Work-in-Progress: Real-Time Deep Neural
Inference on Resource-Constrained Edge Devices

Md Tasnim Farhan Fatin and Monowar Hasan
School of Electrical Engineering and Computer Science, Washington State University, USA
Email: m.fatin@wsu.edu, monowar.hasan @wsu.edu

Abstract—Deep neural networks (DNNs) are now central to
perception and control in time-critical cyber-physical systems,
yet many mid- and low-tier edge platforms (e.g., single-board
computers without GPUs and most microcontrollers) cannot host
full models or meet real-time constraints. Cooperative inference
by offloading workload across nearby devices improves feasibility,
but most existing schemes do not analyze end-to-end timing and
are thus not suitable for real-time applications. This Work-in-
Progress paper studies deadline-aware distributed DNN inference
with an asynchronous execution semantics: a device proceeds as
soon as its required partial outputs are available, without global
synchronization. We develop a time-aware optimization model
that minimizes response time subject to deadline constraints. We
also outline our ongoing research efforts and future extensions
of the proposed work.

Index Terms—Distributed Inference, Real-Time Systems, DNN.

I. INTRODUCTION

The proliferation of Internet-of-Things (IoT) and edge
devices has enabled new classes of cyber-physical applications
in domains such as robotics, digital agriculture, industrial
automation, health care, and autonomous vehicles. Many of
these systems rely on deep neural networks (DNNs) for
perception and control tasks such as object detection, anomaly
recognition, and scene understanding [1], [2]. However,
executing modern DNN models on embedded platforms
is challenging because these devices operate under severe
compute, memory, and energy constraints. For instance, a
Raspberry Pi 4 [3] or NVIDIA Jetson Nano [4] often requires
several seconds to process a single image using VGG-16 [5],
while microcontrollers such as STM32 [6] or ESP32 [7] cannot
even host the complete model due to limited memory capacity.
Such delays are unacceptable in real-time and safety-critical
applications, where inference results must be produced within
strict deadlines to maintain safe system operation. Further,
deploying newer learning-enabled workloads is especially
difficult on legacy or previously installed systems where
hardware upgrades are not possible.

Cloud offloading [8], [9] can mitigate local resource
limitations but introduces variable latency and security
concerns, making it unsuitable for time-sensitive tasks. As
an alternative, distributed or collaborative inference allows

This research is partly supported by the U.S. National Science Foundation
Award 2345653. Any findings, opinions, recommendations, or conclusions
expressed in the paper are those of the authors and do not necessarily reflect
the sponsor’s views.

multiple nearby edge devices to share the workload of
executing a DNN [10]. In this approach, layers are partitioned
among devices so that each performs part of the computation.
Existing frameworks such as DeepThings [11], CoEdge [12],
and EdgeFlow [13] have investigated distributed inference
using layer-wise or spatial partitioning strategies. However,
most adopt “synchronous” execution, where every device
must finish its assigned portion of a layer before the
next layer begins. This global synchronization causes idle
times and increases latency—especially in heterogeneous
systems where device speeds and communication bandwidths
vary significantly—and, more importantly, these approaches
overlook the real-time aspect of inference, where task
deadlines must be explicitly analyzed and guaranteed.

In contrast to prior work, we study asynchronous distributed
inference for resource-constrained real-time edge systems,
where each device can begin its computation for the next layer
as soon as the required inputs are available, without waiting for
all other nodes to finish. We make the following contributions:

« We propose a timing-aware model for distributed DNN
inference on low-power embedded platforms such as
microcontrollers, addressing an area largely unexplored
from a real-time perspective.

« We formulate an optimization problem to determine layer
partitioning that minimizes end-to-end response time
while respecting real-time deadlines.

o We show that exploiting asynchronous execution—where
devices proceed as soon as dependent data are
ready—can significantly reduce inference delay compared
to synchronous methods.

Preliminary formulations show that allowing asynchronous
execution can substantially reduce inference delays com-
pared to synchronous approach considered in existing
(time-unaware) work [13]. Our initial work-in-progress lays
the foundation for deadline-aware cooperative inference
in large-scale, heterogeneous edge environments such as
distributed robotic swarms and sensor networks.

