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Abstract—Safety-critical networks often have stringent real-
time requirements; they must also be resilient to failures. In this
paper, we propose the RealFlow framework that uses commodity
software-defined networks (SDNs) to realize networks with end-
to-end timing guarantees, while also: (a) increasing resiliency
against link/switch failures and (b) increasing network utilization.
The use of SDNs in this space also improves the management
capabilities of the system due to the global visibility into the net-
work. RealFlow is implemented as a northbound SDN controller
application compatible with standard OpenFlow protocols with
little to no runtime overheads. We demonstrate feasibility on a real
hardware testbed (Pica8 SDN switches+Raspberry Pi endhosts)
and a practical avionics case study. Our evaluations show that
RealFlow can accommodate 63% more network flows with safety-
critical guarantees when compared to current designs and up to
18% when link resiliency (via backup paths) is also considered.

I. INTRODUCTION

Network flows in safety-critical systems often have stringent
timing and performance constraints often referred to as Real-
Time (RT) requirements. If important messages are either not
delivered or arrive late, the system could fail. For example,
if a sensor on the bumper of a car detects impact then that
information must be relayed to an electronic control unit (ECU)
inside the car within 20 ms [1] in order to initiate airbag
deployment. Delays anywhere in this chain of processes could
result in serious injury to the driver and/or the passengers.
In addition to timing constraints, flows can also have distinct
priorities and isolation requirements. Current designs of safety-
critical networks have two key issues:
• They use conservative/over-engineered, domain-specific

solutions such as Avionics Full-Duplex Switched Ethernet
(AFDX) [2] or Controller Area Network (CAN) [3] i.e.,
proprietary, legacy, protocols and hardware.

• They incur high infrastructure & management overheads
since designers use multiple, physically separate, networks
for RT/non-RT traffic; this leads to expensive designs that
are often shackled with legacy requirements.

While efforts are underway to standardize quality-of-service
(QoS) provisioning for RT flows over Ethernet (e.g., TSN: QoS
IEEE 802.1Qav, IEEE 802.1Qbv [4]), commodity hardware
supporting these standards is not yet widely available1.
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1As opposed to our techniques that can be implemented right now using

multiple, commercially-available SDN switches.

Software Defined Networking (SDN) [5], which provides
‘global’ visibility into the network and enables centralized re-
source allocation, has seen quick adoption since its emergence;
e.g., enterprise systems, cloud computing services, military
networks, power systems [6], [7], among others. While most
SDN applications were aimed at enabling highly dynamic and
adaptive networks, there is an argument for using SDNs in
safety-critical networks for predictability and determinism [8].
Further, availability of open standards (OpenFlow, Open
vSwitch) offer opportunities for realizing predictable RT-aware
SDN networks using commodity hardware.

An early attempt at leveraging the global visibility of SDN
for safety-critical systems [9] combined static path allocation
with dynamic priority scheduling (viz., Non-preemptive Earliest-
Deadline First (EDF)). However, their approach required
changes to scheduling disciplines in the switches and is
not compatible with commodity off-the-shelf (COTS) SDN
switches. Our early work [10] used static path allocation and
fixed-priority scheduling to make commodity SDNs “real-time
aware” i.e., designing for applications with hard timing con-
straints. However, this work under-utilizes network resources by
dedicating one queue per RT flow (see comparison in §IV-A).
Neither work addresses link failures. Recent work [11], [12]
attempts to tackle this problem. However, they require extra
functionality at the switch level that is as yet unavailable in
COTS switches. Further, Lee et al.’s approach [12] could lead
to a large number of dropped packets and an inordinate growth
in delays that directly correlates to a growth in the size of the
network or an increase in the number of flow sets (see §IV-A).
The shortcomings of these approaches make it impractical
to use commodity SDNs for modern, complex safety-critical
networks that typically consist of large numbers of subsystems
with diverse flows requirements (see Table II).

We present RealFlow, a framework that enables the use of
commodity SDNs in modern safety-critical applications; system
utilization is significantly improved and timing guarantees are
retained in the presence of link failures, all while using COTS
components. Specifically, we, (a) present a new static path
(route) allocation algorithm that can multiplex RT flows onto
the same queues while still meeting the end-to-end delay and
bandwidth requirements (thus improving the efficiency of the
network [§III-C]) and (b) develop algorithms and mechanisms
to pre-compute and deploy backup paths for critical flows
to increase system resiliency in the presence of link failures
[§III-D]. Multiplexing flows onto the same queue while still
providing delay guarantees is non-trivial since dependencies
across flows that share the same queue complicate the analysis.
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We implemented (a) and (b) as a path allocation algorithm
compatible with existing packet scheduling schemes in COTS
switches. We developed a latency-aware (deadline-aware) fast
failover mechanism for (b) — using our algorithms on top of
the built-in mechanisms — ensuring that if the original path
guaranteed that an RT flow met its deadlines then the backup
path, activated on failure of the original path, guarantees the
same. Note that SDN does not intrinsically lend itself to RT
applications due to its lack of timing awareness.

TABLE I
DESIGN SPACE OF SDN-BASED RT

TECHNIQUES. COLUMN TITLES:
COTS→CAN WORK ON COMMODITY

COMPONENTS. S→CAN SCALE WITH #
OF FLOWS; FT→ LINK/SWITCH FAILURE

TOLERANCE BUILT IN.

Technique COTS S FT
Kumar et al. [10] X × ×
Qian et al. [9] × X ×
Qian et al. [11] × X X
Lee et al. [12] × × X
RealFlow X X X

We demonstrate, using
correct-by-construction
analysis as well as
empirical evaluation
on real hardware, that
(i) RT flows that use
our approach meet
their end-to-end delay
requirements even in
the presence of a large
volume of non-critical
or non-RT traffic and
(ii) our backup path
mechanisms ensure that critical flows will meet their deadlines
even when links fail. Evaluation [§IV] (a) using an avionics
case study [13] on actual hardware that mimics an embedded
RT system along with (b) synthetic topologies/simulations
shows that our approach works over a large design space.
Contributions: In summary, our main contributions are:

1) Static path allocation algorithms that can achieve higher
network utilization by multiplexing multiple RT flows
onto the same queues while still meeting the end-to-end
delay and bandwidth constraints (§III-A – §III-C).

