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ABSTRACT
Cyber-Physical Systems (CPS) such as industrial control systems,

automobiles, and medical devices often consist of applications with

real-time properties. Due to the safety-critical nature of the applica-

tion domain, multiple security and fault tolerance approaches have

been studied and used in safety-critical CPS. One of the popular

approaches for CPS safety is the Simplex architecture, which has

also been used recently to strengthen the security of the CPS. The

simplex architecture supports the integration of safe controllers

for dependable systems, and when combined with periodic restarts,

the architecture can reset the CPS into a safe state after each restart.

However, these restart-based systems do not protect the system

against attacks that persist beyond a restart. Such attacks can be

mitigated using secure boot, which is a widely used approach for

securing general computing systems but is not used in real-time sys-

tems due to the overhead of the boot process. This paper presents

an analytical framework and derives feasibility conditions to enable

secure reboots in real-time applications. The schedulability condi-

tions presented can be used to design and integrate secure reboot

into Simplex-based CPS. Our analysis shows that secure boot adds

a deterministic and low-performance overhead, which can be as

low as 0.08%.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; Real-time systems; • Security and privacy
→ Trusted computing.
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1 INTRODUCTION
The application of cyber-physical systems (CPS) has increased

tremendously across a wide range of domains, including safety-

critical applications such as flight software, medical devices, and

scientific instruments. CPSs have also taken advantage of the re-

cent improvements in the Internet of Things (IoT) technologies to

streamline processes and enhance performance and productivity.

However, these improvements require an increased level of connec-

tivity for many components in the CPS architecture, including the

real-time embedded systems (RTES), which CPS rely on to control

certain core processes of the plants. As a result, RTESs have become

more exposed to adversaries that may compromise the controller

in an effort to affect the plant.

Increasing attacks on CPS have motivated research in CPS se-

curity. One such security approach is the Simplex architecture.

Figure 1 depicts the architecture comprising three primary compo-

nents: safety unit, complex unit, and decision module. The safety

unit contains a fully verified controller that is outside the reach

of an attacker. The complex controller, on the other hand, makes

significant use of commercial off-the-shelf (COTS) components

that are not verified and can be vulnerable to attacks. The decision

module is responsible for switching the operation mode between

safety and complex controller to ensure the CPS plant is functional

throughout the timeline. The use of the COTS component makes

the complex controller exposed to known vulnerabilities. Restart-

based approach has been previously used to strengthen the security

of the complex controller [1–3].

In this work, we present a secure boot integrated restart-based

approach that periodically restores the real-time complex controller

into a secure computing environment. The secure boot mechanism

prevents the installation of persistent rootkits or compromised OS

images from taking over a system. Though the secure boot sequence

ensures a trusted computing environment after every restart, its

use in safety-critical systems is limited due to the lack of thorough

timing analysis that is needed for real-time systems.

This paper presents a response-time based analysis of periodic

secure reboots and establishes a relation between the schedulability
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Figure 1: Architecture of CPS plant with Simplex-based RTES
Controller.

and vulnerability window as a function of the system parameters

like reboot period, system unavailability, and scheduling scheme.

Our contributions are summarized as follows:

• We introduce a restart-based real-time security framework

based on periodic secure reboots.

• We provide schedulability analysis and equations that can

be used to derive performance trade-offs arising from the

level of security requirements.

• Using the system’s task parameters, we characterize the

delay introduced by the non-instantaneous periodic secure

restart and determine its bounds.

2 BACKGROUND
A system with real-time properties requires that the application

tasks complete execution before a predetermined deadline. This
timing guarantee is crucial, especially for safety-critical CPSs, to

avoid system failure, computed by schedulability analysis that ver-
ifies whether all tasks in the system will meet their deadlines

in the worst-case. A method for establishing the worst-case sce-

nario is through a characterization of the worst-case response time

(WCRT) [4, 5] computed by adding the worst-case execution time

(WCET) of a task and the interference caused due to preemption by

higher priority tasks. The WCET can be calculated using various

methods such as a tree- and path-based analysis [6, 7].

