
Time-Aware Packet Forwarding
in Programmable Data Planes
Yuqun Song

School of Electrical Engineering and Computer Science
Washington State University, Pullman, WA, USA

Email: yuqun.song@wsu.edu

Monowar Hasan
School of Electrical Engineering and Computer Science

Washington State University, Pullman, WA, USA
Email: monowar.hasan@wsu.edu

Abstract—Networks in many safety-critical systems like
avionics, automotive, and industrial plants have strict end-to-end
delay requirements to be met for correct system operation.
Existing software-defined real-time networks do not support data
plane programmability provided by recent protocol-independent
switch architectures such as P4. Our research enables time-aware
flow forwarding in P4-enabled software-defined time-critical
networks. In this paper, we introduce time-aware flow scheduling
for P4-enabled SDN architectures. We study two scheduling
policies: the first one prioritizes flows based on slack (i.e.,
how much time is left to reach the destination), and the
second one uses finish time as a priority metric, which is
determined from its data rate requirements. Both approaches
were implemented and tested in the P4 software stack. We
find that the slack-based forwarding scheme performs better
in retaining real-time requirements. Our publicly released
scheduler implementations will assist network engineers in
adapting programmable switches to safety-critical applications
that demand precise timing guarantees.

I. INTRODUCTION

Real-time networks are integral to various safety-critical
cyber-physical applications such as avionics, automobiles,
power grids, energy delivery systems, and industrial
machine-to-machine communications, to name a few. Such
networks have strict Quality of Service (QoS) requirements,
mainly in terms of end-to-end delay [1], [2]. The flow delay
must not exceed its predefined bounds at any point in system
operation. Any violation of temporal constraints can cause
serious consequences. For example, modern manufacturing
plants are equipped with tens to hundreds of “things” (e.g.,
sensors and actuators) that communicate with each other with
different timing requirements [3]. If such requirements are
temporarily broken, failures may occur in controlling the
machines, which can disrupt the entire supply chain.

Traditionally, safety-critical real-time systems maintain
separate networks (both hardware and software) for different
types of traffic, typically for safety and security reasons.
However, this approach leads to significant overheads
regarding equipment/weight, management, and updates and
can introduce potential system errors and faults. Existing
implementations, such as Avionics Full-Duplex Switched

This research is partly supported by the U.S. National Science Foundation
Award 2345653. Any findings, opinions, recommendations, or conclusions
expressed in the paper are those of the authors and do not necessarily reflect
the sponsor’s views.

Ethernet (AFDX) [4] and Controller Area Network (CAN) [5],
widely used in these domains, are often proprietary, complex,
expensive, and may require custom hardware. To address this
problem, researchers propose to leverage the capabilities of
Software-Defined Networks (SDNs) [6] for better management
and control of real-time networks [7]–[9]. In SDNs, the control
plane (responsible for routing) and the data plane (responsible
for packet forwarding) are separated, which allows the
designers to control networks more flexibly and efficiently.
While there exist efforts for forming time-aware protocols
such IEEE 802.1 (TSN) [10], they are often complementary to
SDNs (i.e., not directly comparable). Our focus in this research
is on the SDN technology, in particular, programmable data
planes. The benefit of using SDN for real-time networks is
configuring and optimizing network resources flexibly across
protocol layers through a logically centralized SDN controller.
The centralized, global view of the network in an SDN-enabled
architecture helps ensure end-to-end guarantees required for
real-time applications.

In traditional SDN-enabled networks (both real-time and
non-real-time), we can define the behavior of the control
plane but not the data plane. Specifically, we can define
routing policies in SDN controllers but not corresponding
actions in SDN switches. Programming Protocol-independent
Packet Processors (P4) is a new programming language
for network devices, such as switches, that overcomes this
challenge [11]. P4 enhances the programmability of SDN
by enabling network operators to specify the behavior of
the data plane precisely (for instance, how the data plane
processes packets). P4 provides flexibility in implementing
various network applications and designs, such as bandwidth
management, duplicate address detection, traffic offloading,
denial of service mitigation, routing mechanisms, and traffic
metering [12].

