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Abstract—Cyber threat intelligence (CTI) includes collecting
and analyzing cybersecurity-related information across diverse
and heterogeneous sources. Those sources may include repos-
itories that curate vulnerabilities, weaknesses, attack pattern
related data in different formats with varying degrees of detail.
Analysts must continuously reconcile these sources to gain a
coherent view of the evolving threat landscape, yet this process
is often manual, incomplete, and error-prone. In this work,
we present a fully automated cybersecurity knowledge graph
pipeline that systematically ingests and normalizes data from
the National Vulnerability Database (CVE and CVSS), MITRE
CWE, CAPEC, and ATT&CK frameworks, and integrates them
into a Neodj graph database. Our system extracts a rich set of
properties and inter- and intra-entity relationships from each
dataset, including hierarchical links, cross-domain mappings,
and temporal metadata, while ensuring daily synchronization
with upstream feeds. The resulting knowledge graph contains
hundreds of thousands of interconnected entities and edges,
enabling multi-hop analysis in various directions (e.g., from
attack techniques to vulnerabilities, from vulnerabilities to attack
techniques). We demonstrate the usefulness of the knowledge
graph for comprehensive weakness analysis, linking adversary
groups to exploited vulnerabilities, and graph-based inference
tasks that include variable-length path traversal and link discov-
ery. Our case studies on CISA advisories show that hierarchical
graph traversals uncover CVEs beyond those explicitly listed,
bridging critical gaps in threat intelligence. By combining au-
tomation, completeness, and semantic richness, our knowledge
graph provides a scalable, continuously updated foundation for
cyber defense analytics, supporting both operational decision-
making and advanced research in graph learning and reasoning
over CTL

Index Terms—Cyber Threat Intelligence, Knowledge Graph,
Graph Databases, CWE, CVE, ATT&CK, CAPEC

I. INTRODUCTION

The modern cyber threat landscape is vast, dynamic, and
fragmented across multiple authoritative but heterogeneous
sources of intelligence. The National Vulnerability Database
(NVD) [1]] provides detailed records of disclosed Common
Vulnerabilities and Exposures (CVEs [2]]) and their severity
scores, while MITRE [3] curates complementary catalogs:

Common Weakness Enumeration (CWE [4]]), which lists hard-
ware and software security weakness classes; Common Attack
Pattern Enumeration and Classification (CAPEC [5]]), which
describes adversary attack patterns; and Adversarial Tactics,
Techniques, and Common Knowledge (ATT&CK [6]), which
captures tactics, techniques, and procedures (TTPs) observed
in cyberattacks. Each of these resources is indispensable in
its own domain, yet their siloed formats, differing schemas,
and inconsistent cross-references present significant hurdles
for analysts who need an integrated and holistic view that
interconnects vulnerabilities, weaknesses, attack patterns, and
adversarial behaviors.

Existing efforts to unify CTI often focus on one or two
sources, rely on static or manually curated mappings, or lack
mechanisms to keep pace with daily updates. As a result,
organizations are left with incomplete or outdated views of
how newly published vulnerabilities may be exploited, which
weaknesses cause recurring attacks, or how defensive mea-
sures align with adversary techniques. Without automation and
the full-spectrum integration of diverse security-related data
sources, the potential for utilizing CTI in proactive defense
and explainable analytics remains significantly limited.

In this paper, we introduce a fully automated cybersecurity
knowledge graph that bridges these gaps. Our system develops
dedicated ingestion pipelines for CVE, CWE, CAPEC, and
ATT&CK, handling their native formats (e.g., JSON, XML,
STIX bundles), normalizing properties into a unified schema,
and encoding explicit relationships among entities in a Neo4]
graph database (detailed in §ITI). This automation ensures
that knowledge is refreshed regularly, requiring no manual
intervention while continuously incorporating new informa-
tion. The resulting knowledge graph is both comprehensive
and expressive: it captures hundreds of thousands of nodes
representing vulnerabilities, weaknesses, attack patterns, tech-
niques, malware, tools, intrusion sets, mitigations, etc. The en-
tities are linked through rich, typed relationships. This enables
analysts to run multi-hop queries that explain, for example,
how a specific CVE maps to underlying weaknesses, which



CAPEC attack patterns exploit them, and which ATT&CK
techniques adversaries have used in real-world operations.

Beyond integration, the graph unlocks advanced analytics.
Analysts can identify software weaknesses most frequently
linked to techniques, perform shortest-path traversals across
heterogeneous entities, or enrich vulnerabilities with contex-
tual data such as Common Platform Enumerations (CPEs)
[7], mitigations, and Common Vulnerability Scoring System
(CVSS) [8] severity. Moreover, through graph-based topology
analysis, the system anticipates potential future or missing
connections between entities. In doing so, it elevates CTI
from disparate feeds into a continuously updated, queryable,
and comprehensible foundation for proactive defense, threat
hunting, and cyber risk assessment (detailed in §IV).

The key contributions of this work are as follows.

« End-to-end automation: We develop a fully automated
pipeline that ingests CVE, CWE, CAPEC, and ATT&CK
data sources, enabling bidirectional reasoning between vul-
nerabilities and adversary techniques.

« Rich extraction of nodes and relationships: We construct
a large-scale knowledge graph that captures extensive nodes,
relationships, and properties, ensuring semantic richness and
comprehensive cross-domain coverage.

o Comprehensive ATT&CK framework representation:
We provide a fine-grained representation of all ATT&CK
entities, including techniques, tactics, mitigations, and re-
lated objects, and thus enabling a structured exploration of
adversary behaviors.

« Topology-based link discovery: We introduce topology-
based methods that reveal plausible but unobserved relation-
ships in the graph, demonstrating how structural similarity
can uncover meaningful connections between weaknesses
and attack patterns.

« Neodj-based querying and analytics: We deploy the graph
in Neo4j and leverage the expressive Cypher query lan-
guage to support advanced analytics, including multi-hop
reasoning, shortest-path discovery, and pattern analysis.

