
Work-in-Progress: Enabling Secure Boot for
Real-Time Restart-Based Cyber-Physical Systems

Sena Hounsinou∗, Vijay Banerjee∗, Chunhao Peng∗, Monowar Hasan†, Gedare Bloom∗
∗University of Colorado Colorado Springs, Colorado Springs, CO, USA

†Wichita State University, Wichita, KS, USA

Abstract—Several cyber-physical systems use real-time restart-
based embedded systems with the Simplex architecture to provide
safety guarantees against system faults. Some approaches have
been developed to protect such systems from security violations
too, but none of these approaches can prevent an adversary from
modifying the operating system or application code to execute
an attack that persists even after a reboot. In this work, we
present a secure boot mechanism to restore real-time restart-
based embedded systems into a secure computing environment
after every restart. We analyze the delay introduced by the
proposed security feature and present preliminary results to
demonstrate the viability of our approach using an open-source
bootloader and real-time operating system.

Index Terms—Secure Boot, TEE, U-Boot, RTEMS

I. INTRODUCTION

Real-time embedded systems (RTES) are used in many
application domains to control cyber-physical systems (CPS).
Many CPS are modeled using the Simplex architecture [1],
[2]. The architecture was initially developed to provide a
framework for high-reliability and fault-tolerance in rapidly
evolving mission-critical systems. In general, the architecture
comprises a complex partition and a safety partition (see
Figure 1). The complex unit typically integrates system timers
and a monitoring unit to detect a fault and trigger a system
reset, when necessary. Although this partition is designed to
efficiently execute all the functionalities that constitute the
mission of the system, it is usually too complex to fully verify.

The safety partition is managed by a fully verified controller
designed with state-dependent constraints to guarantee that the
system will not reach certain predetermined states that are
deemed unsafe. The safety unit is located on separate hardware
that is not connected to the outside world. The goal of this
partition is to allow the system to recover from a software fault
originating from the complex unit, using a read-only memory
which has an unaltered image of the operating system (OS).

Although the Simplex architecture guards against faults, it
does not secure the system against security threats targeting
restart-based CPS. To address this problem, a few approaches
have been presented recently. They focus on diversifying
configuration files, randomizing the location of the executable
code, and randomizing hardware to prevent the attacker from
using the same method to attack the system after a restart.

This work is supported in part by NSF grants OAC-2001789, CNS-2046705,
and Colorado State Bill 18-086.

RTOS
Complex Controller

Monitoring Block

Watchdog Timer

RESET Periodic Timer

D
ec

is
io

n
U

ni
t

Actuators

Sensors

Complex Partition Safety Partition

ROM

Peripherals,
I/O,

User Inputs

Plant

Safety
Controller

Fig. 1. Architecture of Restart-Based Systems.

These mechanisms however do not prevent a skillful attacker
from controlling the system beyond a restart: an adversary can
modify the OS or application codes and execute an attack that
persists even after a reboot.

In this work, we present an approach that restores the system
into a secure computing environment after every restart, by
integrating the secure boot and chain of trust features in the
booting sequence. Secure boot prevents booting a corrupted
OS or application during the boot process, by building a chain
of trust located in the safety unit. The “root of trust” module
verifies a trusted boot code that initializes the hardware.
Next, the bootloader proceeds to verify the OS which in turn
authenticates the application(s). At each step, if the component
is successfully verified, it is added to the chain of trust.
Otherwise, the system locks itself and become unusable. In
that way, every OS and application image is authenticated prior
to being loaded and available for use.

Our contributions are summarized as follows:

• We propose a secure boot mechanism for restart-based
real-time systems.

• We provide a detailed analysis of the delay introduced by
the proposed security feature and determine its bounds.

II. SYSTEM AND ADVERSARY MODELS

System Model. We consider a real-time CPS with strict
safety and temporal requirements. Examples of such systems
include industrial process control systems or avionic systems.
The RTES invokes a system-wide restart from a hardware root
of trust [3] to restore the plant into a safe operational window
if one of the following occurs: (1) the monitoring unit has
detected an attack, (2) the periodic timer indicates that the

predefined interval between two restarts has elapsed or (3) the
watchdog timer has detected a failure of a critical component.