While real-time networks have recently adapted for SDNs,
such networks are not yet configured with P4-enabled SDN
architecture. Existing P4 implementations do not reason about
end-to-end delay experienced by individual flows. To fully
leverage the benefits of P4 in SDN-enabled real-time systems,
it is essential to account for delay constraints. The proposed
research is the first to introduce time-aware flow scheduling
for programmable data planes (i.e., P4 switches). This is
not trivial, as the current packet forwarding rules supported



by P4 switches do not provide any notion of temporal
constraints. Enabling real-time requirements for forwarding
flows in P4 requires switch-level modifications and new
scheduling policies.

This work explores design alternatives to enable real-time
scheduling in programmable data planes. For this, we study
two flow scheduling policies for P4 switches. The first one,
Slack Monotonic (SM) scheduling, measures the laxity or
slack, i.e., how much time is left before a flow’s timing
bounds and forwards the flow with the smallest slack first
at each switch. The latter is called Shortest Finish Time First
(SFTF), which uses a metric called finish time (a function
of flow arrival time and its data rate requirement). A flow
with the shortest finish time will be forwarded at each switch
first. The key difference between these two policies is that
the slack-based one considers end-to-end timing requirements
while forwarding packets. In contrast, the second scheme
intends to be proportionally fair (in terms of data rate
requirements) and locally optimize switch share for each flow.

In this work, we made the following contributions.
• We introduce two time-aware packet forwarding policies

for P4 switches that track the timing requirements and
prioritize flows based on their urgency (§III).

• We implemented the proposed scheduling policies in
the P4 software stack (§IV). We release our scheduler
implementation for community use.1

We tested the performance of our scheduler implementation
using an emulated network topology (§V). Our experiments
show that forwarding packets considering end-to-end timing
requirements allows the flows to reach their destinations
in a shorter time than scheduling them at each switch
following a proportional-fair manner considering their data
rate requirements.

II. BACKGROUND AND MODEL

We start with a background on real-time networks (§II-A)
and programmable switches (§II-B), followed by the network
model considered in this paper (§II-C).

A. Real-Time Networks

Safety-critical real-time networks typically have a well-
defined network structure (e.g., topologies, hosts, and links)
and flow specifications. They are generally under the
control of a centralized authority. For example, Airbus has
complete control over the A380 topology and its associated
subsystems [9]. The closed nature of such networks makes
it amenable for enforcement of system-wide policies that
take into account safety requirements, such as worst-case
end-to-end latency. The key requirement of real-time networks
is that the packets must be delivered between hosts with
guaranteed upper bounds on delay. The timing requirement
of such a network is determined by a parameter termed
deadline. If the packets of all flows in the network reach the
destinations before their deadline, the flows meet the real-time

1Available on GitHub: https://github.com/CPS2RL/rtp4/.

Shared
BufferParser

Ingress
Pipeline

Match-Action
Stages

Egress
Pipeline

Match-Action
Stages

P4-enabled SDN Switch

Deparser

P4 Program

Control Plane

Packets
In

Packets
Out

Fig. 1. High-level illustration of the packet forwarding process in P4 switches.

requirement, and hence, the cyber-physical network is safe.
The key challenge in modeling/analyzing real-time networks
is to understand the delay(s) caused by individual switches
and compose them along the delays caused by the presence
of other flows in that switch, as well as the network.

