 reports the results for 𝑁 = {16, 20, 24, 28}. APA scheduling cannot outperform RESCUE. In

contrast, the SMT-based partitioned scheduling in RESCUE can outperform the APA scheduling,

e.g., for 𝑈 = 3.0 when𝑀 = 4. The schedulability ratio of RESCUE and APA scheduling decreases

when𝑈 /𝑁 increases. Figure 4 shows the improvement on the schedulability when considering that

non-safety-critical tasks can tolerate deadline misses, i.e., 𝜇 > 0. The results show the improvement

in schedulability when the partitioning algorithm relaxes the schedulability constraints on the

non-safety-critical tasks by allowing no more than 𝜇𝑖 consecutive deadline misses. Another notable

remark w.r.t. APA is that APA is not extendable to consider tolerable deadline misses the way

we did with the SMT-based scheduling. In fact, the majority of weakly-hard scheduling analysis

techniques are designed for fixed-priority preemptive scheduling, and only a few approaches exist

for dynamic schedulers such as earliest deadline first (EDF) [21].

4.1.2 Scalability and Efficiency of RESCUE. We generated 100 test cases for each value of the

utilization between𝑀/2 ≤ 𝑈 ≤ 𝑀 with step=0.5. We repeated the experiment for 𝑁 = {8, 10, 12, 14}

tasks and for𝑀 = {4, 6, 8}. As a security constraint, we considered three safety-critical tasks to run

on three different cores. Figure 5 presents the coverage ratio for𝑀 = 4. The plot boxes in orange

(the upper figures) consider no security constraints, while the blue plot boxes report the results

considering the security constraints. For all tasks, RESCUE can achieve a coverage ratio of 100% for

low utilization. However, the coverage ratio drops with the high utilization values. The coverage

ratio is explained by the schedulability ratio of the security-aware SMT-based partitioning algorithm.

In addition, security constraints impact the coverage ratio because they impose limitations on the

scheduling options.

In Figure 6 and Figure 7, we repeated the experiments considering 𝜇 = 1 and 𝜇 = 2 resp. The

coverage ratio increases for both cases, with no security constraints (in orange) and with security

constraints (blue). The more the partitioning algorithm is tolerant of deadline misses, the higher

the coverage ratio. We can observe that the coverage ratio for 𝜇𝑖 = 2 (Figure 7) is higher than the

coverage ratio for 𝜇𝑖 = 1 (Figure 6). This improvement is explainable by the better schedulability

ratio that the partitioning algorithm can achieve when it allows the non-safety critical tasks to

have bounded consecutive deadline misses, see Figure 4.

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2025.

RESCUE: A Reconfigurable Scheduling Framework for Securing Multi-Core Real-Time Systems 1:15

0

0.5

1

N
o
S
C

1.0 1.5 2.0 2.5 3.0 3.5

0

0.5

1

Utilization

S
C

(a) 𝑁 = 8

0

0.5

1

N
o
S
C

1.0 1.5 2.0 2.5 3.0 3.5

0

0.5

1

Utilization

S
C

(b) 𝑁=10

0

0.5

1

N
o
S
C

1.0 1.5 2.0 2.5 3.0 3.5

0

0.5

1

Utilization

S
C

(c) 𝑁=12

0

0.5

1

N
o
S
C

1.0 1.5 2.0 2.5 3.0 3.5

0

0.5

1

Utilization

S
C

(d) 𝑁=14

Fig. 6. Coverage ratio of RESCUE for𝑀 = 4 and 𝜇 = 1. In this experiment, every non-safety-critical task will
be guaranteed to have at least one deadline hit after each deadline miss in the worst-case.

0

0.5

1

N
o
S
C

1.0 1.5 2.0 2.5 3.0 3.5

0

0.5

1

Utilization

S
C

(a) 𝑁 = 8

0

0.5

1

N
o
S
C

1.0 1.5 2.0 2.5 3.0 3.5

0

0.5

1

Utilization

S
C

(b) 𝑁=10

0

0.5

1

N
o
S
C

1.0 1.5 2.0 2.5 3.0 3.5

0

0.5

1

Utilization

S
C

(c) 𝑁=12

0

0.5

1

N
o
S
C

1.0 1.5 2.0 2.5 3.0 3.5

0

0.5

1

Utilization

S
C

(d) 𝑁=14

Fig. 7. Coverage ratio of RESCUE for𝑀 = 4 and 𝜇 = 2. In this experiment, every non-safety-critical task will
be guaranteed to have at least one deadline hit after 2 consecutive deadline misses in the worst-case.