Secure boot establishes a trusted computing environment in

a system after each restart by ensuring that a device only boots

from trusted software (firmware). This trust is accomplished by

authenticating each component of the boot process, starting with

a (hardware or software) root of trust component. The authenti-

cation consists of verifying the embedded signatures contained in

firmware images to determine whether to allow or deny its execu-

tion, thereby preventing the installation of persistent rootkits or

compromised OS images from taking over a system. Compared to

a normal reboot (i.e., a reboot with no signature verification) [7],

the secure boot authentication process requires more time, and

integrating a recurring secure reboot to maintain a trusted environ-

ment in real-time CPSs will impact system availability. Specifically,

periodically rebooting an RTES controller can have additional con-

sequences for the CPS’s operation since the plant’s actuators rely

on timely commands generated by the RTES.

3 ADVERSARY MODEL
As shown in Figure 1, the complex controller unit of the RTES

can be accessed from the CPS network through the system’s input

interfaces and peripherals. In this work, we consider a remote

adversary that can reach the RTES through these interfaces and

compromise the software of the complex controller. We assume that

the safety controller is located on a separate and isolated partition of

the RTES and therefore cannot be accessed by the remote attacker.

We also assume that all software components of the complex unit

in the RTES are trustworthy initially, i.e., their static images are

cryptographically signed by trusted system developers.

Consistent with previous studies [8], the goal of the attacker in

this work is to control or tamper with the plant’s operation. To

achieve this goal, the attacker manipulates the real-time operating

system (RTOS) image or real-time and control applications in the

complex controller. This manipulation impacts the integrity of the

actuator commands computed by the complex controller.

4 SECURE BOOT-ENABLED SIMPLEX SYSTEM
Our goal in this work is to integrate security functionalities to pre-

vent the adversarial actions presented in Section 3 while attempting

to minimize the impact on the system’s performance. In this section,

we present the design of the secure boot-enabled RTES and analyze

its schedulability performance.

4.1 System Design
An RTES compromised by an adversary at runtime can be recovered

by resetting the complex partition to its initial trusted state using

an external timer input and a secure boot-enabled restart operation.

The safety unit provides a mechanism to initiate the secure restart

operation on the complex unit, and regardless of the current state

of the partition (secure or under attack), the safety unit sends a

hardware pulse to the complex controller reboot pin. Hence, an

adversary is unable to block the restart operation. The secure-boot

enabled restart ensures that (1) compromised software components

are disabled, and (2) only authenticated software components are

activated in the complex unit once the partition is restored.

Both the deactivation (of possibly corrupted software) and au-

thentication (of trustworthy software) are achieved through a signa-

ture verification mechanism started from the root of trust, a system

component trusted for measurement and verification at all times.

The root of trust comes both in the form of software and hardware

components. A software root of trust is typically stored in a secure

read-only memory (ROM) location and is responsible for checking

the signatures of subsequent components locally or with the help

of trusted hardware. In this work, we use a bootloader as a software

root of trust, a trusted component in traditional computing sys-

tems that initializes a system’s software stack. A bootloader is also

usually lightweight and would be suitable for resource-constrained

platforms such as an RTES. In addition, it is readily available on

most COTS devices or would be easy to install on an existing system

that does not have one.

