
Guaranteed Physical Security with Restart-Based Design for Cyber-Physical Systems
Fardin Abdi∗, Chien-Ying Chen∗, Monowar Hasan∗, Songran Liu†, Sibin Mohan∗, and Marco Caccamo∗

∗Department of Computer Science, University of Illinois at Urbana-Champaign, USA
{abditag2, cchen140, mhasan11, sibin, mcaccamo}@illinois.edu

†School of Computer Science and Engineering, Northeastern University, China
liusongran@stumail.neu.edu.cn

Abstract—Physical plants that form the core of the Cyber-
Physical Systems (CPS) often have stringent safety require-
ments. Recent attacks have shown that cyber intrusions can
result in the safety of such plants being compromised – thus
leading to physical damage. In this paper, we demonstrate
how to ensure safety of the plant even when the system
gets compromised. We leverage the fact that due to inertia,
an adversary cannot destabilize the physical system (even
with complete control of the software) in an instantaneous
manner; in fact, it often takes finite (even considerable time).
This property, coupled with system-wide restarts is used to
enforce a secure (and safe) operational window for the system.
A hardware root-of-trust, further decreases the ability for
attackers to compromise our mechanisms. We demonstrate our
approach using two realistic systems – a 3 degree of freedom
(3-DoF) helicopter and a simulated warehouse temperature
control unit. We also show that our system is robust against
multiple emulated attacks – essentially the attackers are not
able to compromise the safety of the CPS.

I. INTRODUCTION

Some of the recent attacks on cyber-physical systems

(CPS) are focused on causing physical damage to the

plants or physical subsystems. Such intruders make their

way into the system using cyber exploits but then initiate

actions that can destabilize and even break the underlying

(physical) systems. This can be particularly problematic

since several critical systems fall into this category –

automobiles, avionics, power grid substations, industrial

controllers, manufacturing systems and medical devices,

to name just a few. Attacks on cardiac defibrillators and

pacemakers which put patients’ lives at risk [23] and

intrusions into automotive controllers with the goal of

damaging the vehicles or hurting the passengers [25] are

few examples among many others. Hence, any damage to

such systems can be catastrophic – to the systems, the

environment or even humans. The drive towards remote

monitoring/control (often via the Internet) only exacerbates

the security problems in such devices.

While some of the security threats can be mitigated

using solutions aimed at traditional computing systems, there

is still no guarantee that an attacker cannot bypass such

mechanisms and gain administrative access to the software

that controls the system. Once an attacker gains such access,

then all bets are off with regards to the safety of the physical

system. For instance, the control program can be prevented

from running, either completely or even in a timely

manner (CPSs often have stringent timing requirements

and any delays in sending out actuation commands can be

detrimental), sensor readings can be intercepted (either they

are blocked or tampered with and false values forwarded

to the control program) and similarly actuation commands

going out to the plants can be intercepted/tampered with,

system state data can be manipulated, etc. These actions,

either individually or in conjunction with each other, can

result in significant damage to the plant(s). At the very least,

they will significantly hamper the operation of the system

and prevent it from making progress in its intended task.

In this paper, we develop analytical methods that can
formally guarantee the baseline safety of the physical plant
even when the controller unit’s software has been completely
compromised. The main idea of our paper is to carry out

consecutive software restorations separated in time such that

an attacker with full control will not have enough time

to destabilize or crash the physical plant in between two

consecutive restorations. In this paper, the interval between

consecutive restorations is dynamically calculated in real

time, based on the model of the physical plant and its current

state. The key to provide such formal guarantees is to make

sure that each restoration takes places before an attacker can

cause any sort of physical damage.

To further clarify the approach, consider a simple drone

example. The base-line safety for a drone is to not crash

into the ground which can be translated into: altitude must

be positive at all times. Using a physical model of the

drone, in Section V-B, we show how to calculate the shortest

time that an adversary with full control on all the actuators

would need to take the drone into zero altitude (an unsafe

state) from its current state (i.e., velocity and altitude).

The key is to schedule the next software restoration event

such that it takes place before the calculated shortest time

for reaching the ground. Under this condition, immediately

after the software restoration, despite the potential hijack

of the control software, the drone will still be above the

ground (safe) and the software will be clean (due to the

restoration). At this point, depending on whether the drone

was actually compromised or not, it will be either stabilized

– by a safety controller – or its normal operation will resume.

Providing formal safety guarantees, even in this simple

example, is non-trivial and there are many issues that need

to be addressed. For instance, restoration event must be

scheduled such that not only the drone must not reach the

ground, but also its velocity and level must be such that

the controller is able to stabilize the drone, within the limits

of drone motors, before it hits the ground. In addition, the

software restoration event (in this paper, full system restart

and reload) is not instantaneous and takes a non-zero amount

of time which needs to be taken into account. Furthermore,

10

2018 9th ACM/IEEE International Conference on Cyber-Physical Systems

0-7695-6378-3/18/$31.00 ©2018 IEEE
DOI 10.1109/ICCPS.2018.00010

we need to ensure that the attacker may not prevent the

restoration action under any circumstances. All these issues

and a few others are discussed and addressed in this paper.

One of the main contributions of this paper compared to

many of the existing security approaches is to consider

physical stability along with the safety of the system.

The software restoration action we choose in this paper

is restarting the system and reloading the uncompromised

image of the controller software from a read-only storage.