2) Deadline-aware back-up path provisioning for resiliency
against link failures (§III-D).

3) Implementation and evaluation of our schemes on SDN-
enabled COTS switches (§IV).

We first present the system model, formal definition of the
problem, and a high-level description of our solution in §II.

II. SYSTEM MODEL OF A SAFETY-CRITICAL NETWORK

Safety-critical networks typically have a well-defined net-
work structure (topologies, hosts and links), clearly defined
flow specifications, and are under the control of a centralized
authority (e.g., Airbus has complete control over A380 topology
and its associated subsystems). The closed nature of such
networks make it amenable for enforcement of system-wide
policies that take into account safety requirements such as
worst-case latency and link failures.

A. System Architecture and Objectives

RT applications generate periodic traffic flows that arrive at
the switch and are multiplexed into queues based on priority
(§II-B). A flow needs to traverse a sequence of switches, i.e.,
a hitherto unknown path Pi, so that QoS constraints such as
delay and bandwidth requirements can be met. We consider
two types of paths: (a) a primary (or the default) path for

Fig. 1. Illustrative Avionics Example (also used in Evaluation in §IV-C).

Fig. 2. System design of RealFlow.An overview of our proposed solution
(the Avionics System is, notionally, used for evaluation). We extract the
following from a Real-Time System: 1 Flow Specifications (flows of different
priorities) and 2 Network Topology are input into “RealFlow” 3 along with
any QoS and bandwidth constraints. A set of feasible paths (that meet the
given constraints) is generated for both – primary as well as backup paths for
the critical flows. These paths are then sent to a northbound application on a
SDN Controller 4 installs flow rules to the switches 5 so that flows can
meet their end-to-end guarantees and also have increased resiliency (due to
the existence of backup paths in the event of failure).

each flow for use during normal operation and (b) a backup
path for certain critical flows for use in the event of link
failures. When link failures are detected, critical flows can be
automatically rerouted through their corresponding backup path,
and still meet deadlines, without needing network controller
intervention, using the fast fail-over mechanism.
RealFlow. To achieve these objectives on safety-critical net-
works, a high-level overview of our solution, “RealFlow”, is
illustrated in Fig. 2. It consists of:

1) Flow Specifications i.e., the RT application’s network
requirements. These are specific to every application
deployed on the network.

2) Network Topology or the switch graph i.e., a represen-
tation of the network consisting of links and switches
(does not include the end-hosts).

3) A Path Layout Algorithm that takes the network topology
and flow specifications2 as input and finds a ‘feasible
path’ (primary and backup) for each RT flow, satisfying
given end-to-end deadline/bandwidth requirements.

2Based on application requirements and given by the application designers.
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TABLE II
PRACTICAL CONSIDERATIONS IN SAFETY-CRITICAL NETWORKS GATHERED FROM CERTIFICATIONS SPECIFICATIONS, ACADEMIC & INDUSTRY

COLLABORATIONS.

Aspects Automotive Network [14] Power Grid Substation Network [15] Avionics Network [2], [13]
Flow Rates ≈ 100 Kbps (Control traffic), ≈ 10

Mbps (Data traffic)
≈ 40 Kbps (IEC-61850 GOOSE), ≈ 5.4
Mbps (IEC-61850 SV)

0.5 - 4 Mbps

Flow Deadlines < 10 ms (Control), 10 ms (ADAS),
30 ms (Vision)

< 3 ms (GOOSE Fast Trips & Blocks;
SV Measurements)

≈ 1 ms (between 2 end-systems on
same switch)

Network Link Rates 100 Mbps - 1 Gbps 1 - 5 Gbps 100 Mbps
Scale 41 flows, 5 switches 900 flows, 70 switches 327 flows, 9 switches
Example Hardware NXP SJA1105 Ethernet Switch Se-

ries, 10-16 Priority Queues
SEL-2740S, 4 Priority Queues, IEC-
61850 standards compliant

TTTech A664 AFDX Switch 100
Mbps - 1 Gbps, 8 Priority Levels

Common characteristics of RT networks: (i) Well-defined Network structure (viz., topologies, hosts and links), (ii) Well-defined
Flow specifications from certification/industry standards, (iii) Self-contained Networks managed by a single authority

4) An SDN Controller that takes the output of the path
layout algorithm and translates it into forwarding rules
(including those for fast failover) for OpenFlow switches.

5) OpenFlow switches (i.e., SDN switches) that accept flow
rules from the SDN controller and forward traffic from
one host to the other, using preconfigured rules.

B. Formal Problem Definition

Consider an SDN topology (N ) with OpenFlow switches, a
controller and a specified set of RT flows F (generated from
RT applications) with fixed maximum end-to-end delays and
bandwidth guarantee requirements. We characterize each flow
Fi ∈ F by the tuple Fi = (srci, dsti, Ti, D

max
i , pkti, prii)

where srci and dsti are the source and destination host, Ti ∈
Z+ is the inter-arrival time (‘period’), Dmax

i is the end-to-
end delay bound (‘deadline’), pkti is the size of the packet
in bits (e.g., 1 kB packet = 8 kbits) and prii is the priority.
Bi = 1

Ti
× packet sizei denotes the bandwidth requirement

of Fi. We model the network as an undirected graph N(V, E)
where V is the set of nodes, each node representing a switch
πs and E is set of the edges, each representing a possible path
from one switch (πs) to another (πs′). Additionally, F ′ ⊆ F
denotes a subset of critical flows for which alternative back-up
routes need to be configured for resiliency against link failures.
Queues and Priorities: Each switch πi ∈ V consists of a set
of L + 1 priority queues. Among L + 1 queues we use the
L highest priority queues for allocating primary paths3 and
use the remaining lowest priority queue for providing backup
paths. We assume that flow priorities are selected from L =
{0, 1, · · · , L− 1} predefined distinct priority-levels (prii ∈ L
and level-0 is the highest priority) where flows with priority-
level l ∈ L will be assigned to l + 1-th queue in each switch
πs ∈ V . These priorities are often derived from the actual
applications and decided by the system designers [16].