This signature verification approach guarantees a secure com-

puting environment only at restart. That is, once the RTES has been
securely rebooted, the adversary can once again attempt to modify

the RTOS and other applications to regain control of the complex

controller. Thus, to limit the potential impact of an attack, we rou-

tinely verify the authenticity of the software on the platform by

performing a periodic secure reboot.
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4.2 Schedulability Analysis
We now analyze the operation of the complex unit with periodic

secure reboots enabled and derive the schedulability conditions for

a secure-reboot system. First, we formally define the RTES tasks

necessary for the analysis as follows: we consider that the complex

controller is a uniprocessor system that executes a set T of periodic

tasks using a fixed priority preemptive scheduling algorithm prior

to integrating the periodic secure reboot functionality. Each task

𝜏𝑖 ∈ T is characterized by a tuple {𝐶𝑖 ,𝑇𝑖 , 𝜋𝑖 }, where𝐶𝑖 is theWCET

of the task.𝑇𝑖 is the period i.e., an instance of the task is periodically

released at a regular interval of 𝑇𝑖 units of time (we denote by 𝜏𝑖,𝑚
the instance released at time𝑚𝑇𝑖 ). 𝜋𝑖 is the task’s priority. Priorities

are assigned such that for two tasks 𝜏𝑖 and 𝜏 𝑗 , if 𝜋𝑖 < 𝜋 𝑗 then 𝜏𝑖 has

higher priority than 𝜏 𝑗 . In addition, we assume the tasks to have

implicit deadlines, that is, a task released at𝑚𝑇𝑖 , for an arbitrary

integer𝑚, must complete its execution by (𝑚 + 1)𝑇𝑖 (we refer to the
implicit deadline simply as deadline herein). We denote the total

utilization of T by𝑈 =
∑
𝑢𝑖 where 𝑢𝑖 = 𝐶𝑖/𝑇𝑖 .

The WCRT of 𝜏𝑖 on a unicore processor, with fixed priority pre-

emptive scheduling [9, 10], can be calculated using the recurrence

relation by Audsley et al. [4]:

𝑅𝑖 (𝑛 + 1) = 𝐶𝑖 +
∑︁

𝜋 𝑗<𝜋𝑖

⌈
𝑅𝑖 (𝑛)
𝑇𝑗

⌉
𝐶 𝑗 (1)

where 𝑅𝑖 (𝑛) is the value of the WCRT calculated at 𝑛th step of

the iteration. The equation terminates when 𝑅𝑖 (𝑛 + 1) = 𝑅𝑖 (𝑛) or
𝑅𝑖 (𝑛) > 𝑇𝑖 . The base condition for the recurrence relation can be

taken as 𝑅(0) = 𝐶𝑖 .

To integrate the periodic secure reboot, we model the reboot

procedure as a periodic task 𝜏𝑟 with a WCET of 𝐶𝑟 , a period of 𝑇𝑟
and a priority 𝜋𝑟 . Since the reboot process is capable of preempting

all ongoing processes in the complex controller, we consider that

𝜏𝑟 has the maximal priority 𝜋𝑟 in the system, i.e., 𝜋𝑟 < 𝜋𝑖 , ∀𝜏𝑖 ∈ T .

Also, for the restart task, theWCET𝐶𝑟 can be viewed as the duration

between triggering the reset pin of the controller to the instant

the first task of T starts execution. This duration depends on the

controller’s mode of operation. For the purpose of our analysis,

we distinguish three modes: for a system with no-restart task, we

let 𝐶𝑟 = 0. When a periodic non-secure restart is added, we can

assign𝐶𝑟 = 𝜖 , where 𝜖 represents the duration of the system restart.

Finally, for a mode of operation that integrates the periodic secure

reboot functionality, 𝐶𝑟 = 𝜖 + 𝜖 ′, where 𝜖 ′ represents the overhead
due to secure boot verifications. Since the restart procedure is the

same for every restart, 𝐶𝑟 is considered to be constant.