II. PROBLEM OVERVIEW

Consider a case where we want to execute a time-critical
DNN inference in resource-constrained edge devices. An edge
device is not capable of executing the entire DNN model.
Hence, the DNN inference task I' is partitioned and distributed
across N devices denoted by the set I1 = {m, 1, - ,7An}.
We assume that the DNN task has a temporal constraint, i.e.,

O00-@ _®O

Fig. 1. Representation of DNN as a DAG where each node is a neural
network layer. Green nodes represent the input and output of the model. Dotted
lines and gray nodes represent multiple intermediate layers. Layers typically
have data dependency. For instance, layer / requires the results from the two
previous layers, m; and m;.

it must complete within a designer-given timing bound D
(called inference deadline). Our objective here is to derive
end-to-end response times for this partitioned DNN execution
and determine whether distributed inference can meet the
deadline constraints.

The DNN workload is represented by a directed acyclic
graph (DAG), where each node in the graph is a layer of
the DNN, as shown in Fig. 1. We represent the layers of
the DNN task I" by L layers denoted by the set £ and
the connections between layers by &. For a layer | € L,
the set of layers that are required to calculate layer [/ is
M(l) =m: (m,l) € & where M(I) is the predecessor set of
I. Let #;;(m) C II be the set of required senders for layer /,
device nr; from layer m. Besides, we define the dependency
set based on the predecessor set and required senders as
Rii = {(m,j) : m € M(l),j € P1;(m)}. This dependency
set imposes an execution order constraint for distributed DNN
inference; that is V(m,j) € R;;, device m; cannot begin
computing its assigned portion of layer / until device n; has
completed both computation and transmission of the required
portion of layer m.

As the inference process is computationally intensive,
it is partitioned both spatially and temporally; that is,
the computation proceeds layer by layer, with each layer
distributed across N devices. We want to determine the
partitions for each layer to assign to devices so that each device
can perform small, layer-wise computations across the entire
DNN inference chain. As we distribute the DNN inference
task (e.g., layers) across N devices, the partitions running
on a device may differ from one layer to the next. The data
exchange between devices can be described as a bipartite graph
where edges indicate which outputs from one device must be
sent to which device for the next layer. During execution, once
a device m; has finished computing the parts of a layer / that
are required by another device nj, m; transmits the output
to ;. As soon as m; receives the necessary components of
the layer it is responsible for processing, it begins computing
without waiting for all other devices to finish. The DNN tasks
may also require modification to ensure that each device has
sufficient context for correct computation. For example, during
convolution operations, intermediate layers may need to store
overlapping rows from neighboring devices.

We assume a convolutional neural network, where the

output of each layer is two-dimensional (height X width). For
each layer [, the two-dimensional output feature row denoted
by {1,---, H;}. A device 7; executes a portlon [x +1,xll.] of
a layer [’s output feature such that 1 < xl <0 L xﬁv < Hj.
We assume that the execution time of a layer on a device is
proportional to the size of its output. The execution time is
linear with the size of the input and output for each layer and
shows different linear trends across different layers [14], [15].
For worst-case real-time analysis, the worst-case execution
time (WCET) on device nl for layer [with chunk (partition)
size Al = x’ —x , (and x =0)is given by C;; = al,iAf +by i,
where ap and bl,l are welghted constants for calculating the
execution time. These coefficients depend on both the layer’s
computation and the device’s processing power.