Restarting the system enables us to (i) eliminate all

the possible transformations carried out by the adversary

during previous execution cycle and also (ii) provides a

window for trusted computation in an untrusted environment

which we use to compute the next restart/restoration

time (Section V-A). Additionally, (iii) most embedded

controllers which are the main target of this paper can be

restarted very quickly [5]. We use a very simple external

HW timer to trigger the system restart at the scheduled time.

This simple design prevents the potential adversary from

interfering with the scheduled restart event.

One of the design decisions we made in this work is to

proactively restart the system after each execution cycle.

We believe this is a necessary choice if we want to run

the monitoring code in the same computing platform that

is subject to security attacks. Otherwise, the monitor needs

to run on a separate safe unit (e.g., hardware monitor

implemented on FPGA as System Simplex approach[8]

would dictate.). An alternative approach could have been

to utilize some sort of detection mechanism and restart the

system only after a threat is detected. The problem is a

perfect intrusion detection mechanism does not exist. With

imperfect threat detection, an adversary could crash the plant

during a cycle that the detection mechanism fails to identify

the intrusion. Hence, our choice to restart proactively in

every execution cycle is the result of achieving guaranteed
safety rather than a probabilistic one within the bounds of

the specified threat model.

To be specific, in this paper: (a) we use proactive system-

wide restarts, (b) the (software) system state is “cleansed”

and reloaded from a trusted copy, (c) the restart rate is

adjusted, at run-time, based on the dynamics of the physical

plant and its current state such that physical safety is
guaranteed, (d) we utilize a safety controller that can

maintain the plant within the required safety margins (more

details in Section IV) and (e) an external hardware timer
as root-of-trust to ensure that the restart/reloading process

cannot be interfered with by an adversary. In summary, the

contributions of the paper are:

1) We introduce a design method for embedded control

platforms with formal guarantees on the base-line
safety of the physical subsystem when the cyber unit

is under attack.

2) Our design enables trusted computation (Section V-A)

in a untrusted environment using system restarts and

common-off-the-shelf (COTS) components (timer IC

and common embedded boards), without requiring chip

customizations or specific hardware features.

3) We demonstrate the effectiveness of our approach

against attacks through a prototype implementation for

a realistic physical system and a hardware-in-the-loop

simulation.

II. RELATED WORK

The problem of preserving safety of physical components

despite possible software faults is widely studied in the fault-

tolerant CPS literature1. Despite the similarities, there are

fundamental differences between protecting against faults vs.

protecting against a determined attacker. In the following,

we briefly review some of these works and explain the

differences.

The Simplex architecture [33] is a well known

fault-tolerant design for control systems where a high-

performance (yet unverifiable) controller is in charge of

a safety-critical system. This is achieved by the presence

of a high-assurance, formally verified, safety controller
and a decision module (again, formally verifiable) that

can take control and maintain the safety of the plant if

the high-performance controller (also referred to as the

“complex controller”) is in danger of pushing the physical

plant beyond a precalculated safety envelope2. There are a

few variants of Simplex Architecture; some use a varying

switching logic [9], [10] and, others utilize a different

safety controller [5]. All these papers, however, assume

that misbehavior is possible only within a subset of the

software system (for instance, they assume that switching

unit cannot misbehave). Such an assumption is not valid

for systems under attack. Attackers can actively corrupt the

verified software components and force them to misbehave.

In this paper, our safety guarantees hold assuming attackers

can compromise “all” the software layers.

System-Level Simplex [8] is another variation of Simplex

Architecture where authors propose to run the Safety

Controller and Decision Module on a dedicated hardware to

isolate them from fault/malicious activities on the complex

unit. With the complete isolation of complex and safety

control units and assuming that the safety subsystem

cannot be compromised, techniques based on System-Level

Simplex [8], [4], [3], [27] can protect the safety of the

physical plant when the complex subsystem is under attack.

Nevertheless, exercising System-Level Simplex design on

most COTS multicore platforms is challenging. Majority of

commercial multicore platforms are not designed to achieve

strong inter-core isolation due to the high degree of hardware

resource sharing. For instance, an attacker in the core with

the highest privilege level may compromise power and

clock configurations of the entire platform. To achieve full

isolation and independence, one has to utilize two separate

1Where the safety invariants of the physical plant must be preserved
despite the possible implementation and logical errors in the software.
Here, ‘faults’ refer to bugs in the software implementations. There exists
another definition for faults that includes physical problems (e.g., broken
sensors/actuators/etc) – we do not consider them in this paper.

2Note: See Section IV for more details about Simplex as well as the
references.

11

boards. Our paper, on the other hand, provides formal safety

guarantees with only one computing unit.

Among the above-mentioned Simplex-based works, [3]

and [4] specifically propose restarting the complex unit as a

means to mitigate the attacks and recover the system. Notice

that, restarting the complex unit in these papers is trivial

because safety controller that runs on a separate hardware

unit is present during the restart and can keep the plant

stable. Another Simplex-based work that uses full system-

restarts is [5] in which authors only use a single hardware

unit. Similar to some of the earlier mentioned works, this

work assumes that faults may only occur within the complex

controller and/or operating system and, safety controller

and decision module are always correct. This assumption

does not hold in the presence of malicious adversary and

therefore this approach cannot provide physical safety when

the system is under the attack.