0

5

10

15

base line=1

N
o
S
C

1.0 1.5 2.0 2.5 3.0

0

5

10

15

base line=1

Utilization

S
C

(a) The length of the critical path L. The base
line represents the value of L for systems without
RESCUE.

0

5

10

15

N
o
S
C

1.0 1.5 2.0 2.5 3.0

0

5

10

15

Utilization

S
C

(b) The degradation of the efficiencyD. In the worst-
case, D can be equal to the number of non-safety-
critical tasks.

Fig. 8. L and D for𝑀 = 4. For instance,𝑈 = 1.0 , the values are reported in order from left to right for 𝑁 = {8,
10, 12, 14}. The green line represents the median.

We studied the length of the critical path L as an indicator of the resilience of RESCUE. Figure 8a

shows L for 𝑀 = 4. For instance, 𝑈 = 1.0 , the values are reported in order from left to right for

𝑁 = {8, 10, 12, 14}. The baseline represents the value of L for systems that are not equipped with

proper reaction mechanisms such as RESCUE. When the utilization is low, RESCUE can react to

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2025.

1:16 Zain A. H. Hammadeh, Monowar Hasan, and Mohammad Hamad

0

5

10

15

base line=1

N
o
S
C

1.0 1.5 2.0 2.5 3.0 3.5

0

5

10

15

base line=1

Utilization

S
C

(a) The length of the critical path L. The base
line represents the value of L for systems without
RESCUE.

0

5

10

15

N
o
S
C

1.0 1.5 2.0 2.5 3.0 3.5

0

5

10

15

Utilization

S
C

(b) The degradation of the efficiencyD. In the worst-
case, D can be equal to the number of non-safety-
critical tasks.

Fig. 9. L and D for𝑀 = 4 and 𝜇 = 1. For instance, 𝑈 = 1.0 , the values are reported in order from left to right
for 𝑁 = {8, 10, 12, 14}. The green line represents the median.

any scenario of compromising tasks. However, for large values of utilization like 𝑈 = 3.0 , RESCUE

does not have many options than moving to the safe-mode.

Figure 8b shows the degradation of the efficiency of RESCUE in the form of the number of

compromised non-critical tasks that are neither scheduled nor isolated. In the worst-case scenario,

D can be equal to the number of non-safety-critical tasks. This happens when RESCUE moves

to the safe-mode. However, the upper whisker ≤ 1, which means that for 75% of the test cases

RESCUE misses no more than one task when configuring the system after an attack.

Figure 9 and Figure 10 report L and D considering 𝜇𝑖 = 1 and 𝜇𝑖 = 2 respectively. The length

of the critical path increases with increasing 𝜇𝑖 . Relaxing the constraints on scheduling the non-

safety-critical tasks by 𝜇𝑖 consecutive deadline misses extends the critical paths, which enhances

the resilience of RESCUE. D does not show significant change compared to the results reported in

Figure 8b, i.e., 𝜇𝑖 = 0. The relaxation in the schedulability constraints presented in Section3.4 cannot

illuminate or control the number of compromised non-critical tasks that are neither scheduled nor

isolated. Hence, D cannot reflect the improvement on the efficiency of RESCUE when 𝜇𝑖 > 0.

To study the scalability of RESCUE, we computed the execution time of the offline phase for

𝑁 = {8, 10, 12, 14} tasks and𝑀 = {4, 6, 8}. The experiment ran on a general-purpose Linux server

(18-core Intel Xeon CPU and 251 GB Memory). Figure 11 shows the execution time for𝑀 = 4. The

sub-figures show a similar trend. Hence, we explain the results in Figure 11b. The median in the

orange plot boxes (no security constraints) increases with the utilization. This can be explained by

Alg. II (Lines 8-13) because increasing the utilization requires more cores to schedule the task set,

which imposes more iterations on the while-loop. The decreasing median for the blue boxes, where

the security constraints are considered, is mainly due to the low coverage ratio, i.e., the small size

of the lattice (see Figure 5). Also, The execution time of the SMT solver scales with the number of

constraints. Hence, the SMT solver consumes more time to find a feasible partitioning for the tasks

when there are security constraints.