We assume that applications (and hence network flows they
generate) have statically assigned priorities – this is typical of
RT systems today. Note that multiple flows can share the same
priority-level (i.e., ∃Fi 6= Fj : prii = prij) and flows with
same priority-levels l will be multiplexed to the l+ 1-th queue.
Further, a subset of flows F ′ for which designers want to
provide alternate routes due to link failure will be multiplexed
to lowest priority queue (L+ 1-th) to provide backup paths.

3We use ‘path’ and ‘primary path’ interchangeably throughout the paper.

C. Assumptions

Target System: We design our framework for a self-contained
RT system with fixed priority, static flows that can tolerate the
loss of a limited number of packets — loss of a bounded number
of packets is acceptable in many safety critical networks [17],
[18]. Large-scale, open distributed systems with dynamic or
stochastic flows are not the focus of this work.
System Model Assumptions: We assume that queue sizes are
large to accommodate the RT flow packets. In practice, switches
do have finite queue sizes. For example, in Pica8 P-3297 [19],
we have 8 queues per port, each queue being 250kB in size,
giving a total queue size of 2MB per port. Despite this, our
system model can be applied in practice due to the following
two reasons: (a) the rate of RT flows in practice is substantially
lower than link capacities and (b) our approach can over-
provision bandwidth (see §III-B).

Backup paths are pre-computed offline for all potential link
failures of interest. Network designers can consider all link
failures or focus on specific links that are critical/prone to
failures. We only discuss single link failure tolerance for
illustration purposes; our approach can handle simultaneous link
failures without loss of generality [see §III-D]. However, there
is a trade-off for supporting multiple simultaneous link failures
since resources must be provisioned for multiple potential
backup paths. Input buffering is not common in COTS switches
(e.g., Pica8 [19]). End-hosts, in our experiments, are simply
traffic sources or sinks for our test harness.

III. REALFLOW– A QOS-AWARE PATH SELECTION AND
CONFIGURATION FRAMEWORK

Deadline and bandwidth-aware path selection is the core of
RealFlow. We discuss the delay constraints and present our
path selection backup path-based resiliency mechanisms.

A. Delay Constraints

Each flow will experience the following delays as it is routed
along a network path: (a) Transmission and propagation delay
– this depends on the data rate supported by the link as well
as the speed of signal transmission (for a given link capacity,
material and length, we can define a constant upper-bound
for this delay) and (b) queuing and processing delays at each
switch along the path. Queuing and processing delays comprise
the following delay components: (i) FIFO queuing delay from
flows at the same priority-level that are routed through the
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same switch along the flow path; (i) Interference delay due
to interference from higher-priority flows that share the same
egress port at a switch on the path; and (iii) Blocking delay
due to the non-preemptive nature of packet transmission.

1) Transmission and propagation delay: Every flow Fi ∈ F
experiences a transmission delay, Dt

s′,s = pkti
data rate . Additionally,

every flow also has the signal propagation delay due to the
medium, Dp

s′,s = Length of the link
velocity of signal in medium . Let us denote by Dtp

s′,s,
the total packet transmission and propagation delay incurred
on the edge (πs′ , πs) ∈ E (i.e., the link between πs′ and πs).
This is given by Dtp

s′,s = Dt
s′,s +Dp

s′,s.
2) Queuing and processing delay due to FIFO delays from

flows at the same priority: Flows with the same priority-level l
will be enqueued in the same l+ 1-th queue (if the bandwidth
requirements can be met) at each switch πs and processed in
a first in, first out (FIFO) manner. Multiplexing the flows with
same priority into a single queue can accommodate more flows
than there are queues (given their constraints are satisfied).

We can calculate the queuing delay experienced by each
packet of flow Fi due to the interference from other flows at
the same priority level (i.e., ∀Fj 6= Fi | prij = prii) routed
through the switch πs. Let us denote F̃ ls ⊂ F as the set of flows
with priority-level l routed through the switch πs (i.e., each
flow Fi ∈ F̃ ls shares the same queue ψl in πs). For a given flow
Fi ∈ F̃ ls we can calculate the worst-case queuing delay as [20]:
qsi =

∑
Fk∈F̃ls

⌈
Ti
Tk

⌉
d̂k where d̂k is the per-packet processing delay.

This happens when flows Fk 6= Fi are scheduled before Fi
(assuming the switch πs will arbitrarily schedule one of the
flows when packets of multiple flows with same priority-level
arrive at the same time). For example, consider two flows F1

(T1 = 10) and F2 (T2 = 5), i.e., F2 arrives at a faster rate,
then in the worst-case F1 will experience FIFO queuing delay
from dT1

T2
e = 2 packets of F2 within one period of F1.

3) Queuing and processing delay from interference and
blocking: Switches process each packet in order, based on
arrival time and priority. Packets that arrive later or belonging
to flows with lower priority are processed later. Hence, for any
flow Fi, we need to consider the interference from other flows
Fj routed through the same switch.

Lower-priority flows will suffer interference from higher-
priority flows since the switch scheduler follows a strict priority
scheme where flows with higher priority are dequeued first. Let
hp(F̃ ls) denote the set of flows with priority higher than priority-
level l and are routed through switch πs. We can estimate
the upper bound of interference from higher priority flows
using traditional response-time analysis [21] as follows : Isi =∑
Fh∈hp(F̃ls)

⌈
Ti
Th

⌉
d̂h, where Isi is the interference experienced

by each flow Fi ∈ F̃ ls.
Since the switch processes the flows in a non-preemptive

manner, a given flow may also experience at most one packet
delay from lower-priority flows in the worst case. We bound this
blocking delay from low-priority flows as βsi = max

Fk∈F̃ls,k 6=i
d̂k.