B. Programmable Switch and P4

In traditional SDN, the data plane is relatively fixed, i.e., the
SDN protocol such as OpenFlow [13] predefines the supported
headers. P4 [11], in contrast, introduces an abstraction model
for programming the network data plane. Unlike OpenFlow,
P4-enabled devices are protocol-independent, meaning they
do not assume inherent support for any particular protocols.
Instead, P4 programs define packet headers and specify how
packets should be parsed and processed. A P4 program
consists of several key elements: (a) header definitions, which
specify field names and widths for protocol headers; (b)
metadata, providing packet-specific state; (c) registers, meters,
and counters for the state that is independent of packets; (d)
a packet parser specification; (e) match-action tables, which
define packet and metadata fields to be read and specify actions
to be executed; (f) actions, which are parameterized functions
that invoke one or more primitives; and (g) control flow,
which dictates the sequence of table execution and supports
conditional branching.

P4 operates using match-action pipelines for packet
forwarding in SDN switches, which is performed through
table lookups (match) and corresponding actions. As shown
in Fig. 1, when a packet arrives, the parser first processes
its header while assuming the packet data is buffered. The
parser extracts header fields based on a programmed parse
graph and passes them to ingress match-action tables. These
tables contain lookup keys (e.g., IP and MAC addresses) and
corresponding actions (e.g., forward or drop). The packet
header is processed based on the lookup results, and an egress
port and queue are selected. The packet is then passed to the
egress match-action tables, where additional processing can
occur before finally being forwarded to the output port.

We note that while P4 enables flexibility in switch
programming, it was not designed for hard real-time
applications that require precise end-to-end timing guarantees.
The key contribution of our work is to enable real-time
capabilities in P4 switches.



Programmable Switch

Embedded Host

SDN Controller

Fig. 2. Schematic of a software-defined real-time cyber-physical network.

C. Network Model

We consider a software-defined real-time network [8]
represented by a graph N(V, E) managed by an SDN
controller C, where V denotes the set of network switches
and E denotes the links between switches, as shown in Fig. 2.
Each switch πs ∈ V is programmable (i.e., P4-enabled) by
assumption. The host systems (generally embedded devices)
are attached to the switches. The real-time applications running
on the hosts generate traffic flows. We assume a set of F
flows present in the network. Each flow Fi ∈ F traversed
from a source host hi

src to destination host hi
dst through a

set of switches by using a source routing algorithm [8]. The
length of the packets for the flow Fi is Li, and the bandwidth
requirement of Fi is denoted by Bi. While routed through
the switches, a flow will experience two kinds of delay: (a)
processing delay from ingress to egress ports, including delay
due to the presence of other flows in a given switch, and (b)
transmission and propagation delay for packet communications
over the medium. When the real-time application generates
a flow, it must reach the destination by its deadline Di.
The bandwidth and deadline constraints typically originate
from real-time applications and are often tightly coupled with
underlying cyber-physical systems.

Note: In this work, the focus is on self-contained, localized,
real-time networks typically connected over wired LANs. In
such networks, the number of flows and their specifications
are known apriori and typically do not change frequently. The
schemes proposed and evaluated in this work are not meant
for open wide-area networks such as the Internet.

III. TIME-AWARE FLOW SCHEDULING

Recall that programmable switches do not support real-time
flows, as there is no accountability for temporal constraints in
current P4 implementations. We want to conduct design-space
explorations and devise time-aware time-aware schedulers
that consider timing constraints and schedule flows based on
timing budgets to enable deadline guarantees in programmable

switches. For instance, until now, it is unknown that is it
better to consider flow urgency (i.e., time left to reach the
destination) or schedule them in a proportional-share manner
based on their completion time (i.e., the difference between
arrival at ingress and departure at the egress)?

To answer this question, we study two schedulers. Our
first algorithm calculates the slack (i.e., the available time
to reach the destination before the deadline) and schedules
the flows based on slack values. We refer to this scheme as
Slack Monotonic (SM) policy.2 For each switch πs ∈ V , SM
policy prioritizes flows with shorter deadlines or traversed
longer in the path (i.e., takes more time to reach πs from
source). We also explore a “proportional share”-like policy
based on finish time. Specifically, we calculate each flow’s
tentative (viz., virtual) finish time and prioritize the flow with
the shortest finish time. We refer to this latter scheme as the
Shortest Finish Time First (SFTF) policy.