Increasing the number of cores for a given number of tasks increases the number of iterations

that the while-loop takes in Alg. II (Lines 8-13). The main factor affecting the scalability is the

number of tasks 𝑁 , where the execution time increases with 𝑁 . We now discuss the implementation

details of RESCUE to explain this exponential growth.

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2025.

RESCUE: A Reconfigurable Scheduling Framework for Securing Multi-Core Real-Time Systems 1:17

0

5

10

15

base line=1

N
o
S
C

1.0 1.5 2.0 2.5 3.0 3.5

0

5

10

15

base line=1

Utilization

S
C

(a) The length of the critical path L. The base
line represents the value of L for systems without
RESCUE.

0

5

10

15

N
o
S
C

1.0 1.5 2.0 2.5 3.0 3.5

0

5

10

15

Utilization

S
C

(b) The degradation of the efficiencyD. In the worst-
case, D can be equal to the number of non-safety-
critical tasks.

Fig. 10. L and D for 𝑀 = 4 and 𝜇 = 2. For instance, 𝑈 = 1.0 , the values are reported in order from left to
right for 𝑁 = {8, 10, 12, 14}. The green line represents the median.

0

1

2

3

4

N
o
S
C

1.0 1.5 2.0 2.5 3.0

0

1

2

3

4

Utilization

S
C

(a) 𝑁=8

0

5

10

15

20

N
o
S
C

1.0 1.5 2.0 2.5 3.0

0

5

10

15

20

Utilization

S
C

(b) 𝑁=10

0

20

40

60

80

N
o
S
C

1.0 1.5 2.0 2.5 3.0

0

20

40

60

80

Utilization

S
C

(c) 𝑁=12

0

100

200

300

400

N
o
S
C

1.0 1.5 2.0 2.5 3.0

0

100

200

300

400

Utilization

S
C

(d) 𝑁=14

Fig. 11. Execution time of the offline phase in RESCUE for𝑀 =4. The green line represents the median. The
main factor is the number of tasks 𝑁 . Also, number of constraints in the SMT solver, and the utilization are
the main players.

RESCUE simulation engine is implemented in Python. The Algorithm BuildConfigurations

(Alg. I) is implemented such that the for-loopworks in parallel, utilizing all available cores. However,
the Algorithm ConnectNodes (Alg. III) is the bottleneck in RESCUE. Results show that Alg. III

consumes no more than 2% of the execution time for 𝑁=8, and up to 43% for 𝑁=14. For 𝑁=18, the

percentage can reach 92%. Adding parallelism to Alg. III is left for future development. However,

the execution time of the offline phase has no impact on the online phase. Figure 12 depicts the

lattice size as the output of Alg. III. The reported numbers represent the maximum size of the lattice

for several tasks. The experiments show that the size of the lattice has no relation to the number of

cores. The size of the lattice grows exponentially with the number of tasks. However, the size of

the file is acceptable for nowadays embedded systems.

Note. Although RESCUE’s offline analysis scales exponentially with the number of tasks, we

stress that the calculation occurs during the design phase (before the system deployment). Hence,

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2025.

1:18 Zain A. H. Hammadeh, Monowar Hasan, and Mohammad Hamad

0 100 200 300 400 500 600 700 800

8

10

12

14

9.31

36.96

147.52

589.92

Lattice Size (kB)

N
u
m
b
e
r
o
f
T
a
s
k
s

Fig. 12. The maximum lattice size in kB.

Table 3. Task parameters for the ArduCopter UAV case study.

Task 𝐶 𝑇 = 𝐷 Type

rc_loop 130 4000 Critical

throttle_loop 75 20000 Critical

update_GPS 200 20000 Critical

update_optical_flow 160 5000 Critical

update_altitude 140 100000 Critical

run_nav_updates 100 20000 Critical

update_thr_average 90 10000 NonCritical

three_hz_loop 75 333333 NonCritical

compass_accumulate 100 5000 NonCritical

barometer_accumulate 90 20000 NonCritical

update_notify 90 5000 NonCritical

ekf_check 75 100000 NonCritical

landinggear_update 75 100000 NonCritical

lost_vehicle_check 50 100000 NonCritical

gcs_check_input 180 2500 NonCritical

gcs_send_heartbeat 110 5000 NonCritical

the runtime behavior is not impacted, as the time needed to adopt and perform the reconfiguration

is independent of the number of tasks and can be accomplished within a few microseconds, even

for large systems.