We consider that the system is composed of n periodic
tasks τ1, . . . , τn and a sporadic restart task τr. Let h be the
hyperperiod of the periodic tasks (i.e., the least common mul-
tiple of their periods). Each task produces multiple instances
and τi,k represents the k-th instance of the task τi. All tasks
are executed on the same processor under a fixed priority
preemptive scheduling policy where i is the priority of τi. τr
is the highest priority task in the system. Each periodic task
τi is characterized by a tuple (Ci, Ti, φi). Ci is the worst case
execution time of τi. Ti represents the period (and relative
deadline). φi is the release time of the first job τi,0. For the
restart task, Tr represents the minimum time between two
restarts and Cr is the duration of a single restart operation after
which any job that has not been completed prior to the restart
is executed in its entirety (i.e., jobs that have been preempted
are re-executed).

Adversary Model. We assume that the safety partition of
the RTES is isolated and cannot be accessed by any user
or remote attacker. Therefore, the safety unit, including the
root of trust, is out of reach of the attacker. In contrast,
the complex partition is connected to user input interfaces
and to the peripherals through the system network. In this
work, we specifically focus on an adversary that manipulates
the OS image or application in the complex partition, with
the intention of taking control of the system. Finally, we
assume that the attacker has no physical access to the system.
Therefore, any malicious action taken against the system is
done remotely using software manipulations.

III. PROPOSED DESIGN

Our goal is to increase the security of CPS by providing a
mechanism that guarantees that the system is tamper-free right
after each restart without impacting the proper operation of
the system (that is, all tasks can still execute without missing
their deadlines, even in the presence of restarts). A tamper-
free computing environment is usually achieved by integrating
a secure booting sequence at power up. Thus, to achieve our
goal, we need to integrate a security module to provide the
functionalities needed to implement secure boot in the current
architecture. We describe the module in Section III-A.

In addition, we analyze the impact of the proposed mecha-
nism on the system’s performance; by implementing the secure
boot feature, the restart task will require more time to execute
and therefore may affect the schedulability of the system.
Thus, in addition to providing the architectural resources,
our next challenge is to ensure that the integration of secure
boot sequence does not degrade the system’s performance. We
study these implications in Section III-B.

A. Secure Boot for Simplex-based Embedded System

Generally, secure boot provides four features: 1) protected
access-control capabilities, 2) integrity measurement, 3) secure
storage and 4) integrity reporting. The most important feature
provided by secure boot for resource-constrained RTES is

the ability to authenticate all the components that are needed
by the platform, starting from the root of trust. The image
authentication operation consists of verifying the signature
provided in certificates. We assume all images are signed by
the developer.

Security Module. A dedicated security module allows
to execute the cryptographic instructions (hash computation,
signature comparison). Security modules usually come in the
form of a trusted platform module (TPM) [4] or a hard-
ware security module (HSM) [5]. TPMs are embedded on
the platform while HSMs are external (removable) and are
generally plugged into the system using a system port or via
a TCP/IP connection. Although both options require that the
data used by the module be securely transferred to and from
it, a networked-connected system might be vulnerable the
connection between the HSM and the safety unit represents
an attack surface: an adversary can exploit this connection to
gain access to the otherwise isolated safety unit of the system
and compromise the safety controller, the restart mechanism,
as well as the decision unit. Therefore, although a TPM costs
more in design area, we choose this option 1. Also, TPMs
generally offer some storage in the form of nonvolatile random
access memory (NVRAM) for keys and sensitive data which
will be sufficient for our purpose.

The proposed mechanism is illustrated in Fig. 2. The arrows
indicate the order in which events occur in the secure boot
sequence. At the beginning, a reboot signal is sent to the
TPM which acts as the root of trust as shown in 1 . The
TPM verifies the integrity of the bootloader (see marker 2).
After a successful verification, the TPM provides the security
services requested by each component added to the trust chain,
starting with the bootloader. Before a component is added to
the chain, its integrity is measured (indicated by arrows 3
and 6). If the measurements obtained by the authenticating
component match the expected value stored in the NVRAM,
the component is executed (4 and 7). Then, the platform
configuration register of the TPM containing the current hash
measurement of the current chain of trust is extended by
integrating the hash of the new component (5 and 8).