II. RELATED WORK

Cybersecurity knowledge graphs (KGs) have emerged as a
powerful paradigm for integrating heterogeneous threat intelli-
gence, enabling advanced reasoning and decision support. Sev-
eral efforts have focused on constructing KGs by linking ex-
isting security standards and repositories such as CVE, CWE,
CAPEC, ATT&CK, and CPE. One of the earliest systematic
efforts was the SEPSES Cybersecurity Knowledge Graph,
which provided vocabularies and a continuously updated KG
integrating sources such as CVE, CWE, and CAPEC [9].
Similarly, the CyberGraph framework demonstrated the auto-
matic construction of a Neo4j-based KG unifying CVE, CWE,
CAPEC, and CPE, allowing for advanced graph querying and
visualization [10]. However, these works primarily focus on
structural integration of a limited subset of sources and do not
scale to large, enriched graphs with extensive properties.

Beyond structural integration, several works have leveraged

KGs for reasoning and predictive tasks. Shi et al. developed
a threat knowledge graph linking CVE, CWE, and CPE,
and applied KG completion techniques to uncover previously
unknown associations, evaluated using ranking metrics such as
MRR and Hits@N [11]]. Ampel et al. proposed CVET, a self-
distillation model that maps CVEs to MITRE ATT&CK tac-
tics, thus bridging vulnerability-centric data with adversary be-
haviors [12]). Das et al. introduced V2W-BERT, a Transformer-
based hierarchical multi-class classification framework for au-
tomated mapping of CVEs to CWEs, achieving state-of-the-art
performance even for rare classes [[13]]. While these approaches
introduce reasoning capabilities, they often depend on small-
scale datasets and lack an end-to-end automated pipeline that
continuously incorporates updates from all relevant threat
intelligence repositories.

In parallel, large-scale multi-source integration has also
been studied. Hemberg et al. introduced the BRON knowledge
graph, which links ATT&CK, CWE, CAPEC, and CVE,
supporting bidirectional traversal across tactics, weaknesses,
and vulnerabilities for cyber threat hunting applications [14].
Shen et al. explored a similar approach in the industrial control
systems (ICS) domain, using data-driven extraction and graph
construction techniques to model ICS-specific vulnerabilities
and threats [15]. These works achieve broader coverage, but
remain domain-specific, rely on static integration, and do not
incorporate enriched property sets needed for fine-grained
reasoning and explainability.

Beyond vulnerability-centric  graphs, countermeasure-
oriented KGs have also been proposed. The D3FEND
framework, developed by MITRE, provides a semantically
rigorous representation of defensive techniques and their
mapping to ATT&CK TTPs, thereby supporting explainable
reasoning about mitigation strategies [[16]]. Recently, retrieval-
augmented generation (RAG) approaches such as CyKG-RAG
have integrated KGs with language models, leveraging
structured cybersecurity knowledge for improved reasoning
over unstructured CTI reports [17], [18]]. These initiatives
focus either on defensive knowledge or integration with
language models, but they do not provide a large-scale,
unified, and automated knowledge graph that captures both
vulnerabilities and attack techniques in an explainable manner.

In contrast to the above works, our approach advances
the state of the art by delivering a fully automated, end-to-
end pipeline for constructing large-scale cybersecurity knowl-
edge graphs. Our KG integrates CVE, CWE, CAPEC, and
ATT&CK while scaling to more than 300K nodes and 250K
relationships with 86 property types, offering a semantically
enriched representation that supports advanced threat intel-
ligence. We deploy the KG in Neo4j, enabling powerful
query capabilities, link discovery based on graph topology,
and adversarial activity analytics, thereby addressing both the
scalability and analytical gaps identified in prior research.



III. METHODOLOGY

Our methodology automates the collection and integration
of heterogeneous cyber threat intelligence from CVE, CWE,
CAPEC, and MITRE ATT&CK. Through cross-source nor-
malization and automated upsertion into Neo4j, the system
produces a unified, continuously updated knowledge graph that
preserves semantic links across vulnerabilities, weaknesses,
attack patterns, and techniques. This enables efficient querying
and analysis without manual curation (see Fig. [I).

A. Automation Process

To ensure that the cybersecurity knowledge graph remains
comprehensive, up to date, and consistent across multi-
ple threat intelligence sources, we developed an automated
multi-source data acquisition and integration framework. This
framework consists of dedicated pipelines for four key
datasets—CVE, CWE, CAPEC, and MITRE ATT&CK—that
systematically retrieve the latest releases from their respective
authoritative sources, process and normalize the information,
and ingest it into a Neo4j graph database. Each pipeline
is tailored to handle the specific data formats and update
mechanisms of its source, enabling seamless integration while
preserving data fidelity. A lightweight scheduler orchestrates
the execution of these pipelines on a fixed daily cycle, ensuring
that the graph continuously reflects the most recent threat
intelligence without the need for manual intervention.

The automation framework executes on a fixed 24-hour
cycle with integrated logging and error handling. On a weekly
basis, it updates the MITRE ATT&CK dataset, while daily
runs refresh CAPEC, CWE, and CVE (with a full CVE
synchronization on the first pass, followed by incremental
updates). ATT&CK is updated weekly since its framework
evolves more slowly, with new techniques, groups, and mit-
igations published less frequently, whereas the other datasets
either exhibit frequent changes or are lightweight to process—
particularly CVE, which receives daily vulnerability disclo-
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Fig. 1. End-to-end pipeline for constructing an automated cybersecurity
knowledge graph.

sures. The update order follows the dependency chain—
ATT&CK—CAPEC—CWE—CVE—since relationships orig-
inate from CAPEC to ATT&CK, from CWE to CAPEC, and
from CVE to CWE. This design ensures that upstream entities
are processed before downstream links are established, keep-
ing the knowledge graph continuously synchronized without
manual intervention. The following narrative describes the
dataset-specific pipelines:

Common Vulnerabilities and Exposures (CVE) system
is a globally recognized catalog of disclosed software and
hardware vulnerabilities. Our framework retrieves CVE data
from the NVD CVE 2.0 JSON feeds, initially ingesting all
yearly archives from 2002 through 2025. After this baseline,
the system continuously synchronizes with the “recent” and
“modified” datasets, incorporating new or updated vulnera-
bilities without reprocessing history. Data is downloaded, ex-
tracted, normalized for schema consistency, and upserted into
Neo4j, ensuring the graph always reflects the latest disclosures.