4.2 Case Study
We use the ArduCopter

2
UAV autopilot system as a case study. Table 3 shows the tasks considered

in this case study. The tasks are periodic with implicit deadlines. As vanilla ArduCopter does not

distinguish critical-vs-non-critical tasks, we manually inspected source code and documentation

and classified them into critical and non-critical tasks based on their functionalities for our

demonstration purposes. Also, we consider a quad-core platform. In this case study, the tasks

are considered independent and implemented as threads.

We built a lattice of 65536 feasible configurations with 100% coverage ratio. Building the lattice

took 1429.26 s. The critical path from the basic configuration to the safe-mode consists of 16

2
https://github.com/ArduPilot/ardupilot/blob/master/ArduCopter/Copter.cpp

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2025.

RESCUE: A Reconfigurable Scheduling Framework for Securing Multi-Core Real-Time Systems 1:19

Integrate Isolate

5.2

5.4

5.6

5.8

6

6.2

6.4

·10−6

R
e
c
o
n
fi
g
r
a
t
i
o
n
T
i
m
e
(
s
e
c
)

Fig. 13. The overhead of the reconfiguration procedure as measured on a multi-core embedded platform
(Raspberry Pi).

configurations, i.e., L = 16, including the basic and the safe-mode. Hence, compromising any

combination of safety-critical and non-safety-critical tasks will lead to a feasible configuration. The

system only goes into safe-mode when the attack can compromise all tasks. The lattice size (as a

file) is 2.6MiB.

4.2.1 Attack Scenario and Findings. We consider that the task run_nav_update depends on the

task update_GPS and the task update_optical_flow, such that compromising update_GPS or

update_optical_flow will help the attacker to compromise the task run_nav_update, especially
if they are running on the same core, i.e., sharing the same L1 cache.

Let us consider the tasks update_optical_flow and run_nav_update are compromised after

𝑡𝑝𝑟𝑜𝑝 time. If the system is not equipped with the reconfiguration mechanism, it will be in the

safe-mode of the system. However, using our technique, the system will reconfigure to a feasible

schedule where update_optical_flow and run_nav_update are isolated on two different cores,

i.e., two new (viz., uncompromised) instances of these two safety-critical tasks will be scheduled.

In particular, the following reconfigurations will take place:

• Reconfigure from the basic configuration ConfigBasic to Config_1_3 when the task

update_optical_flow got compromised; let this point of time be 𝑡0.

• Reconfigure from Config_1_3 to Config_2_62 when the task run_nav_update got

compromised; let this point of time be 𝑡1 > 𝑡0.

• After a period of time 𝑡0 + 𝑡𝑜𝑢𝑡𝑢𝑝𝑑𝑎𝑡𝑒_𝑜𝑝𝑡𝑖𝑐𝑎𝑙_𝑓 𝑙𝑜𝑤
, the system moves to the configuration

Config_1_9, in which only run_nav_update is isolated.

• After a period of time 𝑡1 + 𝑡𝑜𝑢𝑡𝑟𝑢𝑛_𝑛𝑎𝑣_𝑢𝑝𝑑𝑎𝑡𝑒
, the system moves to ConfigBasic.

As we know the critical relation between the task update_optical_flow and run_nav_update,
we will add a constraint on the SMT solver such that these two tasks are not allocated to the

same core. We add a second constraint for update_GPS and run_nav_update. The new lattice of

configurations alsoL = 16. Hence, we can reduce the probability of compromising run_nav_update.

4.2.2 Reconfiguration Overhead. To measure the reconfiguration overhead, we tested the

reconfiguration procedure (Alg. IV) on an embedded system (Raspberry Pi3) with quad-core

Cortex-A72 (ARM v8) 64-bit SoC, working at a speed of 1.8 GHz. We repeated the test 3000

times and computed the execution time. Figure 13 shows the result. The overhead is negligible as it

is at the microsecond level, which could be acceptable for many real-time autonomous applications.