B. Impact on Schedulability and System Availability

The restart-based approach to security relies on the fact that
the booting sequence does not disturb the normal operation
of the plant. In Section IV, we show that by introducing a
secure boot mechanism, the restart process is lengthened. In
the following, we estimate this delay for single and multiple
restarts.

Single-Restart Disturbances. We consider that there has
been no disturbance to the system due to a particular restart
task τr,k if, when restart is triggered, the schedule can ac-
commodate all the following activities without missing any
deadline: t1: execution of the restart sequence; t2: execution
of all ready tasks that have been suspended due to the restart

1However, this does not preclude the use of HSM.

Bootloader
TPM

Complex Unit
Kernel

Application

NVRAM

2

3

4

5

6

ROM

7

1
8

τr (Cr, Tr)

Reboot Trigger

Fig. 2. Secure Boot Sequence for Restart-Based Systems. The Chain of trust
starts with the TPM root of trust, followed by the bootloader, the Complex
Unit kernel and applications. Green and purple arrows indicate the verification
and execution of a new component respectively. Blue arrows indicate an
update of the platform configuration register to include the new component
of the chain. Circled numbers indicate the order of operations.

(this includes all tasks that were preempted prior to restart and
require a repeat execution).

The duration of t1 solely depends on Cr, the execution time
of τr,k. In Section IV, we show that by introducing a secure
boot mechanism, the restart process is lengthened. That is,
with the secure boot enabled, the new worst case execution
time of τr,k can be expressed as C∗

r = Cr + ε, where ε is the
maximum delay introduced.

On the one hand, t2 depends on tasks that have not started
executing prior to restart, and on the other, on the number of
tasks that have started (but not completed) execution. The first
group does not introduce any delay due to the restart. For the
second group of tasks, we can estimate that in the worst case
scenario, there is one instance τi,k of every task in the system
that has preempted prior to restart and must be re-executed. A
repeated execution of τi,k means that the system must spend
an additional time µi to reprocess the initial portion of the
task that has already been executed before the preemption.
Thus, we can formulate the maximum delay related to repeated
executions as

∑n
i=1 µi. Therefore, the (total) worst delay δs

for a single restart is:

δs = ε+

n∑
i=1

µi, 0 < µi < Ci (1)

Disturbances for Multiple Restarts. Equation 1 provides
the delay associated with one restart sequence. In this section,
we extend our analysis to estimate the delay over an entire
hyperperiod. In order to do so, we must compute the number
N of restart operations that occur during the hyperperiod. Re-
call that Tr represents the minimum amount of time between
two restarts. Thus, the maximum number of restarts during
a hyperperiod is dh/Tre. Recall that we have three methods
(see Figure 1) to trigger a system restart (watchdog timer,
monitoring unit, periodic timer). We can estimate that the
minimum number of restarts occurs when only the periodic
timer has been triggered during the hyperperiod. Therefore,
we express the minimum value of N as bh/TPTimerc, where
TPTimer is the periodicity of the periodic timer (which can be
obtained from existing work [6]). Having estimated the bounds

Fig. 3. Secure boot prevents booting a compromised kernel in the complex
controller.

of N , we can express the delay δh = Nδs over a hyperperiod
as: ⌊

h(ε+
∑n

i=1 µi)

TPTimer

⌋
≤ δh ≤

⌈
h(ε+

∑n
i=1 µi)

Tr

⌉
(2)

IV. FEASIBILITY OF THE PROPOSED DESIGN

We conducted two experiments to analyze the security
and overhead of the secure boot in a simplex-based CPS
system. For our experimentation, we have used an ARM-based
Beaglebone Black (BBB) System on Chip (SoC) and the Real-
Time Executive for Multiprocessor systems (RTEMS) [7] as
our real-time kernel. RTEMS is a POSIX compliant hard real-
time OS with high temporal predictability. The Python-based
tool grabserial is used to collect timestamps for each line
of the console output to find out the total restart time for the
board. We used the verified boot feature of the Das U-Boot
bootloader on our test platform and signed a kernel image with
a RSA-2048 key [8]. The bootloader verifies the integrity of
the kernel with the SHA-1 algorithm.