Hence, total queuing and processing delay (presented in §III-A2

and §III-A3) for Fi at the switch πs, Qsi can be expressed as:

Qsi = FIFO delay + Interference delay + Blocking delay
(1)

Let Di(Pi) denote the total delay for Fi considering (a) and
(b) . To ensure that the delay requirement of each Fi is satisfied
this total end-to-end delay should be less than its delay bound,
i.e., Di(Pi) ≤ Dmax

i .

Di(Pi) =
∑

(πs′ ,πs)∈Pi
Dtp
s′,s +

∑
πs∈Pi

Qsi

Total Delay

Trans. & Prop. Delay

Queuing
Delay

(2)

B. Bandwidth Constraints

Every flow consumes resources that is quantified by its
bandwidth utilization, defined as the ratio of bandwidth
requirement to the bandwidth available on the link. We
denote the bandwidth utilization for a given link (πs′ , πs)
as Bi(πs′ , πs). A flow can be assigned to a path only if its
bandwidth utilization is less than 1 on every edge on the
path. We define the total bandwidth utilization (denoted as
Bi(Pi)) for Fi over a path Pi as the bandwidth utilization
for every edge in Pi. In prior work [10], researchers show
that the bound on bandwidth utilization over a path can be
represented as a function of link bandwidth and network size,
i.e., max

(πs′ ,πs)∈E
Bi(πs′ , πs)|V| where |V| is the cardinality of a

set of switches for a given network. Therefore, to satisfy the
bandwidth requirement, we define (in a conservative manner)
the following constraint on bandwidth utilization for each flow
Fi: Bi(Pi) ≤ max

(πs′ ,πs)∈E
Bi(πs′ , πs)|V|.

C. Path Layout

A path is feasible for Fi if it is able to fulfill the QoS
guarantees (i.e., delay and bandwidth constraints) for that flow
and the network system is considered schedulable if it admits
all flows, i.e.,, all flows in the network have a feasible path.
The deadline and bandwidth-constrained path layout problem
can be formalized as a multi-constrained path (MCP) problem
that is NP-Complete [22], [23]. To our knowledge there is no
direct method to obtain the paths (primary and backup) for our
problem and existing routing heuristics (refer to surveys e.g.,
[24]) are not directly applicable since they are not designed
with RT requirements in mind. Therefore, we develop a low-
complexity heuristic solution for calculating flow paths.

As observed in prior work [10], the end-to-end delays are
lower when the flows experience less queuing interference (each
RT flow has its own queue). The goal of our path selection
algorithm here is therefore to find a path Pi for each flow Fi
that leads to less interference from other flows. We achieve
this by spatially separating the flows across the network (while
satisfying QoS requirements) so that the interference at each
switch can be reduced. For this, we define a metric (called
interference index) to find the paths with minimal contention
(i.e., less interference from other flows). In particular, we define
the interference index of a given path Pi (denoted as II(Pi))
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Algorithm 1 Delay and Bandwidth-Aware Path Selection
1: For each flow Fi ∈ F , generate all possible loop free paths (called candidate paths)

using standard graph theoretical approaches [25].
2: while some flow has more than one candidate path do
3: Find the path Pmax with highest interference. Let the flow Fα uses highest

interference path.
4: if Pmax is the only path for Fα then
5: /* This is the only available path for Fα */
6: Assign the path Pmax for Fα
7: else
8: /* Remove the path with maximum interference */
9: Remove Pmax from candidate path set

10: Recalculate interference for remaining paths (that intersects with Pmax) in
the candidate path set

11: end if
12: end while
13: /* Unable to find a path that respects QoS constraints */
14: if ∃Fi ∈ F with path Pi such that Di(Pi) > Dmaxi or Bi(Pi) >

max
(π
s′ ,πs)∈E

Bi(πs′ , πs)|V| then

15: return Unschedulable
16: end if
17: /* Otherwise flows in the system are schedulable */
18: return the paths for all flows

as a function of available slack time (i.e., Di(Pi) − Dmax
i )

and the total bandwidth utilization U(Pi):

II(Pi)
def
=
(
Di(Pi) − Dmax

i

)
+ [U(Pi)]+ ,

Interference
Index

Delay of Fi on Pi Deadline of Fi

Bandwidth
Utilization

(3)

where the operator [x]+ = x if x ≥ 0, x̄+ otherwise,
where x̄+ is an arbitrary large non-negative number (i.e., the
contention in a path will be higher when there is less slack
and more flows are trying the access the links in path than the
available link bandwidth). This metric provides us a way to
quantify the interference experienced by a flow (and measure
QoS constraints) for a given path.

We then developed an iterative, pruning-based scheme
(Algorithm 1) that uses this interference index to compute
the (primary) paths for the flows. The algorithm has two
steps: (i) generate a set of candidate paths for all flows and
(ii) assign the paths to flows by iteratively discarding paths
with higher interference (based on interference index). This
algorithm is executed offline and has a polynomial complexity
of O(|ρ̂|(V + E)), where |ρ̂| is the number of candidate paths
and V and E are as defined before.

D. Backup Path for Critical Flows

RealFlow provides resiliency by computing backup paths for
critical flows; accounting for failed primary links by reserving
lowest priority queues in switches along backup paths.

Example 1. Consider the topology in Fig. 3 and a critical flow
F1 with path P1 = {π1, π2, π4, π7, π9, π10}. A backup flow
can be provisioned to account for the failure of link (π7, π9),
by defining an additional flow F

′

1 from the switch π7 to the
destination π10. The backup flow has the lowest priority L and
uses the last queue on switches {π7, π8, π9, π10}.

Being pushed down to the lowest priority queue on fail-
ure, the critical flows will now experience hitherto unseen
interference from other, potentially lower priority flows. This

could result in priority inversions and we need to account for
this extra interference during the computation of backup paths.
Note that being on the lowest priory queue4, backup flows will
not interfere with other primary path flows.