Besides 𝐶𝑟 , another timing parameter that we must study in

order to perform an accurate schedulability analysis is the max-

imum number of restarts that a task 𝜏𝑖 can be subject to before

completing a single execution. The worst-case number of restarts

can be characterized by first understanding the secure reboot mech-

anism: if a task is already executing while the reboot is triggered,

that task will be terminated and flushed along with the rest of the

system memory. However, if the task has not been released yet,

that task will be scheduled even if the task and restart are released

at the same time. Using this distinction, we formulate the following

Lemma derived from Eq. 1:

Lemma 4.1. WCRT for an arbitrary task in a secure-restart based
RTES is found when

𝑅𝑖 (𝑛 + 1) = 𝐶𝑖 +𝐶𝑟 +
∑︁

𝜋 𝑗<𝜋𝑖

⌈
𝑅𝑖 (𝑛)
𝑇𝑗

⌉
𝐶 𝑗 (2)

converges, i.e., 𝑅𝑖 = 𝑅𝑖 (𝑛 + 1) = 𝑅𝑖 (𝑛).

Proof. Let us draw a relation between an arbitrary task 𝜏𝑖 ∈ T
and the reboot task, 𝜏𝑟 for an arbitrary instance 𝜏𝑖,𝑚 . We know

that the release time of 𝜏𝑖,𝑚 is𝑚𝑇𝑖 and the deadline is (𝑚 + 1)𝑇𝑖 .
Similarly, we can assume a reboot task with period 𝑇𝑟 . The least

common multiple of the periods of all tasks except the reboot task

is termed as a hyperperiod, which can be denoted by ℎ. The total

number of possible restart in ℎ can be calculated as ⌊ ℎ
𝑇𝑟
⌋. Out of

all the possible reboot instances, let us assume that instance 𝜏𝑟,𝑘 is

closest to 𝜏𝑖,𝑚 . Between 𝜏𝑖,𝑚 and 𝜏𝑟,𝑘 , there can be three possible

relations: 𝑘𝑇𝑟 ≤ 𝑚𝑇𝑖 ,𝑚𝑇𝑖 < 𝑘𝑇𝑟 ≤ (𝑚 + 1)𝑇𝑖 , and 𝑘𝑇𝑟 > (𝑚 + 1)𝑇𝑖 .
Case 1: The worst-case overhead will occur at 𝑘𝑇𝑟 =𝑚𝑇𝑖 , where

the overhead will be 𝐶𝑟 = 𝜖 + 𝜖 ′.
Case 2: In this case, either 𝑘𝑇𝑟 −𝑚𝑇𝑖 is large enough for 𝜏𝑖,𝑚 to

complete the execution, or the reboot will terminate the task and it

will be deemed non-schedulable. Hence, the worst-case overhead

will be 0 in this case.

Case 3: This case won’t affect the execution of 𝜏𝑖,𝑚 . Hence, this

case won’t add an overhead to the WCRT.

Hence, the highest interference due to reboot will be observed

in case 1. Therefore, taking 𝐶𝑟 = 𝜖 + 𝜖 ′ in Eq. 2 captures the WCRT

out of all possible cases. □

The key here is that a task instance can face a maximum of one

reboot during its execution. If the reboot preempts the task, the

decision unit will switch the control to the safety unit to prevent

the system from crashing and will switch back to the complex

controller when it is active again after the reboot.

A task is deemed non-schedulable if any instance of the task fails

to complete execution within the deadline. Lemma 4.1 states the

WCRT equation for a periodic reboot. The WCRT for a task can be

used to formally state the conditions for schedulability.

Lemma 4.2. For a task 𝜏𝑖 to be schedulable in a secure reboot
enabled RTES, it is necessary to satisfy the following conditions:

(1) 𝑅𝑖 ≤ 𝑇𝑖 ,
(2) 𝑈 + 𝑢𝑟 ≤ 1, where 𝑢𝑟 is the utilization of 𝜏𝑟 ,
(3) 𝑅𝑖 ≤ 𝑇𝑟 ,

If condition 1 is not satisfied, a task released at time 𝑚𝑇𝑖 will

not be able to complete execution before the release of the next

instance of the task time (𝑚 + 1)𝑇𝑖 . Condition 2 can be explained

by the following reasoning: Let𝑈 = 𝐶
𝑇
, and 𝑢𝑟 =

𝐶𝑟

𝑇𝑟
. If

𝐶
𝑇
+ 𝐶𝑟

𝑇𝑟
> 1,

it implies that
𝐶𝑇𝑟+𝐶𝑟𝑇

𝑇𝑇𝑟
> 1. We know that the hyperperiod of a

task set is equal to the LCM of the period of all the tasks. Let us

denote a hyperperiod by ℎ. Hence, we can also write
𝐶𝑇𝑟+𝐶𝑟𝑇

ℎ
> 1,

or 𝐶𝑇𝑟 +𝐶𝑟𝑇 > ℎ, which implies that all the tasks (including the

restart task) cannot be accommodated within the given hyperperiod

if condition 2 is not satisfied.

Condition 3 of Lemma 4.2 is an extension to condition 1 and it is

only applicable to systems with periodic reboots. The conditions

state that the reboot period has to be at least the length of WCRT
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Figure 2: Example of three execution windows (𝑋𝑖,1, 𝑋𝑖,2, and
𝑋𝑖,3) for task 𝜏𝑖 . The minimum execution window is 𝑋𝑖,3 be-
cause it is shorter than 𝑋𝑖,1 and 𝑋𝑖,2 due to the upcoming
second instance of 𝜏𝑟 .

of the task, else the task will be terminated by the periodic reboot

and it will never be able to complete execution.

For a periodic task set, we can treat the necessary schedulability

conditions stated in Lemma 4.2 as the base condition for schedul-

ability. However, these conditions are not sufficient to prove a task’s

schedulability because these conditions do not account for all the

possible instances of a task. As stated in the proof of Lemma 4.1,

there can be cases where 𝑘𝑇𝑟 −𝑚𝑇𝑖 ≤ 𝑅𝑖 and the task will fail to

complete before being terminated by the system reboot. We can

generalize the cases from the proof of Lemma 4.1 to define the

execution window of the task.

Definition 4.3 (Execution Window). For an arbitrary instance𝑚

of a task, 𝜏𝑖,𝑚 , the execution window is the maximum available exe-

cution time before the task gets terminated. The execution window

of any arbitrary instance 𝜏𝑖,𝑚 can be formally defined as:

𝑋𝑖,𝑚 =

{
𝑘𝑇𝑟 −𝑚𝑇𝑖 𝑚𝑇𝑖 < 𝑘𝑇𝑟 ≤ (𝑚 + 1)𝑇𝑟
𝑇𝑖 , 𝑘𝑇𝑟 ≤ 𝑚𝑇𝑖 or 𝑘𝑇𝑟 > (𝑚 + 1)𝑇𝑖

(3)

For all possible pairwise value of (𝑚,𝑘), where 𝑚 and 𝑘 are

instances of a system task and reboot task respectively.

In Fig. 2, we see three different cases of execution window. For

𝑋𝑖,1, the task executes after the system has rebooted into a fresh

state, in this case, the execution window is 𝑇𝑖 . In the case of 𝑋𝑖,2,

we see no interference due to reboot and this case also has the

same execution window size. However, in the case of 𝑋𝑖,3 we note

that the execution time has been shortened due to the periodic

reboot. Using the three cases, Eq. 3 can be further tightened to only

use instances of 𝑇𝑟 to calculate the execution windows that are

shortened due to the periodic reboot. We can derive a definition

for the minimum available execution window for an arbitrary task

based on the reboot period.