Common Weakness Enumeration (CWE) catalog, curated
by MITRE, defines recurring software and hardware weakness
types. Unlike CVE’s instance-level vulnerabilities, CWE ab-
stracts structural flaws such as buffer overflows or input vali-
dation errors. Our system downloads the CWE XML release,
parses all Weakness entries, captures metadata, descriptions,
and cross-references, normalizes them, and ingests the results
into Neo4j as an updated graph representation of weaknesses.

Common Attack Pattern Enumeration and Classification
(CAPEC) catalog describes adversarial attack patterns that
exploit weaknesses. Our framework downloads the CAPEC
archive, parses Attack_Pattern entries, and extracts meta-
data, descriptions, and hierarchies. The processed data is
upserted into Neo4j, producing a continuously updated attack-
pattern entity linked directly to CWE weaknesses.

MITRE ATT&CK framework captures tactics, techniques,
and procedures (TTPs) across the Enterprise, Mobile, and
ICS domains. Our system retrieves ATT&CK STIX bundles,
extracts entities such as techniques, tactics, intrusion sets,
tools, courses of action, etc. and processes their relationship
objects. Data is normalized and ingested into Neo4j with typed
edges from STIX references, producing a refreshed knowledge
layer that spans the full ATT&CK ecosystem and supports
graph-based analytics.

These pipelines ensure that the cybersecurity knowledge
graph remains comprehensive, consistent, and continuously
synchronized with authoritative sources. By automating data
ingestion, normalization, and integration across CVE, CWE,
CAPEC, and ATT&CK, the framework eliminates manual
curation and provides a reliable foundation for downstream
analytics and reasoning tasks.

B. Nodes, Properties, and Relationships

This section provides a detailed overview of the properties
collected from each source, the relationships encoded between
them, and the overall distribution of nodes and edges within
the constructed knowledge graph (Fig. [2).

CVE (NVD): The CVE pipeline collects the following
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Fig. 2. Schema visualization of node labels and relationship types in the
Neo4j cybersecurity knowledge graph.

properties: the vulnerability identifier (id), mapped CWE
identifiers, a textual description, CVSS metrics (including
vector string, base score, and severity — where CVSS, the
Common Vulnerability Scoring System, is an industry-standard
method for rating the severity of software vulnerabilities),
exploitability and impact scores, and extracted CPE (Common
Platform Enumeration) criteria, which specify the affected
hardware, operating systems, or software products.
Relationships created: The framework establishes relation-
ships that link CVE to its corresponding CWE (CVE — CWE).

CWE (MITRE): The CWE extraction process gathers

identifiers and metadata (ID, name, abstraction level, structural
type, and status), rich text fields (description, extended descrip-
tion, background), and a wide range of structured or nested
elements, including alternative terms, applicable platforms,
modes of introduction (describing when and how the weakness
can be introduced during development), likelihood of exploit,
weakness ordinalities (sequence in which weaknesses might
occur), common consequences, detection methods, potential
mitigations etc.
Relationships created: The pipeline forms hierarchical
parent—child links between CWEs (CWE — CWE), precedence
links that indicate which weaknesses can occur before others,
and cross-references connecting CWEs to related CAPEC
attack patterns (CWE — CAPEC).

CAPEC (MITRE): For CAPEC data, the collected prop-
erties include identifiers and metadata (ID, name, abstraction,
status), description, likelihood, severity, mid-level structured
sections such as mitigations, prerequisites, indicators, required
skills and resources, example instances, notes, consequences,
execution flow (sequence of attacker actions), and content
history.

Relationships created: We establish hierarchical parent—child

links between CAPEC entries (CAPEC — CAPEC), precedence
links, and mappings from CAPEC attack patterns to ATT&CK
techniques (CAPEC — ATT&CK).

ATT&CK (Enterprise/Mobile/ICS STIX): Across all
supported ATT&CK domains, the pipeline collects common
properties such as ID, external ID, object type, name,
description, external references, timestamps/versioning, and
domains. Depending on the object type, additional fields may
include platforms (target operating systems or environments),
aliases  (alternative names), detection guidance etc.
Extracted nodes include attack-pattern, campaign,
course-of-action, malware,
tool, x—-mitre—-data—-source,
x-mitre-tactic, x-mitre—-matrix, etc.

Relationships created: In our system, STIX-defined
relationship objects are materialized as graph edges by
leveraging the relationship_type, source_ref, and
target_ref fields, or, when APOC is unavailable,
through a fallback naming scheme of the form
sourceType_to_targetType.

As shown in Table |} the largest node set in the constructed
knowledge graph comes from the CVE dataset, with 307,142
vulnerability entries. This is followed by 1,106 ATT&CK
technique (STIX attack_pattern) nodes from the ATT&CK
framework. The third-largest group consists of 968 CWE
nodes, reflecting common software and hardware weaknesses,
while the fourth is 795 malware nodes, also extracted from
ATT&CK. The 615 CAPEC nodes rank fifth, capturing com-
mon adversarial attack patterns.

intrusion-set,
x-mitre—asset,

TABLE I
NODE TYPES AND THEIR CORRESPONDING ENTITY COUNTS IN THE NEO4J
KNOWLEDGE GRAPH, SORTED FROM HIGHEST TO LOWEST COUNT.

Node Type Entity Count Node Type Entity Count
cve 307,142 tool 93
attack_pattern 1,106 campaign 51
cwe 968 data_source 42
malware 795 tactic 40
capec 615 asset 14
course_of_action 334 matrix 4
intrusion_set 185 identity 1
data_component 122 marking_definition 1

The knowledge graph encodes a rich set of relationships
across entities, capturing both structural and behavioral
connections. The largest is the related_cwe relation
(CVE—-CWE) with 227981 edges, followed by
malware_to_attack_pattern (10,694 edges),
intrusion_set_to_attack_pattern (4,095 edges),
data_component_to_attack_pattern (2,522
edges), course_of_action_to_attack_pattern
(1,915 edges), related_capec (CWE—CAPEC, 1,212
edges), cwe_child (1,151 edges), etc.