A recent work [6] investigates frequent restarts and

diversification for embedded controllers to increase the

difficulty of launching attacks. Despite the conceptual

similarity, our works mainly differ in the calculation of

restart times. By dynamically calculating the next restart

time in each cycle using real-time reachability, we can

guarantee the safety of the system. Whereas, authors in [6]

choose the restart times with an empirical approach without

any formal analysis.

The idea of restarting the entire system or its components

at run-time is not novel and has been explored in earlier

research to battle the problem of software aging in two forms

of revival (i.e., reactively restarting a failed component)

and rejuvenation (i.e., proactively restarting functioning

components). Authors have tried to model failure and

faults for client-server type applications trying to find an

optimal rejuvenation strategy for various systems with the

aim of reducing the expected down time [38], [21], [24].

Researchers have introduced recursively restartable systems

for fault-recovery and increased availability of Internet

services [13]. The concept of microreboot that is having

fine-grain rebootable components and trying to restart them

from the smallest component to the biggest one is explored

in [14], [16], [15]. In spite of being used for entirely different

purposes, these works assert the effectiveness of restarting

as a recovery technique. In this context, some rejuvenation

schemes [22] tackle software aging problems related to

arithmetic issues such as the accumulation of numerical

errors in controllers of safety-critical plants. Nevertheless,

rejuvenation techniques for safety-critical systems are very

limited. A survey on software aging and rejuvenation shows

that only 6 percent of the published papers in this area have

considered safety-critical applications [19].

The philosophy of our work is similar to that of the

works in a trend in systems dependability that applies fault

tolerance concepts and mechanisms in the domain of secu-

rity, intrusion tolerance (or Byzantine fault tolerance) [17],

[40]. Authors in these works advocate for designing in-

trusion tolerant systems rather than implementing intrusion

prevention. Many of the works in intrusion-tolerant systems

have targeted distributed services where redundancy and

replication are possible and the goal is to ensure that a

system still delivers its service correctly even if some of its

nodes are compromised. Authors in [17] propose proactively

restoring the system code of the replicas from a secure

source to eliminate potential transformations carried out by

an adversary. Using proactive recovery, one can increase

the resilience of any intrusion-tolerant replicated system

able to tolerate up to f faults/intrusions, as long as no

more than f faults occur between rejuvenations. In [39],

authors introduce a general hybrid model for distributed

asynchronous systems with partially synchronous compo-

nents, called wormholes. In [35], authors propose the use

of wormholes as a trusted secure component (similar to our

root of trust timer), which proactively recovers the main

functionality of the system. Authors suggest that such a

component can be achieved using a separate, tamper-proof

hardware module (e.g., PC board) where the separation is

physical; or it can be implemented on the native hardware,

with a virtual separation and shielding implemented in

software, between the former and the OS processes. A

proactive-reactive recovery approach is proposed in [34] that

builds on top of [35] and allows correct replicas to force

the recovery of a replica that is detected or suspected of

being faulty. Whilst these techniques are useful for some

safety-critical applications such as Supervisory control and

data acquisition (SCADA), they are not directly applicable to

safety-critical control devices. Potentially, a modified version

of these solutions might be utilized for designing a cluster

of replicated embedded controllers in charge of a physical

plant.

III. APPLICATIONS, THREATS AND ADVERSARIES

Our technique is designed for end-point control devices

that drive a physical system. Other components of CPS

that are not directly controlling a physical plant such as

monitoring nodes are not the focus of this paper. Our target

applications are safety-critical CPS i.e., controlled physical

plant with stringent safety requirements that need to be

respected at all times. Such safety requirements for the

physical system can be described by defining a connected

subset of the state space as an admissible region. The

physical plant is always required to operate within those

states. If the plant state reaches outside the admissible set,

it might result in damage to the physical components or the

surrounding environment.
Our proposed approach works for stateless controllers

– in this paper, those that only use the current or very

recent state of the plant such as PD controller. Upon restart

of a stateless controller device, volatile and non-volatile

memory (except for the read-only image of the system)

are erased. In case of the stateful controllers, a small

section of non-volatile memory will be preserved across

restarts in which the controller tasks store the necessary state

information for future cycles. An attacker might corrupt this

values from time to time if they compromise the system.

Therefore, a stateful controller must consider this possibility

to avoid decreased control performance in cycles following

12

a successful system compromise. In the rest of this paper,

we focus on stateless controllers.

A. Adversary and Threat Model

Embedded CPS controllers face threats in various forms

depending on the system and the goals of the attacker. The

particular attacks that we aim to thwart in this paper are the

ones whose target is to cause damage to the physical plant. In

this paper, we assume attackers require an external interface
such as the network, serial port or debugging interface to

intrude into the system and launch the attacks. We assume

that attacker does not have physical access to the plant. Once

an attacker is in the system, it has full control (root access)

over all the software, actuators, and peripherals. In the light

of this assumption, immediately after a reboot, as long as the

external interfaces of the device (i.e., network and debugging

interface) remain disabled, software running on the system

is assumed to be uncorrupted.

In this paper we make the following assumptions about

the system and capabilities of the adversary:

i) Integrity of original software image: We assume that

the original images of the system software i.e., real-

time operating system (RTOS), control applications, and

other components are not malicious. These components,

however, may contain bugs or security vulnerabilities

that could be exploited to initiate attacks.

ii) Read-only storage for the original software image: We

assume that the original trusted image of the system

software is stored on a read-only memory unit (e.g.,
E2PROM). This content is not modifiable at runtime by

anyone including adversary. There exists a secure means

for updating this image such as requiring physical

access for upgrade or using a dedicated interface for

image upgrade.

iii) Integrity of Root of Trust (RoT): RoT is an isolated

hardware timer responsible for issuing the restart signal

at designated times. As shown in Section V-A, it

is designed to be programmable only once in each

execution cycle and only during an interval that we call

the SEI.