Definition 4.4 (Minimum Execution Window). The shortened exe-
cution window can be defined as:

𝑋𝑖,𝑚 =

{
𝑘𝑇𝑟 −

⌊
𝑘𝑇𝑟
𝑇𝑖

⌋
𝑇𝑖 , 𝑘𝑇𝑟 mod 𝑇𝑖 ≠ 0

𝑇𝑖 , 𝑘𝑇𝑟 mod 𝑇𝑖 = 0

(4)

In the piecewise equation Eq. 4, the conditions are based on the

divisibility of 𝑘𝑇𝑟 by 𝑇𝑖 . If the reboot instance is a multiple of 𝑇𝑖 ,

i.e., 𝑘𝑇𝑟 = 𝑛𝑇𝑖 for 𝑛 ∈ Z, the execution window of the immediately

preceding task will be 𝑘𝑇𝑟 − 𝑘𝑇𝑟
𝑇𝑖

𝑇𝑖 = 𝑛𝑇𝑖 − 𝑛𝑇𝑖 = 0, since 𝑘𝑇𝑟 = 𝑛𝑇𝑖 .
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Figure 3: Impact of Secure Boot on Task Set Schedulability
using AFPP and RM Scheduling.
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Figure 4: Impact of Secure Boot on Schedulability.

Hence the execution window available to the 𝑛𝑡ℎ instance of the

task is 𝑇𝑖 as the reboot trigger coincides with the task deadline

and the task window is not shortened by the reboot. Using Eq. 4,

the Minimum Execution Window can be defined as𝑚𝑖𝑛{𝑋𝑖,𝑚}𝑁
𝑚=0

,

where 𝑁 = ℎ
𝑇𝑖
.

Theorem 4.5. If the WCRT of a periodic task 𝜏𝑖 , calculated using
Lemma 4.1, satisfies the conditions of Lemma 4.2, then the task is
guaranteed to be schedulable if the minimum execution window is at
least as long as the WCRT of the task.
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Proof. Let us assume that task 𝜏𝑖 satisfies Lemma 4.2 where

the WCRT, 𝑅𝑖 , is calculated using Lemma 4.1, which accounts for

all the possible worst-case interference. Let us assume that the

Minimum Execution Window = 𝑋𝑚𝑖𝑛
. If 𝑅𝑖 < 𝑋𝑚𝑖𝑛

, then using

Definition 4.4, 𝑅𝑖 < 𝑋𝑖,𝑚∀0 < 𝑚 ≤ ℎ
𝑇𝑖
, which says that if the WCRT

of a task can be accommodated within the minimum execution

window, the task can complete execution in all its instances. Recall

that the schedulability of a task is defined as the ability to complete

execution before the deadline in all the instances of the task. Hence,

Theorem 4.5 sufficiently proves the schedulability of any task 𝜏𝑖 .

□

5 EVALUATION
In this section, we evaluate the impact of the addition of the secure

reboot task on the task set schedulability.

5.1 Experimental Setup
We implemented our approach on the RTEMS RTOS [11] using

Das U-Boot, which is a popular open-source bootloader that is

compatible with a wide range of embedded devices. There are two

steps to implementation; the first stage occurs on a host computer

and the second on the RTES. During the first phase, The U-boot

bootloader is built using user-provided configurations supplied

through an .its file. Next, the hashed image is encrypted with

RSA2048 and stored in a flattened image tree format. In addition

to the flattened image tree, the device tree and generated public

key are stored in a read-only memory location on the RTES. The

second stage occurs every time the RTES is restarted. U-Boot uses

the public key obtained from stage 1 to verify the hash of the kernel

image and only allows a signature-verified image to boot. To ensure

the integrity of execution, we terminate and discard all the tasks

that did not complete execution before the reboot was triggered.

For performance analysis of the proposed model, we used The-

orem 4.5 on a synthetic task set that we generated using the UU-

nifast algorithm [12]. With a constant value for the hyperperiod

(ℎ = 1000), we randomly selected task periods from the set of

the factors of ℎ. For each task 𝜏𝑖 , the WCET is calculated using

𝐶𝑖 = 𝑇𝑖 ×𝑈𝑖 . We varied 𝑈 from 0.1 to 0.9 in steps of 0.1. For each

value of 𝑈 , we generated 1000 task sets with 20 tasks in each task

set. The reboot overhead values, i.e., values for 𝜖 and 𝜖 ′, used in

this performance analysis are recorded from our hardware test

implementation discussed above.