Together, these interconnected entities and their rich set of
relationships form a comprehensive, multi-perspective knowl-
edge graph that represents vulnerabilities, weaknesses, attack
patterns, malware, and adversarial behaviors across multiple
MITRE knowledge sources. By capturing hierarchical, se-



quential, and cross-domain associations among nodes such as
courses of action, intrusion sets, tools, tactics, and campaigns,
the graph enables unified and in-depth analysis of the complex
landscape of cybersecurity threats and defenses.

C. Graph Querying and Multi-Hop Traversal

One of the key advantages of representing cyber threat
intelligence as a knowledge graph is the ability to perform
multi-hop traversal across heterogeneous entities. Unlike tradi-
tional tabular or siloed repositories, the graph structure allows
analysts to traverse explicit paths that connect vulnerabilities
(CVEs) to weaknesses (CWEs), to adversarial attack patterns
(CAPEC), and ultimately to real-world adversary techniques
in ATT&CK. These traversals not only provide the interme-
diate steps involved in analyzing a threat, but also enhance
individual data points (e.g., a CVE) by connecting them to a
broader threat context—such as severity, affected platforms,
available mitigations, and associated adversarial techniques.

For instance, consider a forward traversal that begins with
the vulnerability CVE-2016-6225, which affects Percona Xtra-
Backup and stems from improper handling of the initial-
ization vector (IV) in its xbcrypt encryption utility. This
flaw, which allows chosen-plaintext attacks against encrypted
backup files, is associated with the weakness CWE-326 (In-
adequate Encryption Strength). This weakness connects to
the attack pattern CAPEC-112 (Brute Force), which in turn
maps to the ATT&CK technique T1110 (Brute Force). This
traversal illustrates how a specific cryptographic vulnerability
can be situated within a broader chain of adversarial behavior,
revealing plausible exploitation methods and aligning low-
level technical flaws with high-level attacker tactics. The
corresponding Cypher query for the forward path is shown
in Fig. [3] (left), and its graphical representation in Fig. 4]

Conversely, a reverse traversal starting from the ATT&CK
technique T1110 (Brute Force) uncovers associated upstream
weaknesses and vulnerabilities that could facilitate brute-
force exploitation. Specifically, the knowledge graph links this
technique to the attack pattern CAPEC-112, which maps to
multiple underlying weaknesses: CWE-326 (Inadequate En-
cryption Strength), CWE-330 (Use of Insufficiently Random
Values), and CWE-521 (Weak Password Requirements). These
weaknesses are in turn linked to various CVEs, enabling
defenders to identify and prioritize vulnerable systems likely
to be targeted using brute-force methods. The Cypher query
for this reverse traversal is shown in Fig. |3| (right), and the
corresponding path visualization is provided in Fig. [5]

Together, these forward and reverse queries and their corre-
sponding visualizations demonstrate the bidirectional multi-
hop traversal capabilities of knowledge graphs—supporting
both top-down and bottom-up threat analysis across the cyber
kill chain.

D. Topology-Based Link Scoring in Cybersecurity Knowledge
Graphs

One of the most valuable analytical capabilities of our inte-
grated cybersecurity knowledge graph is the ability to compute

MATCH path =
(c:cve {id:
"CVE*2016*6225"})
—[:related_cwe] ->

MATCH path =
(a:attack_pattern
{external_id: "T1110"})
<-[:related_attack]-

(w:cwe) (p:capec)
—[:related_capec]—> <-[:related_capec]-
(p:capec) (w:cwe)
—[:related_attack]-—> <-[:related_cwe] -

(a:attack_pattern)
RETURN a.external_id AS
attack_id, path

ORDER BY a.external_id
LIMIT 100;

(c:cve)

RETURN c.id AS
cve_id, path
ORDER BY c.id
LIMIT 100;

Fig. 3. Cypher queries for traversing the knowledge graph. Left: forward
traversal from CVE—-CWE—CAPEC—ATT&CK. Right: reverse traversal
from ATT&CK back to CVE.
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topology-based link scores. Here, only the graph’s structural
properties (topology) are leveraged to quantify how strongly
two entities are related, without requiring external features.
For example, such scoring allows analysts to identify plausible
connections between entities in a graph, such as CVE<CWE,
CWE«CAPEC, or CAPEC+ATT&CK techniques.

The Neo4j Graph Data Science (GDS) library provides
several well-established structural similarity algorithms [19].
We highlight two representative measures below (with Cypher
examples shown in Fig. [6):

o Adamic-Adar (AA): Assigns higher weight to shared
neighbors that are themselves rare:

1
2 gl

wel (u)N(v

AA(u,v) =

e« Common Neighbors (CN): Simply counts the number of
shared neighbors:

CN (u,v) = |T'(u) NT'(v)].



// Adamic Adar

MATCH (cl:cwef{id: "308"})

MATCH (c2:capec{id: "151"})

RETURN gds.alpha.linkprediction.adamicAdar (
score

cl, c2) AS

// Common Neighbors

MATCH (cl:cwef{id: "308"})

MATCH (c2:capec{id: "151"})

RETURN gds.alpha.linkprediction.commonNeighbors(cl, c2) AS
score

Fig. 6. Cypher queries for selected link discovery algorithms between CWE
and CAPEC nodes.

Notations: v and v denote two nodes in the knowledge graph,
and I'(u) represents the set of neighbors directly connected to
node wu.

e [I'(u)| is the degree of node u (i.e., the number of its
neighbors).

e I'(u) NT(v) is the set of common neighbors of u and v.

e w is an individual node belonging to the set of common
neighbors.

« The functions assign similarity scores, where a higher score
indicates a greater structural proximity between u and wv,
and thus a higher likelihood of an unobserved link.

Other metrics such as Preferential Attachment (which as-
sumes high-degree nodes are more likely to connect), Resource
Allocation (a variant of Adamic—Adar that weights neighbors
by the inverse of their degree), Same Community (binary score
based on graph community detection), and Total Neighbors
(combined neighborhood size) can also be applied to enrich
the analysis.

By applying these measures, we can infer plausible but
unobserved relationships—such as identifying CWEs that may
be associated with CAPECs. These insights enable analysts
to anticipate potential threat paths before they are explicitly
reported in advisories, supporting proactive defense.