To perform computations for layer I, suppose device m;
needs information of the preceding layer m from device r;.
As an illustration, let 7y is executing portion [1,x11] of output
feature, as shown in Fig. 2. To perform this operation, 7| needs
information covering the range [s!,e!] from the previous
layer m (marked blue). The required data is divided among
devices m; and 5. For instance, in Fig. 2, $; 1(m) = {m1, m2}.
As the execution of DNN is modeled as a DAG, a layer /
can depend on multiple layers, represented as the precedence
set of [or M(I) (e.g., in Fig. 2, R;1 = {(m, 1), (m,2)}).
Hence, 7, needs to send the overlapped region pf_’” Let the
bandwidth to send information from device j to device i be

B, j. The transfer time (over the communication channel) for
sending the region pl‘_m of layer m for computing layer / from

Xlem — lem/B

Le—j 1]

m; computes portion of layer [from xf_] +1 to x Wthh
1 I
then

requires information of previous layer from s to e,

device j to device i is then given by:

l—m

plo = max (0, min gjef.,x;.") — max (sf,x;."_])). Let 7j; be
the completion time of the portion of layer / assigned to device
n;, which can be formally defined as follows:

Ti; = Cri(A) + max (Tm,+xll:]m (1)

(m,j)eR

The first term in Eq. (1), C;; represents the execution time of a
device for layer / for a chunk size Aﬁ. The second term denotes
the starting time of the execution. The arguments in the max
operator capture the arrival times of all required predecessor
computations (i.e., the completion time 7; ; must consider prior
dependent layers).

A. An Illustrative Example

Let us consider two approaches. For the first case, every
device must complete its partitioned layer before any other
device can begin the next. That is, if m is a preceding layer
of [, all devices must complete layer m before any device
can start processing layer /. We refer to this as “synchronous”
execution.! For the latter approach, we do not have such a
requirement, and a device can start computation for layer / as
soon as it has received the required input from the previous
layer m. We call this “asynchronous” execution.

!Prior work [13] introduces a synchronous execution approach but does not
design it for real-time inference applications.

st 1
Device 1, > Device m;
xl
el !
. —_— > i
Device 1, Device m, .
X2
Devicems ———» Devicem;
Hl

Data

Computation of transmission Computation of

Layer

Layer m for Layer [

from Layer m

Fig. 2. An illustration of data transmission between devices. Let sl? and ell.
indicate the starting and ending position of required information for computing
layer [on 7; (left). The parameters x{ and xé indicate the partition of the
layer I, and H' is the height of the layer output (right).

TABLE I
EXAMPLE WORKLOAD.

Computation Time (Cj_;
Layer (1) 7T1 P n o (ni;')
A 11 10 8 9
b 9 7 9 10
I3 9 8 7 9

We now explain the distributed inference problem with
a simple toy example. Consider a DNN inference task
with 3 convolution layers (1, and I3) distributed across
4 resource-constrained devices (7, 72, 13 and m4). A portion
of each layer is executed in parallel on all devices. Each
device requires information from its neighboring devices
(e.g., neighboring devices of m, are m; and m3). For layer
2, we can write the dependency set R;; as: Ro . =
{(Lm),(1,m)}, Rom, = {(1,m),(1,m2),(1,73)}, and
Ro, = {(1,m2), (1, 7m3)}. Table I shows the execution time
of a layer / on device n;. Further, let us assume the data
transmission delay X~/ =2 ms when i # j and X/ =0
when i = j.

Table II represents the events and completion times for both
cases for this example workload. If we perform distributed
inference using the synchronous approach, 77 = max(C;; +
X)) = 1142 =13ms, T = T + max(Cp; + xgjj?) =
13+10+2 =25 ms, and 73 = T, +max(Cs ;) = 25+9 = 34 ms.
Hence, the end-to-end response time for this DNN inference
task is 34 ms.

If we take the asynchronous execution approach, for /i,
the devices my, w1, m1, and m4 finish execution at 11 ms,
10 ms, 8 ms, and 9 ms, respectively. After taking into account
the transmission time, each device can start executing the
partition of I, at 12 ms, 13 ms, 12 ms, 10 ms, respectively
(calculated using max(7Ty,; + Xt.%fjl),\v’(l,j) € Ry;). The
computation of I, finishes at 21 ms, 20 ms,21 ms,20 ms
respectively (since Tr; = C; + max(T1; + X[iil))- Finally,
each device can start executing the partition of the last layer
(I3) at 22 ms, 23 ms, 22 ms, 23 ms, respectively (obtained by
max(Ty,; + Xl.3:j2),\7’(2,j) € Rs;). The computation of
I3 finishes at 31 ms, 31 ms, 29 ms, 31 ms, respectively (i.e.,

TABLE II
RESPONSE TIME FOR SYNCHRONOUS AND ASYNCHRONOUS INFERENCE.