5.2 Experiments and Results
We performed the following experiments to gain quantitative in-

sights about the performance overheads due to periodic secure re-

boots. We measured performance in terms of the impact on the sys-

tem’s schedulability in three different modes: (1)No reboot:𝐶𝑟 = 0

(2) Non-secure reboot: 𝐶𝑟 = 𝜖 (3) Secure-reboot: 𝐶𝑟 = 𝜖 + 𝜖 ′.
We define schedulability of a task set as the percentage of the

tasks that can successfully complete execution before their respec-

tive deadline. For each experiment, we used an arbitrary fixed

priority preemptive (AFPP) scheduling [9] and a rate monotonic

(RM) scheduling algorithm [13] for assigning priorities to each task

in the task sets.

Experiment 1: This experiment shows the schedulability com-

parison of a set of 1000 task sets for each value of 𝑈 with a ran-

domly chosen fixed value of 𝑇𝑟 from a range of (0, ℎ]. The reboot
overheads are 𝜖 = 5.05 and 𝜖 ′ = 0.02856 seconds, which are col-

lected from our implementation setup. Fig. 3 shows the impact

of the periodic restart of the complex controller. Interestingly, we

observe an almost indistinguishable pattern in the normal reboot

and secure reboot traces with both AFPP and RM scheduling (see

Figs. 3a and 3b), which implies that for restart-based systems, there

is no significant reduction in schedulability by adding the secure

boot sequence in the restart operation. In particular, for the utiliza-

tion range typically used in CPS (0.5 to 0.7), the maximum drop

in schedulability is approximately 0.03% for AFPP and 0.081% for

RM scheduling. We attribute this to the schedulability conditions

presented in subsection 4.2.

Experiment 2: We extend Experiment 1 further and analyze

the numerical summary from a randomly generated task set. To

understand the performance trend better, we generated additional

task sets and analyzed the schedulability of 50000 randomly gen-

erated tasks using boxplots. The five-point summary (minimum,

first quartile, median, third quartile, and maximum) schedulability

of all tasks shows a complete picture of the task schedulability at

the given utilization level with the same fixed values of 𝜖 and 𝜖 ′ as
used in Experiment 1. We used a pseudo-random number generator

to assign values for 𝑇𝑟 . Fig. 4 shows the schedulability of task set

with an arbitrary value of 𝑇𝑟 = 120. The box plot demonstrates the

relation between the system utilization and schedulability of task

sets with a constant 𝑇𝑟 .

Experiment 3:Wenow examine the impact of weighted schedul-

ability [14] as a function of the utilization level and task schedul-

ability at each utilization level. We define weighted schedulability

as:

∑𝑘−1
𝑖=0 (𝑈𝑖 .𝑆 (𝑈𝑖 ,𝜖+𝜖′,𝑇𝑟,𝑚))∑𝑘−1

𝑖=0 𝑈𝑖

, where 𝑆 (𝑈𝑖 , 𝜖 + 𝜖 ′,𝑇𝑟,𝑚) is the schedul-
ability at utilization level𝑈𝑖 and 𝑇𝑟,𝑚 . The resulting plot in Fig. 5

shows that the schedulability of the task is directly proportional to

the reboot period. On one hand, a longer reboot period results in

a higher frequency of the periodic reboot, which lowers the task

schedulability. On the other hand, using a lower frequency of secure

reboot increases the system’s vulnerability. We notice a pattern of

sudden peak (when the𝑇𝑟 is a factor ofℎ) immediately followed by a

steep drop in schedulability. This observation is due to the fact that

the task periods are factors of ℎ. The steep drop can be explained

by the same argument: when 𝑇𝑟 takes values that are immediately

after factors of ℎ, every task having a period equal to a factor of ℎ

will have an instance released and terminated due to a reboot being

triggered, which severely impacts the schedulability of the task

sets for those values of 𝑇𝑟 . From this experiment and Experiment 1,

we infer that the biggest impact on performance comes from the

reboot period, and the schedulability can be maximized by setting

the reboot period as the least common multiple of a subset of tasks.