π5 π8

π1

π2

π3

π4

π6

π7 π9 π10

N’(V, E’) = N(V, E) – (π7, π9)

π1 π2 π4 π7
F1

π9 π10 Critical 
Flow

Backup Flow
π7 π8 π9 π10

F1’

Ψ0

Ψ1

Ψ(L-1)
ΨLPr

im
ar

y 
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Backup Path
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Low
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io
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y

Fig. 3. Illustration of Backup
Path scheme. Top L queues re-
served for primary path. Lowest
priority queue is for backup path.

Given the primary paths for
all flows, and K edge failures
to consider, our backup path cal-
culation algorithm first updates
the network topology N ′(V, E ′)
where E ′ ⊂ E is the set of edges
that have not failed. Note that
our approach is not picking spe-
cific links for failure apriori5.
Rather, the following procedure
is repeated for all critical flows
that need resiliency and consid-
ers all potential link failures on
their primary paths. For each
critical flow Fi and failed link
considered, an additional, inde-
pendent flow F ′i is defined with
lowest priority i.e., pri′i = L
(i.e., routed through the lowest-
priority queue) with its source
set to the switch preceding the
failed link and its destination set be the same as of flow Fi.

Let us consider Pi = {π1, π2, · · · , πj−1, πj , πj+1 · · · , πq}
as the q-length primary path of flow Fi obtained by primary
path selection mechanism (§III) (where π1 = srci and πq =
dsti) and the failed link (πj , πj+1) ∈ E is in the path. To
calculate backup path, we first update the source node of backup
path flow F ′i as πj – since the flow will be rerouted from this
switch to the original destination switch πq (using fast failover
mechanism). We then execute the path selection algorithm over
the updated topology N ′(V, E ′) from this source node (i.e.,
point of failure). Note that the link (πj , πj+1) does not belong
to the updated set of edges E ′. Besides, if the primary path
of a critical flow Fi does not traverse the failed link, we do
not need to calculate backup paths for Fi – since the primary
path is unaffected by the link failure. Let FB = {F ′i} denote
the set of flows which requires backup path. As we described
in §III-A, the backup path traffic of each flow F ′i ∈ FB will
experience interference from: (a) same priority backup flow
traffic (e.g., packets from ∀F ′j ∈ FB routed through same
switch) and (b) from all other flows (e.g., ∀Fj ∈ F \ {Fi})
from their primary path traffic. We repeat the above steps for
remaining K − 1 link failures.

E. Open-Sourced Implementation6

1. Path Layout Algorithm is implemented as a custom SDN
(northbound) application. It leverages the global state available

4We could reserve more than one lower queue for backup paths at the
cost of having fewer remaining queues for primary paths for critical flows.

5Although that can certainly be done if the system designers expect a
certain link to be more prone to failures.

6https://github.com/synercys/RealFlow
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in the controller to implement Algorithm 1 for finding flow
paths that meet the delay and bandwidth requirements.
2. Flow Rule Installation: we push flow rules to individual
switches using standard Open vSwitch frameworks and tools,
viz., ovs-ofctl and ovs-vsctl [26]. These flow rules
used fast failover groups and strict priority queue scheduling.

IV. EVALUATION

We evaluate our framework in three stages:
1. Simulation-based Performance Evaluation and Compari-
son with State of the Art [§IV-A]: We carried out extensive,
simulation-based experiments to measure the performance of
our scheme for different network topologies as well as varying
flow parameters, QoS requirements and random link failures.
We also compare it with prior work [10], [12].
2. Demonstration of Algorithm Behavior and Link Resiliency
using COTS Hardware [§IV-B]: We used a COTS hardware
setup (Table III) to demonstrate that our algorithms: (a) provide
end-to-end timing guarantees, prioritization and isolation for
RT flows, (b) can multiplex flows and (c) provide resiliency to
link failures while still guaranteeing end-to-end timing for RT
flows on the failed links. We used a mixture of periodic RT and
background traffic – to simulate various realistic application
scenarios and also to stress-test our mechanisms.

TABLE III
SWITCH AND HOST CONFIGURATIONS

Configuration Details
Switch Model Pica-8 P-3297 [19]
Switch OS PicOS v2.8
Switch Software Open vSwitch v2.3.0 [26]
OpenFlow 1.5
Host Model Raspberry Pi
Host OS Linux Kernel v4.14
Switch-Switch B/W 1 Gbps
Host-Switch B/W 95 Mbps

3. Avionics
Case-study [13]
[§IV-C]: We
select the flow
parameters
such as period,
packet size,
etc. similar to
those proposed
in avionics
standards and
used in prior research [13], [27].
End-to-end Delay Measurement: While our algorithms do
not require time synchronization, we used precision time
protocol (PTP) between source and destination hosts [28]
to measure end-to-end delays as the hosts do not share
a common clock. We timestamp the packet in the kernel
at the source host before sending it and record the time
at the destination host after receiving it and capture the
wireshark traces. End-to-end delay = (receive timestamp) −
(send timestamp) + PTP Synchronization Error.
Deadlines: We calculated the mean, standard deviation and
99.99th percentile for the distribution of empirically observed
end-to-end delays on a network with only RT flows. Deadline
for each flow is set to 1.1x the 99.99th percentile value.
Per-packet Processing Delays: We measured the per-packet
processing delay within the Pica8 switch from ingress to egress
by subtracting the difference between end-to-end times for a
linear network with K switches and (K − 1) switches. We
varied K from 2 to 4, as we had access to 4 hardware switches.
These values are used in §IV-A.

A. Simulation-based Performance Evaluation

We analyze the performance of the algorithms for path layout,
multiplexing and backup path calculations, by varying different
parameters – essentially, a broad design-space exploration. For
this purpose, we simulated a large number of synthetic network
topologies and flow sets. We compared the performance of our
approach with prior works [10], [12].