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2025.

1:20 Zain A. H. Hammadeh, Monowar Hasan, and Mohammad Hamad

5 DISCUSSION
RESCUE works in coordination with an intrusion detection system (IDS) [22]. This is a common

assumption for many scheduler-based real-time security research [23–28]. We assume the presence

of an IDS capable of detecting attacks and triggering RESCUE. Implementing such an IDS is beyond

the scope of this paper. We note that the effectiveness of the system depends on the quality of the

IDS. If the IDS has a high false positive rate, RESCUE may be triggered by incorrect detections.

Another important issue to consider is the predictability of reconfiguration in RESCUE. If an

attacker gains knowledge of the reconfiguration plans, they could repeatedly compromise tasks

on the same core to trigger frequent reconfigurations, potentially leading to a denial-of-service

attack. However, as demonstrated in this paper, we have analyzed the number of steps (i.e., the

number of tasks that need to be compromised) required to reach such a critical state. Our results

show that our framework significantly enhances security compared to a system without it (see

Figure 8). Additionally, RESCUE isolates compromised tasks and logs them for future updates.

However, adaptive attacks are not entirely prevented. To further mitigate this issue, one approach is

to keep the reconfiguration plans secure. While an adaptive attacker may eventually infer patterns

over time, increasing the unpredictability of the scheduling process can further strengthen security.

This can be achieved by generating multiple reconfiguration plans and selecting them dynamically

at runtime. However, this approach introduces additional design-time overhead for computing

alternative plans and may require extra storage during execution. Integration of such a scheme and

analysis of security-performance trade-offs requires further research.

6 RELATEDWORK
RESCUE is first introduced in our early work [1]. This paper extends RESCUE for cases where

some non-safety-critical tasks can miss deadlines (albeit in a bounded manner) to improve security.

Reconfiguration is used for fault tolerance by dynamically reallocating tasks to different cores in

the event of failures [29]. However, the solution focuses on the failure of a core and not on the

attack on one task. Besides, the existing solution is not scalable due to its underlying tool (e.g.,

timed automata).

Researchers explore real-time security problems from various contexts [30]. Hasan et al. propose

scheduler-level techniques to integrate security monitoring tasks [25, 26]. However, unlike ours,

such approaches do not consider the aftereffect of detecting an anomalous task. There exist

architecture-level solutions [11, 31–33] that proactively reset the system to remove malicious

entities. As we mentioned in §1, such techniques may not be feasible for some use cases. Further,

they need custom hardware and are not designed for periodic hard real-time tasks. In contrast, we

propose scheduler-level defense techniques.

There has been research on data and control flow integrity checking for real-time systems [34–38].

However, existing methods operate at the task level, where RESCUE is designed as a scheduler-

level defense tool. However, such integrity checkers can be combined with RESCUE to initiate

reconfiguration. Some work explores techniques to block potentially vulnerable tasks at a certain

point in time, named attack effective window (AEW) [39, 40]. However, they are an offline, proactive

defense mechanism. In contrast, RESCUE provides a combination of offline and online solutions

and works in a reactive manner.

There are also efforts to integrate security mechanisms for both fixed [12, 23, 41] and dynamic

priority [42–44] systems. However, they are designed for single-core platforms only. Pre-computed

recovery planes for distributed systems can improve the availability of the system in case of a

single computing node failure [45]. Neither security nor multi-core aspects are covered in earlier

research [45]. To the best of our knowledge, this is one of the first efforts to introduce the notion

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2025.

RESCUE: A Reconfigurable Scheduling Framework for Securing Multi-Core Real-Time Systems 1:21

of “schedule reconfigurability” to isolate anomalous tasks and thus ensure safety while retaining

temporal guarantees in multi-core platforms.

7 CONCLUSION
Security threats to critical real-time systems is growing, and traditional security solutions

designed for general-purpose systems are often inadequate. Protecting systems that run both

safety-critical and non-safety-critical tasks on shared resources, such as multicore platforms,

presents a significant challenge. This paper introduces a defense strategy at the scheduler level,

named RESCUE, which employs pre-computed recovery plans. Through extensive evaluations,

including synthetic workloads and a UAV case study, we demonstrate the efficacy of RESCUE. Our

reactive reconfiguration method enhances security and resilience, particularly for multi-core-based

time-critical IoT applications and autonomous systems.