The subset of tasks can be selected based on factors such as priority,

which will guarantee the execution of high-priority tasks. The task

subset selection can also be done in such a way that the maximum

number of tasks gets executed.

Experiment 4: In Experiments 1 and 2, we compare the schedul-

ability with fixed reboot overhead and fixed reboot period. In Ex-

periment 3, we observe the impact of the reboot period using a
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Figure 5: Weighted schedulability as a function of reboot
period 𝑇𝑟 .

weighted schedulability plot with fixed reboot overhead. In this

experiment, we demonstrate the impact of the addition of a secure

reboot over a normal reboot. Fig. 6 shows a linear depreciation in

the schedulability as the overhead percentage of the secure reboot

increases. It is interesting to note that while this plot was generated

from synthetic task sets, this shows a similar trend when compared

to Experiment 1 where we used values from a real system. In Fig. 6a

the schedulability difference with 𝜖 ′ = 0.01 × 𝜖 is around 0.03%

which is close to what we found in Experiment 1. The weighted

schedulability with RM scheduling in Fig. 6b also shows a compara-

ble value 0.1% compared to 0.08% with real system values. Hence,

this experiment provides a very significant insight that the impact

of secure reboot overhead is low, and decreases linearly.

6 RELATEDWORK
Trusted computing aims at protecting systems against integrity

attacks by providing an outlet for a root of trust, which uniquely

identifies a platform. The Simplex architecture has been used for

fault tolerance in control systems utilizing untrusted logic and

an isolated safety controller. Approaches based on System-level

Simplex architecture [15] and restart-based (both revival [16, 17]

and rejuvenation [18, 19]) approaches run the safety controller

and decision module on dedicated hardware. These methods add a

safety guarantee to the Simplex-based architecture.

Using System-level Simplex architecture, Abdi et al. [20] pro-

posed a restart-based recovery approach for the complex subsystem

when software faults are detected. Further, Abdi et al. [8, 18, 19]

proposed a framework to periodically restart the platform to im-

prove the safety of real-time systems and provide a system-wide

restart-based approach that provides a formal guarantee of sys-

tem safety. However, these works do not provide proof of timing

guarantee and feasibility analysis for real-time systems.
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Figure 6: Schedulability as function of the secure reboot over-
head 𝜖 ′.

Romagnoli et al. [21] proposed a recovery technique based on

software refresh that guarantees the controller integrity and safety.

However, recovery does not prevent attacks from occurring again.

Simplex-based assurance architecture [2, 22–24] using decision

procedures provides fault-tolerant and low-overhead solutions to

choose control commands between the complex controller and

safety controller to improve system reliability.

Diversification-based security leverages the physical properties

of the system to introduce execution path randomness after every

restart [25, 26]. Configuration files, memory location, and hardware

state are diversified to decrease the exposure of system vulnera-

bilities after periodic reset operations, which prevents persistent

attacks. This work can be combined with our system to provide

better security with performance guarantees for real-time systems.

7 CONCLUSION
This paper presents a secure boot mechanism for restart-based

real-time CPS leveraging the Simplex architecture. We present a

schedulability analysis for the RTES task set when the secure boot

is enabled. We evaluated our approach by measuring the impact of

periodic restarts with and without the secure boot on schedulability.

Experimental results show that the periodic secure boot has a negli-

gible impact when using fixed-priority scheduling schemes. Future

work could consider re-execution of terminated tasks, alternative

scheduling paradigms that may be amenable to reboot scheduling,

and randomization of the reboot timing.
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