1) Simulation Setup: Our parameters were similar to that
used in literature [10], [29]. We assumed that the bandwidth of
each link (πs′ , πs) ∈ E was 10 Mbps. We considered packet
sizes to be [256, 1024] bytes and set the flow periods between
[10, 1000] ms. We assumed that each switch contained three
queues and there exist three priority-levels, e.g., L = 3 and L =
{HI,MED,LO}. In our experiments we varied the number of
flows |F| ∈ [3, 33] (e.g., there were f/3 flows in each priority-
level where f ∈ [3, 33]).

For network-wide evaluation, we generated random graphs
with 5 switches (each switch with 2 connected hosts) for
each experiment. For each flow Fi, source host srci and
destination dsti were selected randomly as long as srci 6= dsti,
(srci, dsti) ∈ V . Note that for a fixed packet size and a specific
link bandwidth the transmission delay can be considered as
constant. We set the upper bound of the transmission delay
to: 1024×8 bits

10 Mbps = 819.20 µs (i.e., time to transmit the packet
with maximum length). The propagation delay depends on
the physical link length and propagation speed in the medium
(e.g., the speed varies .59c to .77c where c is speed of light
in vacuum). We assume that the length of a link to be no
more than 100m and the propagation delay is upper bounded
by 100 m

0.66×3×106 = 505ns in fiber-link media [10]. Hence,
the transmission and propagation delays Dtp

s′,s for each link
(πs′ , πs) ∈ E was set to 819.20 + 0.505 = 819.705 µs.

Fig. 4. Performance comparison of Multiplexing with related work [10]
for primary and backup path with varying number of flows. NM is No
Multiplexing [10], M is Multiplexing. M BP HIGH is Realflow with backup
paths for high-priority flows; M BP ALL is Realflow with backup paths for
all flows. For each of the experiments we set the deadline Dmin = 2400 µs.

We considered a ‘deadline-monotonic’ priority assignment
scheme [10] where higher priority flows always have more
stringent deadlines than lower priority flows (i.e., ∀Fi, Fj ∈
F ∧ prii 6= prij , priority of Fi is higher than Fj if Dmax

i ≤
Dmax
j ). However, flows belonging to the same priority-level

may have different deadlines. To observe the impact of end-to-
end deadline constraints in different network topologies, we
set the deadline Dmax

i , ∀Fi ∈ F as a function of the topology
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[10] as follows: for each randomly generated network topology
Gi, we set Dmax

i to the minimum delay requirement for the
highest priority flow as Dmin = βδi and incremented it by
Dmin
10 for each of the remaining flows. δi denotes the diameter

(i.e., maximum eccentricity of any vertex) of the graph Gi in
the ith spatial realization of the network topology, β = Dmin

δi
and we varied Dmin (β) as an experimental parameter.

2) Simulation Experiments and Results: A given network
topology with set of flows is considered schedulable if all the
RT flows in the network can meet the delay and bandwidth
requirements7. We therefore use acceptance ratio, defined as
the number of accepted flow configurations (i.e., configurations
that satisfy bandwidth and deadline constraints) over the
total number of generated ones, as a metric to evaluate the
schedulability of the flows. For each (end-to-end deadline,
number-of-flows) pair, we randomly generate 250 different
topologies (using parameters from §IV-A1) and measure the
acceptance ratios. As one would expect, stricter deadline
requirements limit the schedulability, as does increasing the
number of flows. From our simulations, we found that a 5-
switch network as per §IV-A1 can admit up to 33 flows as
long as Dmin ≥ 3.2 ms, as shown in Figure 5.

Fig. 5. Acceptance ratio with varying number of flows and end-to-end deadline
requirements. Our approach can accommodate up to 33 flows if the deadline
Dmin ≥ 3.2 ms.

Comparison with Kumar et al. [10]. We next compared
(Fig. 4) the performance of our approach with prior work [10]
to evaluate the improvement in acceptance ratio due to flow
multiplexing. In Kumar et al. [10], each flow is assigned an
individual queue and hence queuing delay is zero. However,
their performance is limited by the number of queues
supported by the physical switches; they considered 8 queues
per port for each of the switches. For a fair comparison, we
also limited our experiments to 8 queues per port. The x-axis
in Fig. 4 represents total number of flows and y-axis is the
acceptance ratio. For the multiplexing scenario we consider
the following cases: (a) primary path only (no tolerance for
link failure); (b) backup path for only the highest priority
flows (∀Fi ∈ F | prii = 0) and (c) backup path for all the
flows (∀Fi ∈ F).

7Note: if a flow set is not schedulable for primary paths it will also be
unschedulable for backup paths.

5 10 15 20
Number of Switches

0

20

40

60

80

100

P
at

h 
R

er
ou

tin
g

O
ve

rh
ea

d 
(s

)

~100 s

FR-SDN (75%)
FR-SDN (50%)
FR-SDN (25%)
FR-SDN (10%)
Fast-failover

(a) Runtime overhead (in Raspberry Pi)
of both for varying number of switches

5 10 15 20
Number of Switches

0

2000

4000

6000

8000

10000

N
um

be
r o

f P
ac

ke
ts

 L
os

t

~15 packets

FR-SDN (75%)
FR-SDN (50%)
FR-SDN (25%)
FR-SDN (10%)
Fast-failover

(b) Number of packets lost with vary-
ing number of switches

Fig. 6. Comparison of the runtime performance with the state-of-the-art
backup path mechanism: The percentage (for FR-SDN) denotes the fraction
of flows affected by link failure. The results are averaged over 50 trials;

(a) When we only layout primary paths, both Kumar et al. [10]
and our approach perform similarly when the number of flows
is small (|F| ≤ 8). For |F| > 8, as expected, our multiplexing
scheme significantly outperforms theirs and accepts 63% more
flow configurations as their scheme is limited by the number
of queues available in hardware(i.e., up to 8 flows per port).