Additionally, we assume that the system is not susceptible

to external sensor spoofing or jamming attacks (e.g., broad-

casting incorrect GPS signals, electromagnetic interference

on sensors etc.). An attacker may, however, spoof the sensor

readings within the OS or applications. Our approach does

not protect system data, hence, attacks that aim to steal

secrets, monitor system activity pattern, or violate user

privacy are not mitigated. Our approach does not protect

from network attacks such as man-in-the-middle or DoS

attacks that restrict network access. However, as we show,

the physical system remains safe during such attacks.

IV. BACKGROUND

In this section, we provide a brief background on Safety

Controller and Real-Time reachability. We will utilize these

tools in the rest of this paper. Before going into their details,

we first present useful definitions.

Definition 1. Admissible and Inadmissible States: States
that do not violate any of the operational constraints of
the physical plant are referred to as admissible states and
denoted by S. Likewise, those that violate the constraints
are referred to as inadmissible states and denoted by S ′.
Definition 2. Recoverable states: are defined with regards
to a given Safety Controller (SC) and is denoted by R. R
is a subset of S such that if the given SC starts operation
from x ∈ R, all future states will remain admissible.

In other words, the physical plant is considered momentar-

ily safe when its physical state is in S. And, SC can stabilize

the physical plant, if its state is in R. Operational limits and

safety constraints of the physical system dictate what S is

and it is outside of our control. However, R is determined

by the design of safety controller. Ideally, we would want

a SC that can stabilize the system from all the admissible

states S. However, it is not usually possible.
In the following, we explain one possible way to design

a safety controller which is based on solving linear matrix

inequalities and has been used to design Simplex systems

as complicated as automated landing maneuvers for an F-

16 [31].

A. Safety Controller
According to this design approach [32], [31], SC is

designed by approximating the system with linear dynamics

in the form of ẋ = Ax + Bu, for state vector x and

input vector u. In addition, the safety constraints of the
physical system are expressed as linear constraints in the

form of H · x ≤ h where H and h are constant matrix

and vector. Consequently, the set of admissible states are

S = {x : H · x ≤ h}. The choice of linear constraints to

represent S is based on the Simplex Architecture and many

of the following works [32], [31], [33], [9], [5], [8].
Safety constraints, along with the linear dynamics for the

system are the inputs to a convex optimization problem.

These parameters produce both the control gain K as well

as a positive-definite matrix P . The resulting linear-state

feedback controller, u = Kx, yields closed-loop dynamics

in the form of ẋ = (A + BK)x. Given a state x,

when the input u = Kx is used, the P matrix defines

a Lyapunov potential function (xTPx) with a negative-

definite derivative. As a result, for the states where xTPx <
1, the stability of the linear system is guaranteed using

Lyapunov’s direct or indirect methods. It follows that the

states which satisfy xTPx < 1 are a subset of the safety

region. As long as the system’s state is inside xTPx < 1
and the u = Kx is the controller, the physical plant will

be driven toward the equilibrium point, i.e., xTPx = 0.

Since the potential function is strictly decreasing over time,

any trajectory starting inside the region xTPx < 1 will

remain there for an unbounded time window. As a result

no inadmissible states will be reached. Hence, the linear-

state feedback controller u = Kx is the SC and R = {x :
xTPx < 1} is the recoverable region. Designing SC in such

a way ensures that the physical system would remain always

safe [33].

13

B. Real-Time Reachability

In this paper we use a tool for runtime computation of

reachable states of a physical system within a future time as

proposed in [9]. This efficient algorithm is specifically de-

signed for embedded systems with real-time constraints and
low computation power. This approach uses the dynamics

of the plant and a n-dimensional box to represent the set

of possible control inputs and the reachable states. A set of

neighborhoods, N [i] are constructed around each facei of

the tracked states with an initial width. Next, the maximum

derivative in the outward direction, dmax
i , inside each N [i] is

computed. Then, crossing time tcrossing
i = width(N [i])/dmax

i

is computed over all neighborhoods and the minimum of all

the tcrossing
i is chosen as time to advance, ta. Finally, every

face is advanced to facei + dmax
i × ta. For further details

on inward neighborhood versus outward neighborhoods, and

the choosing of neighborhood widths and time steps refer to

[9].

In this algorithm a parameter called reach-time-step
is used to control neighborhood widths. This parameter

allows us to tune the total number of steps used in the

method, and therefore alter the total runtime to compute

reachable set. As a result, the time required to compute

reachable set can be capped. Moreover, authors have

demonstrated that this algorithm is able to generate useful

results within very short computation times. In the paper [9],

acceptable results are reported that are achieved with

computation times as short as 5ms on embedded platforms.

Therefore, this real-time reachability approach is suitable to

be used on real-time embedded systems.