We now present both scheduling techniques in detail (§III-A
and §III-B) and then discuss how to incorporate them in P4
switches (§IV).

A. Slack Monotonic (SM) Scheduling
We define the slack at a given decision instance as the

time remaining for a flow to reach the destination. Let T s
i

denote the time a flow Fi takes to reach an intermediate switch
πs from its source. Hence, at τs, the slack of flow Fi is
calculated by subtracting its deadline Di from the traversed
time. Specifically, we calculate the slack as follows:

slacksi = Di −
(
T s
i +

Li

Bi

)
. (1)

For each switch πs, the scheduler will select the flow with the
lowest slack, i.e., if both Fi and Fj are present at the ready
queue of πs, Fi will be scheduled first if slacksi < slacksj . For
equal slack, we break ties arbitrarily. As we shall see in the
paper (§IV), switch programmability allows us to keep track
of the slacks in packet headers, which can be used to make
scheduling decisions.

B. Shortest Finish Time First (SFTF) Scheduling
The slack-based scheduling scheme introduced above favors

the flow of those with shorter deadlines or those that consume
more time earlier in their path. We now introduce an alternate
scheme that aims to be “fair” at each switch and retains
real-time guarantees. In this case, the scheduling decision
is based on a virtual finish time, which approximates the
completion time of a flow Fi considering the behavior of other
flows routed through the same set of switches in the path of
Fi. Let a packet of a flow Fi arrive at the ingress port of the
switch πs at time As

i . The arrival time depends on the average
transmission rate and departure time of the previous packet of
the flow. We calculate the departure time (at egress) for Fi as
follows:

finishs
i = As

i +
Li

Bi
. (2)

2This policy is also known as Least Laxity First (LLF) in literature.



In this case, the switch scheduler will process the flow with
the shortest finish time. For instance, for a pair of flows Fi and
Fj , the switch will schedule Fi first if finishs

i < finishs
j .

As before, for equal finish times, the scheduler will pick one
arbitrarily.

Note that, in this policy, the amount of switch share each
flow gets depends on their packet length and bandwidth
requirements. However, SFTF does not consider end-to-end
deadline constraints while making forwarding decisions.

IV. SCHEDULER IMPLEMENTATION IN P4

We now present our implementation details of the flow
scheduling algorithms introduced in §III. In P4-enabled
switches, we can program the data plane according to
specific requirements. In programmable switches, flow tables
store information about flows. Following prior work [8],
we assume there exists one flow per priority level. While
flow multiplexing [9] is doable, we left this as future work.
In our implementation, we create a new flow table called
priority_table, which matches based on the flow identifier
and executes corresponding actions (in this case, setting flow
priorities). P4 supports up to 8 priority levels per port. We
use P4’s set_priority() API as a flow action to set the
priority. For instance, the flow will be scheduled with the
highest priority if we assign the priority value to 7 using
set_priority().

As mentioned earlier, the current P4 implementation does
not support real-time flow scheduling, as there is no deadline
or time-specific data structure in P4 switches. However, data
plane programmability allows us to modify packet headers
based on application requirements. Hence, we modify the
packet headers for UDP traffic.3 Specifically, we include
deadline, slack, and finish_time fields in the UDP
packet header to carry on-demand timing information as the
flow is routed through its path. For a flow packet p, we
use p.extract() function to get the UDP header from the
Ethernet/IP packet and obtain its timing information to make
scheduling decisions.

In our current implementation, we use flow tables and
registers to perform flow scheduling. The registers in P4 are
array-like data structures that store information. P4 provides
P4Runtime [14] and ThriftAPI [15] to modify flow tables and
control the behavior of the data plane. We define a set of
registers to store the ingress and egress timestamp, deadline,
slack, and packet length extracted from the packet. The
registers are accessible through the P4 get_register() API.
We use bm_register_write() and bm_register_read()

APIs to perform write/read operations on the registers. We
partition the registers and isolate the data of different flows
by writing them down in different positions in the registers.