Event Approach Layer Completion Time

T M M 4

Synchronous 11 10 8 9

Ly Complete Asynchronous | 11 10 8 9
Synchronous 13 13 13 13

Ly Swrt 1\ Cnchronous | 12 13 12 10
L, Complete Synchronous 2220 22 23
2 P Asynchronous | 21 20 21 20
Synchronous 25 25 25 25

Ls Start Asynchronous | 22 23 22 23
Synchronous 34 33 32 33

Ly Complete | x o rchronous | 31 31 29 31

(T3, = C3 ;+max(T, +le_<_jz)). Thus, the maximum execution
time for the inference task in this case is 31 ms. Compared
to the synchronous method introduced in earlier work [13],
an asynchronous execution can decrease end-to-end execution
time by 9.7%, which is critical for real-time inference.

III. TIME-AWARE DISTRIBUTED INFERENCE

We aim to determine the optimal partition points that
minimize the response time of the inference task while
ensuring that the timing constraints are satisfied. For instance,
consider a case where two dependent layers m and [are
distributed among three devices (m, 72, and m3) and Cj
is the execution time of a portion of layer /, as shown in
Fig. 3. Device m; needs information from Device 7, and 73.
We cannot start executing layer / unless 71 finishes execution
of layer m, and also the required information from 75 and 73 is
received. As we want to reduce the end-to-end response times,
our objective is to find the minimum value of the maximum
execution time of the devices used to compute the final layer.
Mathematically, this can be represented as follows:

min(max (77, ;)), Vi={m,.,7an}.)

As each layer is distributed among N devices, the combined
partition will form the complete output feature, i.e.,

N
ZM:H’, Vie{n, - ,nn}. 3)

i=1

Due to the presence of max and min operators in Eq. (1)
and Eq. (2), it becomes a non-convex optimization problem to
derive the values of 77 ;. Note that,

Tri 2 Cri(A) + T j+ X/

Vie{n, -, an}hLVle{l,--- ,L},V(m,j) € Ri;. (4)
Let us introduce a new variable T = max (7 ;). Then,

T>Ty; Vie{m, --,nn})

The decision variables in our optimization problem include
(a) partitioned segments of each layer H', ie., Al, Vi €
{n1,..,nn}, (b) completion time of each device for each
assigned portion 77 ;, Vi € {my,..,nan}, VI ={1,..,L} and (c)

Task Arrival
A

Deadline

Computation

Transmission

Fig. 3. Computation and communication steps for two dependent layers

the end-to-end execution time, 7. Formally, the optimization
problem is defined by:

minimize T

6
subject to: Eq. (3), Eq. (4), and Eq. (5). ©)

For a DNN inference task with deadline D, the timing
constraint is defined by: T < D, and if that holds, the task
meets its real-time requirement. As 7 and Xi{_‘_j ™ are real
numbers and Af is an integer for Vi, /, the optimization problem
in Eq. (6) is a mixed-integer linear programming problem [16],
which can be solved using an off-the-shelf solver such as
GLPK [17].

IV. CONCLUSION AND FUTURE WORK

Our research explores time-aware distributed deep neural
inference for resource-constrained embedded devices. As a
preliminary effort, we formulate an optimization problem to
determine the end-to-end response time of a DNN inference
task partitioned across multiple devices. While the concepts
presented here lay the groundwork for deadline-aware
distributed inference, further investigation is required to
make learning-enabled real-time edge systems feasible on
resource-constrained platforms. Our immediate focus is
on developing efficient methods to solve the formulated
optimization problem for large, complex DNN architectures
distributed across numerous edge nodes—such as those in
wide-area surveillance systems. In our initial formulation,
we consider a single DNN task with all nodes available for
inference, which may not hold in realistic settings. Future work
will extend this framework to scenarios involving multiple
periodic or sporadic inference chains and dynamic node
availability. This initial work-in-progress represents a crucial
first step toward enabling real-time deep learning inference in
distributed, low-resource edge applications.