V. METHODOLOGY

To explain our approach, let us assume that it is possible

to create secure execution intervals (SEI) during which we

can trust that the system is going to execute uncompromised

software and adversary cannot interfere with the system

in any way. Under such setup, we will show that it is

possible to guarantee that a physical plant will remain within

its admissible states as long as the following conditions

remain true: (i) the timing between these intervals are set

such that, due to physical inertia, the plant cannot reach

an inadmissible state by the end of the following SEI. (ii)
The state of the plant at the beginning of the following SEI

will be such that the SC can stabilize the system. Under

these conditions, the plant will be safe in between two

SEIs (due to condition 1). If adversary pushes the system

close to the boundaries of inadmissible states, during the

following SEI, we can switch to SC and it can stabilize the

system (condition 2).

Hence, we need an approach to enable trusted, secure

execution intervals where we can trust the integrity of the

code executing on the system (next section). Then, we

present how to utilize the physical model of the plant and

calculate separation between consecutive SEIs such that we

can ensure the above conditions.

A. Secure Execution Intervals (SEI)

The need for SEIs arises from the fact that a mechanism is

required to prevent any malicious interference with the tasks

that are necessary for providing the safety guarantees. In this

work, we choose full system restarts and software reloads
as a mechanism to achieve this goal. This combination

ensures that the uncorrupted version of the software is

running on the system immediately after restart completes.

Furthermore, through disabling all the external interfaces of

the system (i.e., those that may be used as an exploit point

for external adversary e.g., network), we can eliminate the

possibility of adversarial interferences for as long as it is

needed. SEIs refer to this isolated intervals of time after

each restart.

During a SEI, we perform the tasks whose correct

execution is necessary for the safety of the plant. Once the

execution of these tasks is finished, external interfaces of

the controller board are activated and the normal operation

resumes.

In addition, we need another mechanism to ensure that

under any circumstances system will be restarted and
adversaries cannot prevent it. Hence, we utilize an isolated

HW module in charge of triggering restarts. This module

is called hardware root of trust (RoT). RoT is essentially a

timer that can send a restart signal to the HW restart pin

of the controller board at the scheduled times. It provides

an interface that allows the main controller board to set the

time of the next restart signal. We refer to this interface

by SetRestartTime. The only difference of RoT with

a regular timer is that it allows the processor to call the

SetRestartTime interface only once after each restart

and will ignore any additional calls to this interface. Once

the RoT timer is set, adversaries cannot disable it until it

has expired and the system has restarted. Figure 1 presents

an example of system events.

ROT needs to be secure and incorruptible. Hence, we

require hardware isolation (e.g., a standalone timer) and

independence from the processor with no connectivity

except for the HW interface, setRestartTime. In our

prototype implementation, RoT is implemented using a

simple micro-controller (Section VI).

B. Finding a Safe Restart Time

Figure 1 presents an example of system operation.

After each restart, during the SEI, two tasks execute in

parallel: SC (to stabilize the physical plant if needed) and

FindRestartTime (Section V-B) to calculate time of the

next restart. If the attacker had been able to compromise

the system during the previous execution cycle and tried

to push the system towards inadmissible states, the SC

will require a longer time to stabilize the plant and SEI

will be longer (Second cycle in Figure 1). Otherwise,

if no malicious activity had taken place, SEI finishes

quickly and normal operation resumes. The key idea is that

FindRestartTime calculates the restart times such that

physical plant cannot reach an unsafe state until the restart

14

��
��
��
�	

��
�

�
��

��� ���������
���
���������

�	��

Figure 1: This figure shows an example period of system operation and the sequence of events. Meaning of the colors and signs in
this figure are the following: White: Main controller in charge and system is not compromised. Yellow: system is undergoing restarting.
Green: SEI is active, SC is running and the next restart time is being calculated. Orange: Adversary is in charge. Blue: RoT’s interface
is available. Gray: RoT’s interface is not available. Red Arrow: RoT triggers a restart. Blue Arrow: SEI ends and the next restart time is
scheduled in RoT.

takes place and, at the beginning of next SEI, state is still

recoverable by the SC.
Before we proceed, it is useful to define some notations.

We use the notation of Reach=T (x,C) to denote the set

of states that are reachable by the physical plant from an

initial set of states x after exactly T units of time have

elapsed under the control of the controller. Reach≤T (x,C)

can be defined as
⋃T

t=0 Reach=t(x,C) i.e., set of all the

states reachable within up to T time units. In addition, we

use SC to refer to the safety controller and UC to refer

to an untrusted controller, i.e., one that might have been

compromised by an adversary. We use notation Δ(x1, x2) to

represent the shortest time required for the physical system

to reach state x2, from state x1. Using above notations, let us

define the set of True Recoverable states for a given physical

system.

Definition 3. True Recoverable states are all the states
from which the given SC can eventually push the system
inside recoverable region. Formally, T = {x | ∃α > 0 :
Reach≤α(x, SC) ⊆ S & Reach=α(x, SC) ⊆ R}. The set
of true recoverable states is represented with T .

Definition 4. Tα denotes the set of states from which
the given SC can stabilize the plant within at most α
time. Formally, we have Tα = {x | Reach≤α(x, SC) ⊆
S & Reach=α(x, SC) ⊆ R}. From definition it follows that
Tα ⊆ T .