ACKNOWLEDGMENT
This research is supported in part by the European Union-funded project CyberSecDome

(Agreement 101120779) and the US National Science Foundation (Award 2312006). Any findings,

opinions, recommendations, or conclusions expressed in the paper are those of the authors and do

not necessarily reflect the views of the sponsors.

REFERENCES
[1] Z. A. H. Hammadeh, M. Hasan, and M. Hamad, “Securing real-time systems using schedule reconfiguration,” in 2024

IEEE 27th International Symposium on Real-Time Distributed Computing (ISORC), 2024, pp. 1–10.
[2] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher, A. Czeskis, F. Roesner, and

T. Kohno, “Comprehensive experimental analyses of automotive attack surfaces,” in 20th USENIX security symposium
(USENIX Security 11), 2011.

[3] J.-P. Yaacoub, H. Noura, O. Salman, and A. Chehab, “Security analysis of drones systems: Attacks, limitations, and

recommendations,” Internet of Things, vol. 11, p. 100218, 2020.
[4] T. Bonaci, J. Yan, J. Herron, T. Kohno, and H. J. Chizeck, “Experimental analysis of denial-of-service attacks on

teleoperated robotic systems,” in Proceedings of the ACM/IEEE sixth international conference on cyber-physical systems,
2015, pp. 11–20.

[5] R. Ernst and M. Di Natale, “Mixed criticality systems—a history of misconceptions?” IEEE Design & Test, vol. 33, no. 5,
pp. 65–74, 2016.

[6] M. Bechtel and H. Yun, “Memory-aware denial-of-service attacks on shared cache in multicore real-time systems,”

IEEE Transactions on Computers, vol. 71, no. 9, pp. 2351–2357, 2022.
[7] C.-Y. Chen, S. Mohan, R. Pellizzoni, R. B. Bobba, and N. Kiyavash, “A novel side-channel in real-time schedulers,” in

2019 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2019.
[8] M. Hamad, M. Tsantekidis, and V. Prevelakis, “Red-zone: Towards an intrusion response framework for intra-vehicle

system.” in VEHITS, 2019.
[9] L. Miedema, B. Rouxel, and C. Grelck, “Task-level redundancy vs instruction-level redundancy against single event

upsets in real-time dag scheduling,” in 2021 IEEE 14th International Symposium on Embedded Multicore/Many-core
Systems-on-Chip (MCSoC), 2021, pp. 373–380.

[10] E. Dubrova, Fault-tolerant design. Springer, 2013.

[11] F. Abdi, C.-Y. Chen, M. Hasan, S. Liu, S. Mohan, and M. Caccamo, “Guaranteed physical security with restart-based

design for cyber-physical systems,” in 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS).
IEEE, 2018, pp. 10–21.

[12] M. Hamad, Z. A. Hammadeh, S. Saidi, V. Prevelakis, and R. Ernst, “Prediction of abnormal temporal behavior in

real-time systems,” in Proceedings of the 33rd Annual ACM Symposium on Applied Computing, 2018, pp. 359–367.
[13] M.-K. Yoon, S. Mohan, J. Choi, M. Christodorescu, and L. Sha, “Learning execution contexts from system call distribution

for anomaly detection in smart embedded system,” in 2017 IEEE/ACM Second International Conference on Internet-of-
Things Design and Implementation (IoTDI), 2017, pp. 191–196.

[14] C.-Y. Chen, M. Hasan, and S. Mohan, “Securing real-time Internet-of-things,” Sensors, vol. 18, no. 12, 2018.
[15] J. P. Lehoczky, “Fixed priority scheduling of periodic task sets with arbitrary deadlines,” in IEEE Real-Time Systems

Symposium, 1990.

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2025.

1:22 Zain A. H. Hammadeh, Monowar Hasan, and Mohammad Hamad

[16] G. Bernat, A. Burns, and A. Liamosi, “Weakly hard real-time systems,” IEEE transactions on Computers, vol. 50, no. 4,
pp. 308–321, 2001.