REFERENCES

[1] R. Qian, X. Lai, and X. Li, “3D object detection for autonomous driving:
A survey,” Pattern Recognition, vol. 130, p. 108796, 2022.

X. Huang, D. Kroening, W. Ruan, J. Sharp, Y. Sun, E. Thamo, M. Wu,
and X. Yi, “A survey of safety and trustworthiness of deep neural
networks: Verification, testing, adversarial attack and defence, and
interpretability,” Computer Science Review, vol. 37, p. 100270, 2020.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Tz,3/“ }l,l\Tl,z

time
m and [(where m precedes [) spited across three devices.

A. Goel, C. Tung, X. Hu, G. K. Thiruvathukal, J. C. Davis, and Y.-H.
Lu, “Efficient computer vision on edge devices with pipeline-parallel
hierarchical neural networks,” in 2022 27th Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 532-537, 2022.

M. Lechner and A. Jantsch, “Blackthorn: Latency estimation framework
for cnns on embedded nvidia platforms,” IEEE Access, vol. 9,
pp. 110074-110084, 2021.

S. Liu and W. Deng, “Very deep convolutional neural network based
image classification using small training sample size,” in 2015 3rd IAPR
Asian Conference on Pattern Recognition (ACPR), pp. 730-734, 2015.
C. Alippi, S. Disabato, and M. Roveri, “Moving convolutional neural
networks to embedded systems: The AlexNet and VGG-16 case,”
in 2018 17th ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN), pp. 212-223, 2018.

S. S. Saha, S. S. Sandha, and M. Srivastava, “Machine learning
for microcontroller-class hardware: A review,” IEEE Sensors Journal,
vol. 22, no. 22, pp. 21362-21390, 2022.

S. Teerapittayanon, B. McDanel, and H. Kung, “Distributed deep neural
networks over the cloud, the edge and end devices,” in 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS),
pp. 328-339, 2017.

S. S. Ogden and T. Guo, “MODI: mobile deep inference made efficient
by edge computing,” in USENIX Workshop on Hot Topics in Edge
Computing, HotEdge 2018, Boston, MA, July 10, 2018 (I. Ahmad and
S. Sundararaman, eds.), USENIX Association, 2018.

L. Zhou, M. H. Samavatian, A. Bacha, S. Majumdar, and R. Teodorescu,
“Adaptive parallel execution of deep neural networks on heterogeneous
edge devices,” in Proceedings of the 4th ACM/IEEE Symposium on Edge
Computing, SEC ’19, (New York, NY, USA), p. 195-208, Association
for Computing Machinery, 2019.

Z. Zhao, K. M. Barijough, and A. Gerstlauer, “DeepThings: Distributed
adaptive deep learning inference on resource-constrained iot edge
clusters,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 11, pp. 2348-2359, 2018.

L. Zeng, X. Chen, Z. Zhou, L. Yang, and J. Zhang, “CoEdge:
Cooperative DNN inference with adaptive workload partitioning over
heterogeneous edge devices,” IEEE/ACM Trans. Netw., vol. 29, no. 2,
pp. 595-608, 2021.

C. Hu and B. Li, “Distributed inference with deep learning models
across heterogeneous edge devices,” in IEEE INFOCOM 2022 - IEEE
Conference on Computer Communications, pp. 330-339, 2022.

Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” ACM SIGARCH Computer Architecture News, vol. 45,
no. 1, pp. 615-629, 2017.

Y. Li, Y. Sun, and A. Jog, “Path forward beyond simulators: Fast
and accurate gpu execution time prediction for dnn workloads,” in
Proceedings of the 56th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 380-394, 2023.

C. Artigues, O. Koné, P. Lopez, and M. Mongeau, Mixed-Integer Linear
Programming Formulations, pp. 17-41. Cham: Springer International
Publishing, 2015.

“GLPK (GNU Linear Programming Kit).”
software/glpk/. Accessed: 2025-10-08.

https://www.gnu.org/