Let’s use Tr to refer to the length of one restart cycle of

embedded platform3. Furthermore, let us use γ to represent

the shortest time that is possible to take a physical system

from its current state x(t) ∈ T to a state outside of T . We

can write

γ(x) = min {Δ(x, x′) | for all x′ �∈ T } (1)

From this definition, it follows that

If x(t) ∈ T then x(t+ τ) ∈ T where τ < γ(x(t)). (2)

From Equation 2 we can conclude

Reach≤γ(x(t))−ε(x(t), UC) ⊆ S
Reach=γ(x(t))−ε(x(t), UC) ⊆ T where ε → 0 (3)

3Tr is the length of the interval from the restart triggering point until the
reboot is completed, filters are initialized and control application is ready
to control the system.

Equation 3 indicates that if it was possible to calculate

γ(x) in an SEI, we could have scheduled the consecutive

restart to occur at time γ − Tr − ε (ε is a small positive

value). This process would have ensured that by the time

the following restart had completed, physical plant was truly
recoverable (inside region T) and admissible.

Intuitively, γ is a function of the dynamics of the

system and limits of the actuators. Unfortunately, it is not

usually possible to compute a closed-form representation

for γ(x). The main reason is computing a closed-form

representation for the T of the given controller is not

a trivial problem. Actuator limits is another factor that

needs to be taken into the account in the calculation of

T . Therefore, in many cases, finding γ would require

performing extensive simulations and/or solving numerical

or differential equations.

An alternative approach is to check the conditions of

Equation 3 for a specific value of time λ:

Reach≤λ(x(t), UC) ⊆ S
Reach=λ(x(t), UC) ⊆ Tα

(4)

Fortunately, it is possible to use real-time reachability to

evaluate all the components of Equation (4). The reachable

set can be computed up to λ time under an untrusted

controller UC to check the first part of the equation (4). The

reachable set calculated for t = λ can be used as the initial

set to perform another reachability computation for α time.

In the implementation, we chose a value of α such that real-

time reachability can terminate within the assigned deadline.

This enables us to check the conditions specified in the

definition of Tα and evaluate the second part of Equation 4.

There are a few points that are worth discussing here.

First, the real actions of the adversary are unknown ahead

of time. As a result, in the conditions of Equation (4), the

reachability of the plant under all possible control values

needs to be calculated. Hence, the computed reachable set

under UC (Reach(x, UC)) is the largest set of states that

might be reached from the given initial state, within the
specified time. Real-time reachability tool easily enables this

computation due to using a box representation for the control

inputs. Control inputs are treated as a dimension and are set

to the full range of actuators. As a result, the computed

reachable set is the states that might be achieved under any

of the actuator values. Notice that this procedure does not

15

impact the time required for reachability computation.

Assuming t is the current time, if conditions of Equation 4

are true for a value of λ from current state x(t), system can

be restarted at t + λ − Tr. However, given more time, we

can evaluate the conditions of the theorem for other larger

values until we run out of time. Algorithm 1, demonstrates

an increasing binary search that tries to find longer restart

times within a fixed computation time.

Algorithm 1: Find Restart Time

FindRestartTime(x,λcandidate)
1: startTime = currentTime()
2: RangeStart = 0;
3: RangeEnd = λcandidate /*Initialize range of binary search for λr*/
4: while currentTime() - startTime <Ts do
5: if conditions of Equation (4) are true for λcandidate then
6: λsafe := λcandidate

7: RangeStart = λsafe ; RangeEnd = 2 ∗ λsafe /* increase the
λcandidate */

8: else
9: RangeEnd = λcandidate /* decrease the λcandidate */

10: end if
11: λcandidate := (RangeStart+ RangeEnd)/2
12: end while
13: if λsafe > currentTime() - startTime then
14: λsafe = λsafe−(startTime - currentTime())
15: return True , λsafe

16: end if
17: return False , –

When an intelligent adversary compromises the system,

it will try to push the system towards inadmissible states

as quickly as possible (Example in Figure 1). Although

the plant remains safe and recoverable, at the end of the

adversarial execution, state of the plant might be very

close to the boundaries of the unsafe/inadmissible states.

When operating in such proximity to the boundaries of the

admissible and inadmissible region, there is a very narrow

margin for misbehavior. If attackers take over again while

the system is in such risky states, they can easily violate the

physical safety. Therefore, in such states, safety controller

needs to keep executing longer than usual and push the plant

back into inner part of the stable region.

Deciding whether the SC needs to run longer is based

on the output of the Function FindRestartTime in

Algorithm 1. If none of the candidate values satisfy the

conditions of Equation (4), then the algorithm will return

false as the value. This is an indicator that the plant

is too close to the boundary and SC needs to run for

another cycle until the system is within its inner stability

region. Algorithm 2 describes various stages of the system

operation. In Algorithm 2, the number of iterations of the

while loop depends on if an adversary was successful in

compromising the system in the previous cycle or not.

In our implementation, λinit is set to the middle point

of maximum and minimum restart times that are observed

during the offline analysis with the model of the physical

system (Subsection VI-C of Evaluation). It is also possible

to use an adaptive λinit by dividing the state space into

subregions and assigning a λinit to each region. At runtime,

based on the current state of the plant, the associated λinit

Algorithm 2: System operation in one cycle

1: Start Safety Controller. /* SEI begins */
2: timeFound := False
3: λsafe = λinit /*Initializing the restart time*/
4: while timeFound == False do
5: x := obtain the most recent state of the system from Sensors
6: (timeFound, λsafe) :=FindRestartTime(x, λsafe)
7: end while
8: Send λsafe to RoT. /* Set the next restart time. */
9: Activate external interfaces. /* SEI ends. */

10: Terminate SC and start the main controller.
11: When RoT sends the restart signal to hardware restart pin:
12: Restart the system
13: Repeats the procedure from beginning (from Line 1)

with the region can be used to initialize the Algorithm 1.