[17] H. Choi, H. Kim, and Q. Zhu, “Toward practical weakly hard real-time systems: A job-class-level scheduling approach,”

IEEE Internet of Things Journal, vol. 8, no. 8, pp. 6692–6708, 2021.
[18] E. Bini and G. Buttazzo, “Measuring the performance of schedulability tests,” Real-Time Systems, vol. 30, no. 1-2, 2005.
[19] A. Gujarati, F. Cerqueira, and B. B. Brandenburg, “Outstanding paper award: Schedulability analysis of the linux push

and pull scheduler with arbitrary processor affinities,” in 2013 25th Euromicro Conference on Real-Time Systems, July
2013, pp. 69–79.

[20] M. Bertogna and M. Cirinei, “Response-time analysis for globally scheduled symmetric multiprocessor platforms,” in

28th IEEE International Real-Time Systems Symposium (RTSS 2007), 2007, pp. 149–160.
[21] Z. A. H. Hammadeh, S. Quinton, and R. Ernst, “Weakly-hard real-time guarantees for earliest deadline first

scheduling of independent tasks,” ACM Trans. Embed. Comput. Syst., vol. 18, no. 6, dec 2019. [Online]. Available:
https://doi.org/10.1145/3356865

[22] M. Hamad, A. Finkenzeller, M. Kühr, A. Roberts, O. Maennel, V. Prevelakis, and S. Steinhorst, “REACT: Autonomous

intrusion response system for intelligent vehicles,” Comput. Secur., vol. 145, no. C, Nov. 2024. [Online]. Available:
https://doi.org/10.1016/j.cose.2024.104008

[23] M. Hasan, S. Mohan, R. B. Bobba, and R. Pellizzoni, “Exploring opportunistic execution for integrating security into

legacy hard real-time systems,” in 2016 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2016, pp. 123–134.

[24] M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba, “Contego: An Adaptive Framework for Integrating Security Tasks

in Real-Time Systems,” LIPIcs, Volume 76, ECRTS 2017, vol. 76, pp. 23:1–23:22, 2017, artwork Size: 22 pages, 885035

bytes ISBN: 9783959770378 Medium: application/pdf Publisher: Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[Online]. Available: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2017.23

[25] M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba, “A design-space exploration for allocating security tasks in multicore

real-time systems,” in 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2018, pp.

225–230.

[26] M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba, “Period adaptation for continuous security monitoring in multicore

real-time systems,” in 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2020, pp.

430–435.

[27] M. Hasan, S. Mohan, R. B. Bobba, and R. Pellizzoni, “Beyond Just Safety: Delay-aware Security Monitoring for

Real-time Control Systems,” ACM Transactions on Cyber-Physical Systems, vol. 6, no. 3, pp. 1–25, Jul. 2022. [Online].
Available: https://dl.acm.org/doi/10.1145/3520136

[28] M. Hasan and S. Mohan, “You can’t always check what you wanted: Selective checking and trusted execution to prevent

false actuations in real-time internet-of-things,” in 2023 IEEE 26th International Symposium on Real-Time Distributed
Computing (ISORC). IEEE, 2023, pp. 42–53.

[29] M. T. B. Waez, A. Wąsowski, J. Dingel, and K. Rudie, “Synthesis of a reconfiguration service for mixed-criticality

multi-core systems: An experience report,” in Formal Aspects of Component Software: 11th International Symposium,
FACS 2014, Bertinoro, Italy, September 10-12, 2014, Revised Selected Papers 11. Springer, 2015, pp. 162–180.

[30] M. Hasan, A. Kashinath, C.-Y. Chen, and S. Mohan, “SoK: Security in real-time systems,” ACM Comput. Surv., Feb. 2024.
[31] F. Abdi, C.-Y. Chen, M. Hasan, S. Liu, S. Mohan, and M. Caccamo, “Preserving physical safety under cyber attacks,”

IEEE Internet of Things Journal, vol. 6, no. 4, pp. 6285–6300, 2018.
[32] L. Niu, D. Sahabandu, A. Clark, and R. Poovendran, “Verifying safety for resilient cyber-physical systems via reactive

software restart,” in 2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS). IEEE, 2022, pp.

104–115.