IV. EMPIRICAL EVALUATION

We demonstrate how our knowledge graph enables com-
prehensive and actionable cyber threat intelligence analysis,
supporting end-to-end workflows. We highlight mappings from
top software weaknesses to ATT&CK techniques; technique-
centric views that connect to groups, tools, and mitiga-
tions; and group-to-vulnerability traversals for Scattered Spi-
der (G1015) and Volt Typhoon (G1017). Case studies on CISA
advisories and link scoring further demonstrate how the graph
discovers missing relationships.

A. Top 25 Software CWEs to ATT&CK Techniques

We leveraged our automated knowledge graph pipeline to
connect CWEs with MITRE ATT&CK techniques through
CAPEC attack patterns. In particular, we focused on the CWE
Top 25 Most Dangerous Software Weaknesses list, an annually
curated resource maintained by the MITRE Corporation in
collaboration with the U.S. Department of Homeland Secu-
rity (DHS) and the Cybersecurity and Infrastructure Security
Agency (CISA). This list highlights the most common and
impactful software weaknesses, based on real-world data such
as CVEs, CVSS scores, and their prevalence in vulnerability

databases. It helps developers and security teams prioritize
mitigation efforts by identifying the most frequently exploited
programming flaws and guiding secure software design. Using
automated graph traversals, we observe that not all 25 CWEs
yield direct mappings to ATT&CK techniques.

As an illustrative example, shown in Fig. [7] and Table
consider CWE-20 (Improper Input Validation). It is linked to
multiple ATT&CK techniques such as T1539: Steal Web
Session Cookie and T1027: Obfuscated Files
or Information. This mapping underscores the critical-
ity of input validation failures: adversaries routinely exploit
unchecked inputs to manipulate control flow, inject malicious
payloads, or bypass security mechanisms, making this CWE
foundational to a wide range of attacks. Similarly, CWE-
94 (Code Injection) maps directly to T1027.006: HTML
Smuggling, highlighting how code injection vulnerabilities
directly enable adversaries to deliver and execute obfuscated
malicious code, often as part of initial access or delivery
phases. These cases illustrate how our knowledge graph pro-
duces multi-hop paths from critical software weaknesses to
threat actor methodologies, bridging the gap between software
engineering errors and operational TTPs.

By enumerating and analyzing such mappings, defenders
can proactively prioritize mitigation efforts around weakness
classes most commonly tied to adversary behaviors, ensuring
that secure coding practices, patching strategies, and monitor-
ing controls align with real-world attack techniques.
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Fig. 7. Mapping of a top software CWE (CWE-287) to its corresponding
CAPECs (light blue circles) and ATT&CK Techniques (light green circles).

B. ATT&CK Techniques, Groups, and Mitigations

Our pipeline centers each ATT&CK technique within its
surrounding ecosystem by materializing typed, cross-domain
relationships to the entities that cyber analysts regularly
use: adversary groups (intrusion sets and campaigns), op-
erational capabilities (tools and malware), and defensive
knowledge (courses of action/mitigations, data sources, and



TABLE 11
MAPPING OF THE TOP 25 SOFTWARE CWES TO ATT&CK TECHNIQUES VIA CAPEC, LIMITED TO CWES WITH AVAILABLE MAPPINGS.

CWE ID ATT&CK Techniques

20 (Improper Input
Validation)

T1539 (Steal Web Session Cookie); T1036.001 (Invalid Code Signature); T1027 (Obfuscated Files or Information);
T1562.003 (Impair Command History Logging)

94 (Improper Control of
Generation of Code (Code
Injection’))

T1027.006 (HTML Smuggling)

200 (Exposure of Sensitive
Information to an
Unauthorized Actor)

T1057 (Process Discovery); T1087 (Account Discovery); T1124 (System Time Discovery); T1018 (Remote System
Discovery); T1135 (Network Share Discovery); T1007 (System Service Discovery); T1046 (Network Service
Discovery); T1033 (System Owner/User Discovery); T1069 (Permission Groups Discovery); T1120 (Peripheral
Device Discovery); T1082 (System Information Discovery); T1083 (File and Directory Discovery); T1134.001 (Token
Impersonation/Theft); T1217 (Browser Information Discovery); T1562.003 (Impair Command History Logging);
T1016 (System Network Configuration Discovery); T1111 (Multi-Factor Authentication Interception); T1036.005
(Match Legitimate Resource Name or Location)

269 (Improper Privilege

T1548 (Abuse Elevation Control Mechanism)

Management)
287 (Improper T1505.003 (Web Shell); T1040 (Network Sniffing); T1557 (Adversary-in-the-Middle); T1134 (Access Token
Authentication) Manipulation); T1185 (Browser Session Hijacking); T1548 (Abuse Elevation Control Mechanism)

400 (Uncontrolled

Resource Consumption) T1499 (Endpoint Denial of Service)

434 (Unrestricted Upload
of File with Dangerous Type)

T1574.010 (Services File Permissions Weakness)

798 (Use of Hard-coded
Credentials)

T1078.001 (Default Accounts); T1552.001 (Credentials In Files)

862 (Missing Authorization) T1211 (Exploitation for Defense Evasion)

data components). Because all ATT&CK object types are
represented as distinct node labels with native relationships
in Neo4j, technique-centric queries become straightforward:
starting from a single technique, analysts can pivot outward
to who uses it, how it is executed, what to monitor, and
how to mitigate—without manual cross-referencing. This de-
sign supports both forward (technique—entities) and reverse
(entities—technique) traversals, enabling explainable paths
that tie behaviors to controls and evidence.

As shown in Fig. [8] a Cypher query can directly extract all
entities connected to a given ATT&CK technique, spanning
mitigations, data components, groups, malware, tools, and
campaigns. These results can then be rendered as a graph
structure (Fig. [0), providing analysts with an immediate view
of how the technique relates to both adversary behaviors and
defensive measures.