We select the candidate flow for scheduling based on
the calculated slack values (for SM) or finish time (for
SFTF). For this, we implemented a new API in the controller

3As most real-time communications use UDP [8], [9]. However, our
implementation can be extended for other packet types without loss of
generality.

Fig. 3. Mininet topology used for evaluation.

named table_add() that interacts with the switch with
scheduling information. The function takes the flow table,
corresponding actions, and match keys as inputs. We use P4
get_res() API to retrieve the table resources associated with
the flow table and then use get_action() function to find the
corresponding action (e.g., setting candidate flow’s priority).
Next, the parse_match_key() API is called to ensure the
target action is pushed for the desired flow (i.e., high-priority
flow to be scheduled). Once the rules are set, the switch will
process and dispatch the flows in a high to low-priority order.

Our P4 scheduler implementation is publicly available:
https://github.com/CPS2RL/rtp4/.

V. EVALUATION

A. Setup

We evaluate the efficacy of our scheme using an emulated
real-time network created by Mininet [16]. We built a topology
with 8 hosts connected to 2 switches in a line as shown
in Fig 3. The switches in our network are P4 BMV2
(Behavioral Model Version 2) types [17], where we configured
P4 programs (SM and SFTF scheduling logics) to process
packets. The link bandwidth was set to 10 Mbps. Note: Our
focus in this work is to test the flow forwarding policies at
the switch level. Hence, simulating larger networks will not
provide additional insights. We resort to a simple line network
to demonstrate the performance of time-aware schedulers in
the P4 ecosystem. We further stress that the setup is created as
a proof-of-concept, and our scheduler can be scaled to support
large topology and any number of flows.

B. Results

Recall from our earlier discussion (§II) that flows in
real-time networks are known ahead of time, and unlike
traditional systems, they do not change behavior over time. As
indicated above, our evaluation focuses on analyzing whether
the real-time schedulers work correctly in the switches. Hence,
to demonstrate this behavior, we use fewer flows (2-7 of our
evaluations) and thin links (e.g., 10 Mbps). Using a large
number of flows or larger capacity links will not change the
insights we observed in the experiments. We further assume
the flows used here are “control“ flows, which are mostly used
for signaling and do not require high bandwidth.



0 200 400 600 800
Response Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 C
DF

Flow 1 (Low Priority)
Flow 2 (High Priority)

Flow 3 (Low Priority)
Flow 4 (High Priority)

0 200

0.6

0.8

1.0

(a) Slack Monotonic Scheduling

0 50 100 150 200
Response Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 C
DF

Flow 1 (Low Priority)
Flow 2 (High Priority)

Flow 3 (Low Priority)
Flow 4 (High Priority)

100 150

0.6

0.8

1.0

(b) Shortest Finish Time First Scheduling

Fig. 4. Empirical CDF of flow response times for (a) SM (left) and (b) SFTF (right) schedulers processing a set of high and low priority flows. The low-priority
flows result in longer response times (longer tails in CDF distribution), which suggests that the priority scheduling is correctly applied on the P4 program
running on the switches.

In our first set of experiments, we want to test whether
our priority scheduling is correctly implemented to the P4
switches. For this, we created flows with two priority classes
(High and Low), with two flows for each priority class. Let
us denote F1 and F3 as Low priority (large slack/finish time
values for SM and SFTF, respectively) and flow F2 and F4

as High priority (smaller slack/finish time). The flows were
dispatched in a round-robin, time-division manner, and only a
pair of High and Low priority classes of flows are present at
a given scheduling epoch. For instance, at a given scheduling
instance t, the set of flows present in the switches were either
{F1, F2} or {F3, F4}. The flows were sent from h1 and h2

to h7. As the focus of this experiment was to test whether
high-priority flows are prioritized at egress, we sent the flows
in tandem to prevent the effect of burst traffic from other flows.