Experiment 1 - Enhanced Security with Secure Boot:
To test the security provided by the secure boot, we modified
one byte in the kernel image and placed the modified kernel
image in the SD card of the board. After this modification,
we proceeded to restart the system. As shown in Fig. 3, our
protection technique prevents booting the manipulated image.
This shows that the integration of secure boot can enhance the
security of restart-based systems.

Experiment 2 - Secure Boot Delay. In this experiment we
compare the boot times of our proposed secure boot proof-of-
concept implementation with the current (unmodified) boot-
loader of RTEMS. From 1000 runs we observe that the boot
time overhead is about 28.56 ms on average (see Fig. 4).

V. DISCUSSION

The time overhead added by the secure boot can have an
impact on both the system’s availability and performance.
However, most restart-based systems face a similar challenge
since the traditional restart always introduces a certain amount
of delay. On the positive side, our approach enhances the
security of the system from some attacks.

Our solution uses the secure boot and chain of trust to
prevent attackers from getting a persistent foothold on the

Readings

B
oo

t t
im

e
in

 s
co

nd
s

5.000

5.025

5.050

5.075

5.100

0 250 500 750 1000

verified boot normal boot

Fig. 4. Reboot time comparison of secure boot vs non-secure boot restart
sequence.

TABLE I
COMPARISONS BETWEEN THE STATE-OF-THE-ART AND OUR APPROACH,

FT=FAULT-TOLERANT, SG=SAFETY-GUARANTEED, RD=RANDOMNESS,
SB=SECURE BOOT.

Full-System Boot Assurance Features
Existing Architecture FT SG RD SB
Simplex-based [9]–[12] X
System-level Simplex-based [13] X X
Revival-based Restart [14], [15] X X
Rejuvenation-based Restart [6], [16] X X
Randomized state restart [17], [18] X
Our Approach X X X

complex partition. While building the chain, any component
that fails the verification will cause the system to lock. The
proposed design can serve as an “indicator of compromise”
(IOC) and greatly burden the adversary by making it more
difficult to gain a persistent foothold in the system.

VI. RELATED WORK

Simplex-based assurance architecture [9]–[12] focuses on
fault-tolerant and low-overhead solutions, while not neces-
sarily guaranteeing safety. System-level Simplex [13], and
restart-based (both revival [14], [15] and rejuvenation [6],
[16]) add a safety guarantee to Simplex-based architecture.
Diversification-based security [17], [18] is a mechanism that
introduces execution path randomness after every restart by di-
versifying configuration files, memory location, and hardware
state to reduce exposure of system vulnerabilities. In contrast,
we propose enhanced security in the system architecture by
adding a layer of secure boot in the CPS. These works are
summarized in Table I. Our approach seeks to complement all
fault-tolerant, low-overhead, safety-guaranteed, and random-
ized approaches for robust, secure and safe cyber physical
systems.

VII. CONCLUSION AND FUTURE WORK

In this work, we have presented a secure boot mechanism
for restart-based real-time CPS by leveraging the isolation
provided by the Simplex architecture. We analyzed the pro-
posed architecture based on the security and runtime overhead.
Our theoretical analysis on the potential disturbance (caused

to the CPS due to multiple restarts) paves the way for a
more detailed study on the performance overhead and its
impact on schedulability, which is a promising direction for
future work. Our future efforts will focus on optimizing this
delay by identifying bottlenecks in the security mechanism.
We intend to increase the robustness of this security feature
by relaxing some assumptions such as the isolation of the
safety partition. We are also working on improving the IOC-
metric by introducing an entropy extraction framework to
meet intrusion detection system requirements for resource-
constrained subsystems in CPS.