(b) When provisioning backup paths, the acceptance ratio
drops as expected since backup path traffic is rerouted to a
(possibly) longer path and, being the lowest priority, it also
experiences interference from all other primary path traffic.
This causes more interference (due to FIFO queuing of traffic
– § III-A2 and § III-D)Thus, there is a trade-off between
acceptance ratio and resiliency. This reduced acceptance ratio
is the cost to improve resiliency. (c) Lastly, even when all
flows have backup paths, our multiplexing based approach has
18% higher acceptance ratio since we accept more than 8
flows. Thus, our approach exhibits significantly better network
utilization compared with prior work and is able to smoothly
trade off between network resilience and utilization.
Comparison with Lee et al. [12]: We also compared our ap-
proach with the state-of-the art fault tolerance mechanism
(FR-SDN [12]). FR-SDN computes backup paths at runtime by
solving an MCP problem [10] at individual switches when link
failure occurs. In Fig. 6 we compare the runtime performance
of our fast failover scheme with FR-SDN running on Raspberry
Pi with a varying number of switches. We set the rate to 1
Mbps for each flow and vary the number of flows that are
affected by a link failure as a percentage of total number of
flows. As Fig. 6 shows, increasing the size of the network
results in increased runtime overheads and packet drop rates
for FR-SDN – this is expected as the time complexity of
MCP increases with number of flows and the size of the
network [10]. In contrast, our scheme (solid, horizontal blue
line in Fig. 6) has constant, hardware-based fail-over time
that also results in a small, but constant, number of packet
drops irrespective of number of flows and network size. Similar
results were observed when we change the total number of
flows in the system. Note that we recreated the FR-SDN
scheme in python8 using its description [12]. Even if FR-
SDN was implemented using a low-level language like C and
benefited from the resulting speed-up (Python to C speed-up ≈

8We requested but were not provided access to FR-SDN implementation.
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Fig. 7. End-to-end delays without Algorithm 1. The end-to-end delay
(black line) of a flow that saturates the link capacity exceed the deadline
(green line).

Fig. 8. End-to-end delays after applying Algorithm 1. On link failure,
the end-to-end delay of the packets are still met, barring some that are in
transit on the failed link (red cross).

10x-20x [30]), fast fail-over still results in significantly lower
rerouting delays (100 µs) when compared to FR-SDN (tens of
seconds). However, this constant, bounded rerouting time and
low packet loss is achieved at the expense of network utilization
due to overprovisioning of resources (e.g., the lowest priority
queue) that may otherwise be used by other flows. Thus, FR-
SDN and RealFlow (pre-computed back-up paths+hardware
supported fast failover), represent different design points on
opposite ends of the latency-utilization trade-off space. Also
our approach is COTS compatible while they modify both
switches and the OpenFlow protocol.

B. Algorithm Behavior & Link Resiliency on COTS Hardware

We validated our scheme and evaluated its performance
with synthetically generated flows with different rates and
priorities running on hardware switches as listed in Table III.
We connected the hosts in a pairwise client-server fashion (i.e.,
flows are routed from the client host to the server host through
our SDN network). The topology is illustrated in Fig. 9 that
shows 4 switches: π1, π2, π3 and π4, with 11 hosts connected
to switch π3 and another 11 hosts connected to switch π4. The
switch to switch links are 1 Gbps Ethernet links. However, the
host to switch links are limited by the rate of the hosts, i.e., 95
Mbps — the observed limit for our model of Raspberry Pi. In
addition, we have pervasive background traffic in the system,
through the path π1 → π2 → π3 → π4, designed to saturate
the network and is thus generated at 1 Gbps. This is done to
stress-test our approach. Note that the background traffic is at
a priority lower than the lowest RT flow.

With these flow rates, up to 10 flows can share the shortest
path between source and destination hosts. Additional (i.e.,
11th) flows will saturate the link capacity (Fig. 7; X-axis:
packet number; Y-axis: end-to-end delay for each packet), and
would lead to missed deadlines and may result in many packet
drops when added to the same path as the other 10.

Fig. 9. Hardware topology demonstrating the Path Selection Algorithm.

TABLE IV
RT CHARACTERISTICS OF FLOWS USED IN OUR AVIONICS CASE STUDY

Flows Size Period Deadline Nature
Flight Control Flows (MEDIUM)
(F1–F4) (e.g., Fly-by-wire con-
trol system, Autopilot Flight Di-
rector, Flight Data Recorder)

1024
Byte

1 ms 900µs Hard
RT

Cockpit Control Flows (MEDIUM)
(F5,F6) (e.g.,. Flight Warning,
Flight Management systems)

1024
Byte

1 ms 900µs Hard
RT

Engine Control Flows (HIGH)
(F7,F8) (e.g., Power Systems,
FADEC# Systems)

1024
Byte

1 ms 900µs Hard
RT

Cabin Flows (LOW)
5 Flows (e.g., Cabin Temperature
Control, Lighting, Multimedia)

64
Byte

1µs × Best
Effort

#Full Authority Digital Engine Control

Algorithm 1 routes flows along shortest paths (as long as
end-to-end deadlines are met and link capacity is available).
When computing paths for a new flow – one that would either
saturate link capacity or result in its own deadline to be missed
– the algorithm will pick a path that is no longer the shortest one
based on the interference calculations from §III-A3. In Fig 9,
the path for the 11th flow will be: π3 → π2 → π4, represented
by thin blue solid arrows. Furthermore, we calculate backup
paths for this flow and find an alternate route that will satisfy
its end-to-end deadlines (π3 → π1 → π2 → π4, dashed arrows)
in case the link π3 → π2 on its primary path fails.

Fig. 8 shows the results due to our path assignment (axes
similar to Fig. 7). When the packets for the 11th flow follow its
assigned primary path, they all meet their deadline (the black
dots indicating primary path). To demonstrate the effectiveness
of our backup path calculation mechanisms, we induced a link
failure on the π3 → π2 link. As the Fig. 8 shows, even after
the failure event (the first set of red crosses), packets still meet
their end-to-end deadlines (the blue dots indicating backup
path) as the fast failover mechanism routes the packets along
the pre-computed backup path (π3 → π1 → π2 → π4) without
any assistance from any external entity, say, the controller.
This transition happens in a short, bounded time-frame limited
only by the switch hardware. When the original link is restored
the packets are rerouted along their original path.