We want to observe the network behavior in a congested
scenario. So, we stressed the network with 12 Mbps traffic
(in 10 Mbps links) from these two priority classes. The Low
priority flows generated smaller traffic with a larger interarrival
time (0.01 s). The High priority ones arrived at a faster rate.
We determined the interarrival time of the High priority class
as a function of packet size and target bandwidth as follows:

packet size
target bandwidth . As a typical UPD packet length is 1472 bytes,
we set the interarrival time for the High class to be 0.2352 ms.

In Fig. 4, we show the Empirical Cumulative Distribution
Function (ECDF) of the flow response times for SM (Fig. 4(a))
and SFTF (Fig. 4(b)) schedulers. The response time is defined
by the time between flow origination at the source host and
reception by the destination host, which includes the total
processing time at the switches and propagation time over
the communication medium. We extracted the response times
from switch egress timestamps. The x-axis of Fig. 4 shows the
response times, and the y-axis shows the distribution (ECDF).

130 135 140 145 150
Response Time (s)

0.2

0.4

0.6

0.8

1.0
Em

pi
ric

al
 C

DF

Slack Monotonic Shortest Finish Time First

Fig. 5. Resposne times for SM and SFTF schedulers for a varying number of
flows (2-7). SFTF schedules the flows based on their bandwidth requirements
without considering end-to-end timing constraints, which results in a longer
delay than the SM scheme.

We calculate ECDF as follows:

Gα(ȷ) =
1

α

α∑
i=1

I[ζi≤ȷ], (3)

where α is the total number of experimental observations,
ζi response times for i-th experimental observation, and ȷ
represents the x-axis values (i.e., response times) in Fig. 4.
The indicator function I[·] outputs 1 if the condition [·]
is satisfied and 0 otherwise. As Fig. 4 shows, the flows
with Low priority class (F1 and F3) have a longer response
time than the High priority class (F2 and F4) in our trials
(i.e., the tails in the ECDF distributions are longer). Note
that, by definition, if the response times of the flows are
less than the deadline, the flows will meet their real-time
requirements. These experiments confirm that the priority



4 Flows 6 Flows0.0

0.2

0.4

0.6

0.8

1.0
Th

ro
ug

hp
ut

 (b
ps

)
1e6

Slack Monotonic Shortest Finish Time First

Fig. 6. Average network throughput for SM and SFTF schedulers for 4 and
6 flows. SFTF requires more time to route packets from source to destination,
which degrades overall throughput.

scheduling implementation is correctly configured in the P4
switches.

In the next set of experiments (Fig. 5), we compare the
performance of SM and SFTF schedulers. For this, we varied
the number of flows from 2 to 7 and measured response times
for both schedulers. We measured the 90th percentile response
time value of the most affected (lowest priority) flows. As the
figure shows, the SM scheme results in shorter response times
than the SFTF policy. This is because SFTF does not account
for end-to-end constraints and locally optimizes switch share
among the flows based on their bandwidth requirements. As a
result, the end-to-end performance suffers. By definition, when
response times exceed deadlines, the flows will not retain real-
time constraints. Hence, the SM scheduler can ensure timing
constraints more likely than the SFTF schemes for a fixed
deadline.

In our final experiments (see Fig. 6), we compare SM
and SFTF schedulers regarding network throughput. We used
iPerf [18] to obtain the network throughput. As illustrated in
the figure, SM outperforms SFTF in throughput. As shown
in earlier experiments (Fig. 5), SFTF requires more time to
process packets of a flow. This reduces the amount of flow that
can be served per unit of time. As a result, overall network
throughput degrades.

VI. RELATED WORK

Several papers consider QoS constraints in traditional
and SDN-enabled networks (see the survey [19]). However,
they do not consider real-time aspects. Besides, data plane
programmability is not supported on those SDN-based
architectures. Recent studies that aim to adapt SDNs for
real-time applications [7]–[9], [20]–[22] and provide fault
tolerance with timing guarantees [23] do not consider
programmable switch architectures.