WITH "T1110.001" AS ap_id

MATCH (a:attack_pattern {external_id: ap_id})
MATCH p = (a)-[
:malware_to_attack_pattern
|course_of_action_to_attack_pattern
|data_component_to_attack_pattern
|intrusion_set_to_attack_pattern
|campaign_to_attack_pattern
|tool_to_attack_pattern

*1..1]—(n)

RETURN p

LIMIT 100;

Fig. 8. Cypher Query to obtain the one-hop neighborhood around a given
ATT&CK technique ("T1110.0017), paths from the technique to connected
mitigation, data components, groups, malware, tools, and campaigns.

Applied to a concrete technique (e.g., T1110.001) the
one-hop neighborhood already yields actionable context: the
graph links the technique to mitigations (Account Use Poli-
cies, Multi-factor Authentication, Password Policies, Update

Software), to detection-relevant telemetry via data components
(Application Log Content, User Account Authentication), to
adversary groups (intrusion sets APT28 and APT29), and to
concrete capabilities observed in the wild, including malware
(China Chopper, Emotet, HermeticWizard, Lucifer, P.A.S.
Webshell, Pony, SpeakUp, Xbash) and tools (CrackMapExec).
By modeling these entities as nodes and typed edges, the
graph contextualizes a single technique within an integrated
framework that captures adversaries (who), capabilities (with
what), relevant telemetry (where to look), and mitigations (how
to respond).

Account
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Fig. 9. Visualizing ATT&CK “T1110.001” mapped to its respective Groups
(in blue), Mitigations (in brown), and Tools (in pink).



Operationally, this structure accelerates common workflows:
pivoting from techniques to groups for threat hunting and
reporting; expanding to tools/malware for behavioral detec-
tions and emulation; and anchoring prevention plans by map-
ping courses of action to control requirements and relevant
telemetry. In practice, the technique-centric view becomes a
repeatable playbook for prioritization, detection engineering,
and defensive validation—grounded in explicit, queryable re-
lationships that remain current through automated updates.

C. Group to Weakness and Vulnerability Mapping

Our knowledge graph enables automatic extraction of the
CWE classes and concrete CVE vulnerabilities that any
given intrusion set is positioned to exploit. Starting from
an intrusion_set, we traverse intrusion_set —
attack_pattern < capec < cwe — cve. For each
attack technique, we preserve provenance (which CAPEC pro-
duced which CWE) and compute the union of CWE identifiers
per technique. When required, we extend further by one hop to
enumerate the corresponding CVEs. The summarized outputs
for two representative groups— Scattered Spider (G1015) and
Volt Typhoon (G1017)—are shown in Tables|[ITI} and with
corresponding path visualizations in Figs. [I0] and

Scattered Spider (G1015) is a financially motivated intrusion
set notorious for its social-engineering expertise. In September
2023, the group was behind the MGM Resorts breach, where
operators successfully tricked a helpdesk employee into reset-
ting credentials, leading to a multi-day outage that disrupted
hotel operations and slot machines in Las Vegas [20]. Despite
many of its members reportedly being teenagers, Scattered
Spider has demonstrated advanced persistence by bypassing
MFA protections and abusing trust relationships.

Table summarizes how Scattered Spider’s techniques
map through CAPEC patterns to software weaknesses. A
closer look at the first two rows illustrates the dynamics:

o T1018 (Remote System Discovery) links via CAPEC-292
to CWE-200 (Exposure of Sensitive Information to an
Unauthorized Actor), highlighting how adversaries in G1015
abuse weaknesses in information exposure to enumerate
networked assets and identify targets for lateral movement.

« T1083 (File and Directory Discovery) aggregates CAPEC-
127 and CAPEC-497, yielding a diverse set of CWEs such
as CWE-732 (Incorrect Permission Assignment), CWE-
693 (Protection Mechanism Failure), and CWE-425 (Direct
Request). This breadth shows that Scattered Spider leverages
multiple file-system and access-control weaknesses to gain
insight into system configurations and stored assets.

Beyond reconnaissance, techniques such as T1539 (Steal Web
Session Cookie) connect through CAPEC-31 to a large family
of weaknesses, including CWE-311 (Missing Encryption of
Sensitive Data) and CWE-642 (External Control of Critical
State Data), indicating the group’s ability to abuse poor
session and credential protections. Likewise, T1553.002 (Sub-
vert Code Signing) and T1556.006 (Modify Authentication
Process) map to critical weaknesses in trust boundaries (e.g.,

TABLE 111
ATT&CK TECHNIQUES WITH RELATED CAPECS AND CWES FOR
INTRUSION SET - SCATTERED SPIDER (G1015)

Attack

. CAPEC IDs CWE IDs
Technique
T1018 292 200
T1083 127, 497 732, 693, 425, 424, 288, 285, 276, 200
T1217 169 200
642, 602, 565, 539, 472, 384, 315, 311,
T1539 31 302, 20, 113
T1552.001 191 798
T1552.004 485, 474 330, 522
T1553.002 206, 68 732, 328, 325, 1326
T1556.006 578 284

CWE-284: Improper Access Control), underscoring Scattered
Spider’s focus on authentication and persistence mechanisms.

Volt Typhoon (G1017) is a Chinese state-sponsored threat
group disclosed in 2023 for its long-term infiltration of U.S.
critical infrastructure networks, including telecommunications,
energy, transportation, and water systems [21[]. The group
is distinguished not by immediate data theft but by “pre-
positioning” — maintaining covert access and deploying mal-
ware in ways that could enable sabotage during a U.S.—China
conflict. Intrusions have even been discovered on Guam, a
strategic U.S. territory in the Pacific, raising concerns about
operational resilience in crisis scenarios.

Table presents Volt Typhoon’s mappings through
CAPEC patterns to CWEs. One technique stands out:

« T1005 (Data from Local System) connects through CAPECs
37, 204, 545, 647 to an extensive set of CWEs, includ-
ing CWE-1239 (Improper Zeroization), CWE-1258 (Sensi-
tive Information Uncleared Before Release), and CWE-311
(Missing Encryption of Sensitive Data). This large mapping
demonstrates that Volt Typhoon’s ability to retrieve sensi-
tive artifacts from local systems is rooted in wide-ranging
systemic failures in data handling and confidentiality.

o T1078 (Valid Accounts) maps via CAPEC-560 to CWEs
such as CWE-262 (Not Using Password Aging), CWE-
263 (Password Aging with Insufficient Complexity), and
CWE-654 (Reliance on a Single Factor), underscoring the
group’s reliance on credential abuse and insufficient account
protection as a persistence vector.