[33] R. Romagnoli, B. H. Krogh, D. de Niz, A. D. Hristozov, and B. Sinopoli, “Runtime system support for CPS software

rejuvenation,” IEEE Transactions on Emerging Topics in Computing, 2023.
[34] N. Bellec, G. Hiet, S. Rokicki, F. Tronel, and I. Puaut, “RT-DFI: Optimizing data-flow integrity for real-time systems,” in

ECRTS 2022-34th Euromicro Conference on Real-Time Systems, no. 34, 2022, pp. 1–24.
[35] Y.Wang, A. Li, J. Wang, S. Baruah, and N. Zhang, “Opportunistic data flow integrity for real-time cyber-physical systems

using worst case execution time reservation,” in Proceedings of the 33rd USENIX Conference on Security Symposium.

USENIX Association, 2024.

[36] R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward, “Control-flow integrity for real-time

embedded systems,” in 31st Euromicro Conference on Real-Time Systems (ECRTS 2019). Schloss-Dagstuhl-Leibniz

Zentrum für Informatik, 2019.

[37] Y. Du, Z. Shen, K. Dharsee, J. Zhou, R. J. Walls, and J. Criswell, “Holistic control-flow protection on real-time embedded

systems with kage,” in 31st USENIX Security Symposium (USENIX Security 22), 2022, pp. 2281–2298.
[38] F. A. T. Abad, J. Van Der Woude, Y. Lu, S. Bak, M. Caccamo, L. Sha, R. Mancuso, and S. Mohan, “On-chip control flow

integrity check for real time embedded systems,” in 2013 IEEE 1st International Conference on Cyber-Physical Systems,

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2025.

https://doi.org/10.1145/3356865
https://doi.org/10.1016/j.cose.2024.104008
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2017.23
https://dl.acm.org/doi/10.1145/3520136

RESCUE: A Reconfigurable Scheduling Framework for Securing Multi-Core Real-Time Systems 1:23

Networks, and Applications (CPSNA). IEEE, 2013, pp. 26–31.

[39] J. Chen, T. Kloda, R. Tabish, A. Bansal, C.-Y. Chen, B. Liu, S. Mohan, M. Caccamo, and L. Sha, “Schedguard++: Protecting

against schedule leaks using Linux containers on multi-core processors,” ACM Transactions on Cyber-Physical Systems,
vol. 7, no. 1, pp. 1–25, 2023.

[40] J. Ren, C. Liu, C. Lin, R. Bi, S. Li, Z. Wang, Y. Qian, Z. Zhao, and G. Tan, “Protection window based security-aware

scheduling against schedule-based attacks,” ACM Transactions on Embedded Computing Systems, vol. 22, no. 5s, pp.
1–22, 2023.

[41] S. Mohan, M.-K. Yoon, R. Pellizzoni, and R. B. Bobba, “Integrating security constraints into fixed priority real-time

schedulers,” Real-Time Systems, vol. 52, pp. 644–674, 2016.
[42] V. Lesi, I. Jovanov, and M. Pajic, “Security-aware scheduling of embedded control tasks,” ACM Transactions on Embedded

Computing Systems (TECS), vol. 16, no. 5s, pp. 1–21, 2017.
[43] S. Baruah, “Security-cognizant real-time scheduling,” in 2022 IEEE 25th International Symposium On Real-Time

Distributed Computing (ISORC). IEEE, 2022, pp. 1–9.

[44] F. Raadia, N. Fisher, T. Chantem, and S. Baruah, “An improved security-cognizant scheduling model,” in 2024 IEEE 27th
International Symposium on Real-Time Distributed Computing (ISORC). IEEE, 2024, pp. 1–8.

[45] A. Lund, Z. A. Haj Hammadeh, P. Kenny, V. Vishav, A. Kovalov, H. Watolla, A. Gerndt, and D. Lüdtke, “ScOSA system

software: the reliable and scalable middleware for a heterogeneous and distributed on-board computer architecture,”

CEAS Space Journal, vol. 14, no. 1, pp. 161–171, 2022.

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article 1. Publication date: April 2025.

	Abstract
	1 Introduction
	2 Model and Assumptions
	2.1 System Model
	2.2 Threat Model

	3 RESCUE: Security-cognizant Scheduling
	3.1 Configurations
	3.2 Reconfiguration Methodology
	3.3 Partitioning Algorithm
	3.4 Graceful Degradation

	4 Experimental Evaluation
	4.1 Synthetic Test Cases
	4.2 Case Study

	5 Discussion
	6 Related Work
	7 Conclusion
	References