REFERENCES

[1] L. Sha, R. Rajkumar, and M. Gagliardi, “Evolving dependable real-time
systems,” in 1996 IEEE AeroConf., vol. 1. IEEE, 1996, pp. 335–346.

[2] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and
L. Sha, “The system-level simplex architecture for improved real-time
embedded system safety,” in 2009 15th IEEE RTAS. IEEE, 2009, pp.
99–107.

[3] F. Abdi, C.-Y. Chen, M. Hasan, S. Liu, S. Mohan, and M. Caccamo,
“Restart-based security mechanisms for safety-critical embedded sys-
tems,” arXiv preprint arXiv:1705.01520, 2017.

[4] H. Brandl, “Trusted computing: The tcg trusted platform module spec-
ification,” Infineon Technologies AG, 2004.

[5] S. Smith, “Hardware security modules,” in Handbook of Financial
Cryptography and Sec. Chapman and Hall/CRC, 2010, pp. 283–304.

[6] F. Abdi, M. Hasan, S. Mohan, D. Agarwal, and M. Caccamo, “Resecure:
A restart-based security protocol for tightly actuated hard real-time
systems,” IEEE CERTS, pp. 47–54, 2016.

[7] G. Bloom, J. Sherrill, T. Hu, and I. C. Bertolotti, Real-Time Systems
Development with RTEMS and Multicore Processors. CRC Press, Nov.
2020.

[8] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[9] L. Sha et al., “Using simplicity to control complexity,” IEEE Software,
vol. 18, no. 4, pp. 20–28, 2001.

[10] S. Bak, K. Manamcheri, S. Mitra, and M. Caccamo, “Sandboxing
controllers for cyber-physical systems,” in 2011 IEEE/ACM Second
International Conference on Cyber-Physical Systems. IEEE, 2011, pp.
3–12.

[11] S. Bak, T. T. Johnson, M. Caccamo, and L. Sha, “Real-time reachability
for verified simplex design,” in 2014 IEEE RTSS. IEEE, 2014, pp. 138–
148.

[12] F. Abdi, R. Tabish, M. Rungger, M. Zamani, and M. Caccamo, “Ap-
plication and system-level software fault tolerance through full system
restarts,” in 2017 ACM/IEEE 8th ICCPS. IEEE, 2017, pp. 197–206.

[13] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and
L. Sha, “The system-level simplex architecture for improved real-time
embedded system safety,” in 2009 15th IEEE RTAS. IEEE, 2009, pp.
99–107.

[14] F. A. T. Abad, R. Mancuso, S. Bak, O. Dantsker, and M. Caccamo,
“Reset-based recovery for real-time cyber-physical systems with tem-
poral safety constraints,” in 2016 IEEE 21st ETFA. IEEE, 2016, pp.
1–8.

[15] P. Jagtap, F. Abdi, M. Rungger, M. Zamani, and M. Caccamo, “Software
fault tolerance for cyber-physical systems via full system restart,” ACM
Transactions on Cyber-Physical Systems, vol. 4, no. 4, pp. 1–20, 2020.

[16] F. Abdi, C.-Y. Chen, M. Hasan, S. Liu, S. Mohan, and M. Caccamo,
“Guaranteed physical security with restart-based design for cyber-
physical systems,” in 2018 ACM/IEEE 9th ICCPS, pp. 10–21.

[17] M. Arroyo, H. Kobayashi, S. Sethumadhavan, and J. Yang, “Fired:
frequent inertial resets with diversification for emerging commodity
cyber-physical systems,” arXiv preprint arXiv:1702.06595, 2017.

[18] M. A. Arroyo, M. T. I. Ziad, H. Kobayashi, J. Yang, and S. Sethumad-
havan, “Yolo: frequently resetting cyber-physical systems for security,”
in Autonomous Systems: Sensors, Processing, and Security for Vehicles
and Infrastructure 2019, vol. 11009. International Society for Optics
and Photonics, 2019, p. 110090P.