Other reconnaissance-oriented techniques—including T1007
(System Service Discovery), T1016 (System Network Con-
figuration Discovery), and T1018 (Remote System Discov-
ery)—again concentrate on CWE-200 (Information Exposure),
mirroring patterns observed with Scattered Spider. Meanwhile,
techniques such as T1083 (File and Directory Discovery) and
T1505.003 (Web Shell) connect to broader CWE sets (e.g.,
CWE-732, CWE-287, CWE-553), illustrating Volt Typhoon’s
use of misconfigured permissions and inadequate service con-
trols to deepen operational footholds.

Beyond the CWE-level mappings, extending one additional
hop in the graph yields the concrete CVE vulnerabilities
associated with each intrusion set. For example, in the cases of
G1015 and G1017, the resulting mappings are visualized in
Figs. and where the diagrams displayed with fewer



TABLE IV
ATT&CK TECHNIQUES WITH RELATED CAPECSs AND CWES FOR
INTRUSION SET - VOLT TYPHOON (G1017)

Attack CAPEC IDs CWE IDs
Technique
524, 311, 1258, 1239, 285, 1330,
TI005 | 204, 647, 545,37 | 1323, 1278, 1272, 1266, 1243, 525,
318, 315, 314, 312, 226, 1301
T1007 574 200
TT016 300 200
TT018 792 300
T1033 577 300
T1036.005 616 300
T1046 300 300
T1057 573 300
T1060 576 300
654, 522, 309, 308, 307, 263,
T1078 560 56 1273
T1082 312, 580, 313 300, 208, 205, 204
732, 693, 425, 424, 288, 285,
T1083 127, 497 376 200
T1090.001 365 pvy]
TI112 203 5
TI113 643 267
T1120 646 300
T1124 295 300
TI217 169 300
T1505.003 650 553, 287
T1552.004 385, 474 330, 522
TI614 694 397

nodes than actual. In both cases, the full traversal reveals
30,433 CVEs for G1015 and 19,242 for G1017, highlighting
the wide range of exploitable vulnerabilities. This highlights
how systemic weaknesses (CWEs) serve as bridges to a broad
set of concrete vulnerabilities, offering both fine-grained detail
for defenders and a scalable means of tracking group-level
exploit potential.

D. CISA Advisory

CISA advisories list MITRE ATT&CK techniques and
selected CVEs, but they do not fully map high-level TTPs
to the broader set of relevant vulnerabilities. Traditionally,
analysts must manually connect ATT&CK techniques to
CAPECs, CWEs, and CVEs, a time-consuming and error-
prone process. Our knowledge graph automates this bridging
by traversing semantic relationships, including direct links
(related_capec, related_cwe) and hierarchical expan-

oy =
‘ @ CWEs associated
with CAPEC - 127

“ (Directory Indexing)

= e i = =

i

£

CWES associated with & B = =
CAPEC - 31 (Accessing/ _
Intercepting/ Modifying =)

HTTP Cookies,
) CWEs associated

@ @® " with cAPEC - 68
(Subvert Code-
signing Facilities)

Fig. 10. Visualizing group-to-CWE mappings for Scattered Spider (G1015).
The blue node represents group G1015, and dark green nodes represent CWEs.

sions (child and precedence relations up to depth three), as
illustrated in the Cypher query shown in Fig.

Case Study 1: Russian GRU Targeting Western Logistics
Entities and Technology Companies. On May 21, 2025,
CISA released advisory AA25-141A, which highlights a Rus-
sian state-sponsored cyber campaign attributed to the GRU’s
85th Main Special Service Center (Unit 26165). The campaign
has targeted Western logistics entities and technology com-
panies involved in coordinating, transporting, and delivering
foreign assistance to Ukraine. Since 2022, these sectors have
faced an elevated risk as targets. The advisory warns that
executives and network defenders in these industries should
recognize the heightened threat level, increase monitoring for
known TTPs and indicators of compromise (IOCs), and adopt
defensive postures that assume persistent targeting.

The advisory details a set of initial access techniques
used by the threat actors, including brute force login at-
tempts (T1110.001, T1110.003), spearphishing (T1566), ex-
ploitation of Internet-facing infrastructure (T1133, T1190),
WinRAR and Outlook vulnerabilities (CVE-2023-38831,
CVE-2023-23397), and abuse of SOHO devices (T1665).
These techniques only partially reveal the broader wvul-
nerability surface. When executed in the canonical or-
der (Technique —CAPEC—CWE—CVE), the query does
not return all CVEs cited in the advisory. Incorporat-
ing hierarchical relations such as capec_precedence,
capec_child, cwe_precedence, and cwe_child sur-
faces CVE—2023-23397, a critical Outlook NTLM vulner-
ability. With two-hop expansions, the query retrieves not only
the explicitly mentioned CVEs but also nearly 60% of all
CVEs in the graph, showing how our framework operational-
izes advisories to uncover latent vulnerabilities beyond those
listed in CISA reports.

Case Study 2: #StopRansomware Medusa Ransomware.
In February 2025, the FBI, CISA, and MS-ISAC released a
joint #StopRansomware advisory on the Medusa ransomware
variant. Medusa, first identified in 2021, has impacted more
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Fig. 11. Visualizing group-to-CWE mappings for Volt Typhoon (G1017). The
blue node represents group G1017, and dark green nodes represent CWEs.
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CVEs associated with
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Access Control)

CVEs associated with
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Fig. 12. Mappings for intrusion set G1015 to CVEs. Blue nodes represent
groups, green nodes represent CWEs, and violet represents CVEs.
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Authentication)

CVEs associated with CWE
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Sensitive Information)
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Fig. 13. Mappings for intrusion set G1017 to CVEs. Blue nodes represent
groups, green nodes represent CWEs, and violet represents CVEs.

than 300 victims across healthcare, education, legal, insur-
ance, technology, and manufacturing. Unlike MedusalLocker or
Medusa mobile malware, Medusa is a distinct ransomware-as-
a-service (RaaS) operation, with affiliates frequently purchas-
ing access from initial access brokers (IABs).