SP-PIFO [24] introduces static scheduling using P4 but does
not consider deadline constraints. There has been research
on programmable switches for various contexts, such as
introspection [25], [26], failure recovery [12], [27], [28],

rerouting [29], virtualization [30], queue management [31],
and prototyping [32]. However, those techniques are for
general-purpose networks and do not consider real-time
requirements. To the best of our knowledge, the proposed
work is one of the first efforts that enables time-aware packet
forwarding for P4 switches.

VII. CONCLUSION

This paper introduces techniques to enable real-time flow
scheduling in P4-enabled SDN switches. We implemented
and tested proposed schemes on the P4 software stack. Our
experiments show that scheduling policies considering end-to-
end requirements (SM) retain better real-time guarantees than
the bandwidth-based proportional fair scheme (SFTF). This
research is one of the early investigations that enables real-time
scheduling for P4-based switches. Our open-source scheduler
implementation will assist real-time network engineers in
performing design-space exploration of flow configurations in
their target systems.

REFERENCES

[1] “IEEE standard communication delivery time performance requirements
for electric power substation automation,” IEEE Std 1646-2004, pp. 1–
36, 2005.

[2] S.-N. Yeung and J. Lehoczky, “End-to-end delay analysis for real-time
networks,” in Proceedings 22nd IEEE Real-Time Systems Symposium
(RTSS 2001), pp. 299–309, IEEE, 2001.

[3] B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, and B. Yin, “Smart factory
of industry 4.0: Key technologies, application case, and challenges,” Ieee
Access, vol. 6, pp. 6505–6519, 2017.

[4] Z. Ayhan, E. G. Schmidt, and K. W. Schmidt, “Computation of tight
bounds for the worst-case end-to-end delay on Avionics Full-Duplex
Switched Ethernet,” Journal of Systems Architecture, p. 103278, 2024.

[5] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller Area
Network (CAN) schedulability analysis: Refuted, revisited and revised,”
Real-Time Systems, vol. 35, pp. 239–272, 2007.

[6] K. Kirkpatrick, “Software-defined networking,” Communications of the
ACM, vol. 56, no. 9, pp. 16–19, 2013.

[7] S. Oh, I. Shin, and K. Lee, “RT-SDN: adaptive routing and priority
ordering for software-defined real-time networking,” IEEE Systems
Journal, vol. 16, no. 2, pp. 2379–2390, 2021.

[8] R. Kumar, M. Hasan, S. Padhy, K. Evchenko, L. Piramanayagam,
S. Mohan, and R. B. Bobba, “End-to-end network delay guarantees
for real-time systems using SDN,” in 2017 IEEE Real-Time Systems
Symposium (RTSS), pp. 231–242, IEEE, 2017.

[9] A. Kashinath, M. Hasan, R. Kumar, S. Mohan, R. B. Bobba, and
S. Padhy, “Safety critical networks using commodity SDNs,” in IEEE
INFOCOM 2021-IEEE Conference on Computer Communications,
pp. 1–10, IEEE, 2021.

[10] J. Farkas, L. L. Bello, and C. Gunther, “Time-sensitive networking
standards,” IEEE Communications Standards Magazine, vol. 2, no. 2,
pp. 20–21, 2018.

[11] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al.,
“P4: Programming protocol-independent packet processors,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 87–95,
2014.

[12] H. Miura, K. Hirata, and T. Tachibana, “P4-based design of fast failure
recovery for software-defined networks,” Computer Networks, vol. 216,
p. 109274, 2022.

[13] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM computer communication review,
vol. 38, no. 2, pp. 69–74, 2008.

[14] T. P. A. W. Group, “P4Runtime specification.” https://p4.org/p4-spec/
p4runtime/main/P4Runtime-Spec.html. [Accessed 12-10-2024].

[15] “P4-Utils 1.0 documentation.” https://nsg-ethz.github.io/p4-utils/index.
html. [Accessed 12-10-2024].