VI. EVALUATION AND FEASIBILITY STUDY

In this section, we aim to evaluate the effectiveness

of our solution in protecting from attacks and measure

the feasibility of implementing it on real-world physical

systems. We choose two target systems for this study;

a 3-degree of freedom helicopter [28] and a warehouse

temperature management system [37]. The former is a very

unstable system with fast-moving dynamics and the latter is

a relatively stable system with slower dynamics. We have

implemented the controllers for both of these systems on a

ZedBoard [7] embedded platform. We performed synthetic

attacks on the embedded system and demonstrate that the

both systems remain safe and recover from the attacks.

A. Test Bed

������

�����	
��

	��

��
��
���	������

���

���	��	�

�
���		��	�

���	���
��
�	��

Figure 2: 3DOF helicopter used as the test-bed.

1) 3-Degree of Freedom Helicopter:: 3DOF

helicopter (displayed in figure 2) is a simplified helicopter

model, ideally suited to test intermediate to advanced control

concepts and theories relevant to real-world applications

of flight dynamics and control in tandem rotor helicopters,

or any device with similar dynamics [28]. It is equipped

with two motors that can generate force in the upward

and downward direction, according to the given actuation

voltage. It also has three sensors to measure elevation,

pitch, and travel angle as shown in Figure 2. We use the

linear model of this system obtained from the manufacturer

manual [28] for constructing the safety controller and

calculating the reachable set in run-time. Due to the lack of

space, the details of the model are included in our technical

16

report [2]. This platform is repeatedly used by various

researchers in the field of CPS [29].

For the 3DOF helicopter, the safety region is defined in

such a way that the helicopter fans do not hit the surface

underneath, as shown in Figure 2. The linear inequalities

describing the safety region are −ε + |ρ|/3 ≤ 0.3 and

|ρ| ≤ π/4. Here, variables ε, ρ, and λ are the elevation,

pitch, and travel angles of the helicopter. Limitations on the

motor voltages of the helicopter are |vl| ≤ 4 and |vr| ≤ 4
where vl and vr are the voltage for controlling left and right

motors.

2) Warehouse Temperature System:: This system consists

of a warehouse room with a direct conditioner system (heater

and cooler) to the room and another conditioner in the

floor [37]. The safety goal of this system is to keep the

temperature of the room within the range of [20◦C, 30◦C].
Following equations describe the heat transfer between the

heater and floor, floor and the room, and room and outside

temperature. The model assumes constant mass and volume

of air and heat transfer only through conduction.

ṪF = −UF/RAF/R

mFCpF
(TF − TR) +

uH/F

mFCpF

ṪR = −UR/OAR/O

mRCpR
(TR − TO) +

UF/RAF/R

mRCpR
(TF − TR) +

uH/R

mRCpR

Here, TF , TR, and TO are the temperature of the floor,

room and outside. mF and mR are the mass of floor and the

air in the room. uH/F is the heat from the floor heater to

the floor and uH/R is the heat from the room heater to the

room both of which are controlled by the controller. CpF
and CpR are the specific heat capacity of floor (in this case

concrete) and air. UF/R and UR/O represent the overall heat

transfer coefficient between the floor and room, and room

and outside.

For this experiment, the walls are assumed to consist

of three layers; the inner and outer walls are made of

oak and isolated with rock wool in the middle. The

floor is assumed to be quadratic and consists of wood

and concrete. The parameters used are as following4:

UR/O = 539.61J/hm2K, UF/R = 49920J/hm2K ,

mR = 69.96kg, mF = 6000kg, floor area AF/R = 25m2,

wall and ceiling area AR/O = 48m2, thickness of rock wool,

oak and concrete in the wall and floor respectively 0.25m,

0.15m and 0.1m. Maximum heat generation capacity of

the room and floor conditioner is respectively 800J/s and

115J/s. And, maximum cooling capacity of the room and

the floor cooler is −800J/s and −115J/s.

B. Implementations

In this section, the implementation of the restart-based

protection approach for the controller system of the 3DOF

helicopter platform and warehouse temperature management

system is described. A more detailed description of the

implementation is given in our technical report [2]. For the

temperature management system, due to the limited access

to a real warehouse, the controller interacts with a simulated

4For the details of calculation of UF/R and UR/O and the values of
the parameters refer to Chapter 2 and 3 of [37].

model of the physical system running on a PC (Hardware-

the-loop simulation).

RoT Module:: We implemented the RoT module using

a minimal MSP430G2452 micro-controller on a MSP-

EXP430G2 LaunchPad board [36]. To enable restarting,

pin P2.0 of the micro-controller is connected to the restart

input of the main controller. Internal Timer A of the micro-

controller is used for implementing the restart timer. It is a

16-bit timer configured to run at a clock rate of 1MHz (i.e.,
1μs per timer count) using the internal, digitally controlled,

oscillator. A counter inside the interrupt handler of Timer
A is used to extend the timer with an adjustment factor, in

order to enable the restart timer to count up to the required

range based on the application’s needs.