We found that 15 packets were dropped during link failure
(at RT flow rates of 1 Mbps) as the fast failover mechanism is
not instantaneous. It takes a small, finite, amount of time in
COTS SDN switches — as low as 100µs for modern switches
operating at line speeds [32]. The “path restoration time” [12]
for our system is bounded by this hardware feature and is
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(a) Naive method (b) Algorithm 1 (c) Algorithm 1 + Link Failure (d) Histogram for F8

Fig. 10. 99.9th percentile end-to-end delays for RT flows across 100,000 packets when: (a) using the shortest-path and RT traffic share a common link,
(b) using paths allocated by Algorithm 1, (c) a single link fails between π1 and π3 – affected F3 & F7 are rerouted through a backup path via switch π2, (d)
Histogram for flow F8 with Kolmogorov—Smirnov (K-S) [31] statistic value of 0.135.

independent of the number of flows, switches or network
topology. In contrast, existing approaches [12] compute backup
paths at runtime, causing variable delays (§ IV-A2).

C. Case Study: Avionics Network

To further demonstrate the effectiveness of our algorithm,
we constructed a 4-switch, 8-flow topology, as shown in Fig. 1
where the specifications are drawn from a case study of an
Avionics network [13], summarized in Table IV. All RT flows
have a period of 1000 µsecs and packet size of 1024 bytes.
We also introduced spurious background traffic between two
switches: π3 and π4 (at a lower priority than all the RT
flows). As the number of flows (8) > number of queues (2),
multiple flows are multiplexed onto the same priority level. We
performed three experiments and our observations (of 99.9th

%ile end-to-end delays) are summarized in Fig. 10.
In the first experiment, we demonstrate the problem with

using the shortest-hop path for scheduling the RT flows. We
saturated the link between switches π1 and π3 by introducing a
fixed-rate interfering traffic flow at medium priority. Flows F3

and F7 that use this link as their shortest-path.Always using
the shortest path can cause flows (e.g., medium priority flow,
F3; Figure 10a) to miss deadlines. The high priority flow F7

still meets its deadline due to priority-based scheduling.
Next, we lay out flow paths using Algorithm 1 – for the

same system. Flow F3 now takes a 2-hop path: π1 → π2 → π3
instead of the shortest path π1 → π3. Note that the interference
traffic between switches π1 and π3 is irrelevant since F3 no
longer uses that link. Figure 10b shows that all flows (including
F3) meet their deadlines. Finally, we set up backup paths using
the fast failover mechanism. We then fail link π1 and π3 that
causes F3 and F7 to be re-routed through their pre-computed
backup paths. Figure 10c shows that all flows (including F3

and F7) meet their deadlines despite the link failure.
Figure 10d compares the end-to-end times for F8 with

(orange) and without (blue) background traffic on a shared
link. As shown by the histogram, the two distributions are very
similar. This is also highlighted by the Kolmogorov—Smirnov
(K-S) statistic [31] value of 0.135 – a statistical test that
provides insights into the similarities between two distributions
(lower numbers =⇒ higher similarity). Importantly, even in
the presence of background traffic saturating the link, packets
for F8 continue to meet their deadlines (900µs, the red line).

V. RELATED WORK

We conducted a detailed comparison of RealFlow with
state of the art [10], [12] (Section IV-A & Table I). Resilient
packet transmission through SDN by reporting link failures
to the controller which then generates alternative paths by
considering the run-time network status has been proposed [33],
[34]. A two-step failure recovery mechanism is also proposed
where flow rules are updated by the controller considering QoS
requirements [35]. Those approaches, however, may incur long
delays [36]. Similarly, some work aims to synthesize flow rules
to provide routing resiliency guarantees using fast failover [7],
[37], [38] and provisioning alternative paths. However, they
have not considered RT constraints on the backup paths.

Recent standardization efforts such as IEEE 802.1Qav and
IEEE 802.1Qbv aim to provision RT QoS using Ethernet (TSN
approach). However, commodity hardware supporting these
standards is not yet widely available. Time-sensitive SDN
(TSSDN) [39] considers an SDN architecture but deviates from
commodity Ethernet as it assumes a TDMA extension. Meyer
et al. [40] provided a simulation-based assessment of integration
of time-triggered traffic in the Ethernet AVB (audio video
bridging). These approaches do not optimize link bandwidth.
In contrast, the global view provided by SDNs allows us to
optimize path layouts considering both deadline and bandwidth
constraints. Liao et al. [41] proposed timestamping Link Layer
Discovery Protocol (LLDP) packets for link latency monitoring
in SDNs. These packets are injected by controllers for global
network topology discovery and timestamping them does not
require flow table entries to be set up, thus reducing overheads.

Azodolmolky et al. [42] and Bemten et al. [43] used network
calculus based models to estimate delay for packets routed
through a switch using extensive benchmarking. However,
they neither consider switch scheduling effects (e.g., multiple
queues in a port) nor link failures along flow paths. We hope
to explore network calculus based approaches in our future
work. There also exists work for provisioning end-to-end
flows with delay guarantees [44]. but they don’t optimize for
bandwidth allocation nor considered flow multiplexing. Other
work considers QoS constraints for SDN-enabled networks [24]
— however RealFlow distinguishes itself by meeting end-to-end
timing constraints for flows while improving network utilization
and resiliency for such systems.
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VI. CONCLUSION

The use of COTS hardware and software for designing
and provisioning RT networks can reduce costs and network
sizes – allowing for significant reduction in hardware/software
in systems as diverse as automobiles, avionics, power grid
substations, industrial control systems and manufacturing
plants. The SDN paradigm provides a global view of the
network, allows for centralized resource allocation and, with
widely available support for COTS switches, presents an
interesting opportunity to realize resilient RT networks for
critical applications — as shown in this paper.
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