[16] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, pp. 1–6, 2010.

[17] “The reference P4 software switch.” https://github.com/p4lang/
behavioral-model. [Accessed 13-10-2024].

[18] “iPerf - The TCP, UDP and SCTP network bandwidth measurement
tool.” https://iperf.fr. [Accessed 13-10-2024].

[19] J. W. Guck, A. Van Bemten, M. Reisslein, and W. Kellerer, “Unicast QoS
routing algorithms for SDN: A comprehensive survey and performance
evaluation,” IEEE Communications Surveys & Tutorials, vol. 20, no. 1,
pp. 388–415, 2017.

[20] A. Kashinath, M. Hasan, S. Mohan, R. B. Bobba, and R. Mittal,
“Improving dependability via deadline guarantees in commodity
real-time networks,” in 2020 IEEE Globecom Workshops (GC Wkshps,
pp. 1–6, IEEE, 2020.

[21] J. W. Guck, A. Van Bemten, and W. Kellerer, “DetServ: Network models
for real-time qos provisioning in sdn-based industrial environments,”
IEEE Transactions on Network and Service Management, vol. 14, no. 4,
pp. 1003–1017, 2017.

[22] K. Lee, M. Kim, T. Park, H. S. Chwa, J. Lee, S. Shin, and I. Shin,
“MC-SDN: Supporting mixed-criticality real-time communication using
software-defined networking,” IEEE Internet of Things Journal, vol. 6,
no. 4, pp. 6325–6344, 2019.

[23] K. Lee, M. Kim, H. Kim, H. S. Chwa, J. Lee, and I. Shin, “Fault-
resilient real-time communication using software-defined networking,”
in 2019 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pp. 204–215, IEEE, 2019.

[24] A. G. Alcoz, A. Dietmüller, and L. Vanbever, “SP-PIFO: Approximating
push-in first-out behaviors using strict-priority queues,” in 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
20), pp. 59–76, 2020.

[25] S. Aalibagi, M. Dolati, S. Sadrhaghighi, and M. Ghaderi, “Low-overhead
packet loss diagnosis for virtual private clouds using P4-programmable
NICs,” in NOMS 2023-2023 IEEE/IFIP Network Operations and
Management Symposium, pp. 1–9, IEEE, 2023.

[26] P. Wintermeyer, M. Apostolaki, A. Dietmüller, and L. Vanbever, “P2GO:
P4 profile-guided optimizations,” in Proceedings of the 19th ACM
Workshop on Hot Topics in Networks, pp. 146–152, 2020.

[27] Z. Li, Y. Hu, J. Wu, and J. Lu, “P4Resilience: Scalable resilience for
multi-failure recovery in SDN with programmable data plane,” Computer
Networks, vol. 208, p. 108896, 2022.

[28] J. Xu, S. Xie, and J. Zhao, “P4Neighbor: Efficient link failure recovery
with programmable switches,” IEEE Transactions on Network and
Service Management, vol. 18, no. 1, pp. 388–401, 2021.

[29] A. Mazloum, E. Kfoury, J. Gomez, and J. Crichigno, “A survey
on rerouting techniques with p4 programmable data plane switches,”
Computer Networks, vol. 230, p. 109795, 2023.

[30] D. Hancock and J. Van der Merwe, “HyPer4: Using P4 to virtualize
the programmable data plane,” in Proceedings of the 12th International
on Conference on emerging Networking EXperiments and Technologies,
pp. 35–49, 2016.

[31] Z. Li, Y. Hu, L. Tian, and Z. Lv, “Packet rank-aware active queue
management for programmable flow scheduling,” Computer Networks,
vol. 225, p. 109632, 2023.

[32] F. Geyer and M. Winkel, “Towards embedded packet processing devices
for rapid prototyping of avionic applications,” in 9th European Congress
on Embedded Real Time Software and Systems (ERTS 2018), 2018.