The advisory highlights common TTPs for initial ac-
cess, including phishing campaigns [T1566] and exploita-
tion of unpatched software vulnerabilities [T1190]. Specif-
ically, Medusa affiliates leveraged the ScreenConnect vul-
nerability CVE-2024-1709 (CWE-288: Authentication By-
pass) and the Fortinet EMS SQL injection vulnerability
CVE-2023-48788 (CWE-89: SQL Injection). These exam-
ples illustrate how Medusa combines social engineering with
the exploitation of critical software flaws.

When we mapped the advisory’s ATT&CK techniques into
our knowledge graph, their connections to CWEs and CVEs
did not immediately retrieve the specific CVEs listed in the
advisory using direct traversals (Technique — CAPEC —
CWE — CVE). However, by enabling two-hop hierarchical
expansions across CAPEC and CWE relations, the graph

MATCH (a:attack_pattern)

WHERE a.external_id IN [
"7T1110.001","T1110.003","T1566",
]

"T1133","T1190","T1665"

// CAPECs (base + expansion)

MATCH (capecO:capec)-[:related_attack]->(a)

OPTIONAL MATCH (capecO)-[:capec_precedence|
capec_childx1l..2]- (capecX:capec)

WITH [c IN (collect (DISTINCT capecO) + collect (DISTINCT
capecX)) WHERE c IS NOT NULL] AS capecs

UNWIND capecs AS capec

WITH DISTINCT capec

// Base CWEs
MATCH (capec)-[:related_capec]-(cweO:cwe)

// CWE expansion

OPTIONAL MATCH (cwe0)-[:cwe_precedence|
cwe_child*1l..2]- (cweX:cwe)

WITH [w IN (collect (DISTINCT cweO) + collect (DISTINCT
cweX)) WHERE w IS NOT NULL] AS cwes

UNWIND cwes AS cwe

WITH DISTINCT cwe

// To CVEs

MATCH (cve:cve)-[:related_cwe] - (cwe)

RETURN DISTINCT cve.id AS cve_id
ORDER BY cve_id;

Fig. 14. Cypher Query to traverse from ATT&CK techniques to CVEs via
CAPECs and CWEs.

successfully revealed all of the reported CVEs while also
identifying further related vulnerabilities.

Together, these case studies demonstrate how the knowledge
graph can operationalize CISA advisories by systematically
bridging ATT&CK techniques to underlying CWEs and CVE:s.
By incorporating hierarchical expansions, the framework not
only recovers explicitly listed vulnerabilities but also uncovers
a broader set of latent CVEs, providing defenders with a more
comprehensive view of potential exploitation surfaces.

E. Topology-Based Discovery of Missing Links

Topology-based similarity measures can be applied to the
cybersecurity knowledge graph to identify plausible but un-
observed relationships between entities. For example, while
some CWE and CAPEC nodes are not explicitly linked, their
structural context within the graph may suggest a strong latent
association. Using Cypher queries, we can systematically
enumerate candidate CWE-CAPEC pairs within a bounded
hop distance and rank them by metrics such as Common
Neighbors, Adamic—Adar, and Preferential Attachment. This
allows analysts to focus on the most promising high-scoring
pairs, highlighting potential links that warrant examination.

We illustrate this approach through two case studies. In both,

the CWE and CAPEC nodes are not directly connected, yet
their similarity scores from the Neo4j Graph Data Science
(GDS) library indicate likely relationships.
Case Study 3 (CWE-308 and CAPEC-151) These nodes
share 14 common neighbors and have an Adamic—Adar score
of 5.41, indicating strong and distinctive structural overlap.
Semantically, CWE-308 (Use of Single-Factor Authentication)
and CAPEC-151 (Identity Spoofing) are closely related, as
weak authentication mechanisms inherently enable spoofing-
based attacks. The structural and semantic evidence together
highlight the plausibility of a missing edge.



Case Study 4 (CWE-20 and CAPEC-100) These nodes share
13 common neighbors with an Adamic—Adar score of 4.95,
showing significant and informative contextual overlap. CWE-
20 (Improper Input Validation) and CAPEC-100 (Overflow
Buffers) are conceptually linked, since insufficient input vali-
dation frequently leads to buffer overflow vulnerabilities. The
alignment of structural similarity with semantic meaning rein-
forces the likelihood of a missing but meaningful relationship.

These results suggest plausible direct relationships that
may be absent in the current graph representation. From an
analytical perspective, such scoring provides valuable guid-
ance for uncovering missing links that reflect real-world at-
tack—weakness associations, thereby enriching the knowledge
graph and supporting proactive cybersecurity analysis.

V. CONCLUSION

We presented a fully automated framework for building a
cybersecurity knowledge graph that unifies heterogeneous cy-
ber threat intelligence (CTI) sources—including CVE, CWE,
CAPEC, and MITRE ATT&CK—into a large-scale, continu-
ously updated Neo4j graph database. Our framework ingests,
normalizes, and integrates hundreds of thousands of entities
and relationships, capturing vulnerabilities, weaknesses, attack
patterns, techniques, adversary groups, tools, defensive mea-
sures, etc. within a single queryable structure. By automating
cross-domain integration and materializing rich semantic rela-
tionships, the graph enables bidirectional, multi-hop traversals
that provide analysts with explainable connections from low-
level CVEs to high-level ATT&CK techniques, and vice versa.

Through case studies on CISA advisories, group-to-
vulnerability traversals, and topology-based link scoring, we
demonstrated how the knowledge graph not only recovers
explicitly reported vulnerabilities but also uncovers latent
and plausible connections. These capabilities highlight the
utility of graph-based CTI for proactive defense, adversary
emulation, and explainable cyber risk assessment.

Our future work will explore enriching the graph with real-
time streaming threat feeds, extending coverage to additional
CTI standards (e.g., STIX/TAXII threat sharing, malware
repositories, and open-source threat reports), and applying ad-
vanced graph learning models such as Graph Neural Networks
(GNNs) to enhance predictive reasoning and link prediction.
By combining automation, scalable analytics, and predictive
modeling, we aim to advance knowledge graphs as a founda-
tional capability for next-generation cyber threat intelligence.
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