The I2C interface is adopted for the main controller to set

the restart time on the RoT module. After each restart, during

SEI, the RoT acts as an I2C slave waiting for the value of

the restart time. This prevents a compromised system from

reprogramming the RoT. As soon as the main controller

sends the restart time, RoT disables the I2C interface and

activates the internal timer. Upon expiration of the timer, an

active signal is set on the restart pin to trigger the restart

event and the I2C interface is activated again for accepting

the next restart time.

Main Controller:: We used a Zedboard [7] to implement

the main controller of the 3DOF helicopter and warehouse

temperature control system. Zedboard is a development

board for Xilinx’s Zynq-7000 series all programmable SoC.

It contains a XC7Z020 SoC, 512MB DDR3 memory and an

on-board 256MB QSPI Flash. The XC7Z020 SoC consists

of a processing system (PS) with dual ARM Cortex-A9 cores

and a 7-series programmable logic (PL). The processing

system runs at 667MHz. In this evaluation, only one of

the ARM cores is used while the idle one is not activated.

The I2C and UART interfaces are used for connecting to

the RoT module and the 3DOF helicopter. Specifically, two

multiplexed I/Os, MIO14 and MIO15, are configured as SCL

and SDA for I2C respectively. We use UART1 (MIO48 and

MIO49 for UART TX and RX) as the main UART interface.

The reset pin of Zedboard is connected to RoT module’s

reset output pin via a BSS138 chip, an N-channel voltage

shifter. It is because the output pin on RoT module operates

at 3.3 volts while the reset pin on Zedboard accepts 1.8
volts. The entire system (both PS and PL) on Zedboard is

restarted when the reset pin is pulled to the low state. The

boot process starts when the reset pin is released (returning

to the high state). A boot-loader is first loaded from the on-

board QSPI Flash. The image for PL is then loaded by the

boot-loader to program the PL which is necessary for PS

to operate correctly. Once PL is ready, the image for PS is

loaded and the operating system will take over the control

of the system.

The main controller runs FreeRTOS [1], a preemptive

real-time operating system. Immediately after the reboot

when the FreeRTOS starts, SafetyController and

FindRestartTime tasks are created and executed.

SafetyController is a periodic task with a

17

period of 20ms (50Hz) and execution time of 100μs.

SafetyController task has the highest priority.

FindRestartTime is a single task that executes in

a loop and only breaks out when the next restart time

is found. It executes at all times except when SC task

is running. As soon as FindRestartTime calculates

the restart time, sends it to the RoT module via the I2C
interface and sets a flag in the system. Based on this flag,

SafetyController and FindRestartTime tasks

are terminated and the main control application tasks are

launched.
Function FindRestartTime is implemented based

on the Pseudo-code described in Algorithm 1. Execution

of each loop of this function is limited to 50ms (i.e.,
Ts = 50ms). To calculate reachability in function

FindRestartTime, we used real-time reachability

tool [9] with the dynamics of 3DOF and the warehouse

system. The code and full implementation can be found in

the GitHub repository [2].
3DOF Helicopter Controller: The main controller unit

interfaces with the 3DOF helicopter through a PCIe-

based Q8 data acquisition unit[30] and an intermediate

Linux-based PC. The PC communicates with the Zedboard

through the UART interface. Main controller task is a PID

controller whose goal is to navigate the 3DOF to follow

a sequence of set points. Control task has a period of

20ms (50Hz) and at every control cycle, the control task

on the controller communicates with the PC to receive the

sensor readings (elevation, pitch, and travel angles) and

send the next set of voltage values for the motors. The

PC uses a custom Linux driver to send the voltages to the

3DOF helicopter motors and reads the sensor values. In

our implementation, ZedBoard with FreeRTOS restarts and

reboots within 390ms.
Warehouse Temperature Controller: For this system,

due to lack of access to the real physical plant (i.e., a real

warehouse) we used a hardware-in-the-loop approach. Here,

the PC runs a simulation of the temperature based on the

heat transfer model of Equation VI-A2 and VI-A2. The main

controller is a PID that adjusts the environment temperature

according to the time of the day and preset parameters. The

controller is implemented on the Zedboard with the exact

same configurations as the 3DOF controller (RoT, serial

port connection, I2C interface, 50Hz frequency, and restart

time). Control commands are sent to the PC, applied to the

simulated plant model and the state is reported back to the

controller.

C. Safe Restart Time for the Physical Systems
After each system restart, the next restart point needs to

be computed and scheduled. Two main factors determine

the distance between consecutive restarts; (i) how stable the

dynamics of the plant is and (ii) the proximity of the current

state of the plant to the boundaries of the inadmissible states.
In figures 3 and 4, the safe distance between consecutive

restarts are calculated and plotted from various states for

both of the plants. In these plots, the red region represents

the inadmissible states and the plant must never reach those

states. If the plant is in a state that is marked green, it is still

undamaged. However, at some future time, it will reach an

inadmissible state and the safety controller may not be able

to prevent it from coming to harm. This is because physical

actuators have a limited range and the maximum capacity

of the actuators is not enough to cancel the momentum

and prevent the plant from reaching the unsafe states.

The gray/black area is the operation region (projection of

actual operational region into the 2D plane). In this region,

the darkness of the color indicates the time between two

consecutive restarts if the system is in that specific state.

The black points indicate the maximum time and the white

points are an indicator of zero time.

(a) Projection of the state space
into the plane ε̇ = 0, ρ̇ = 0,
λ = 0, and λ̇ = 0.3Radian/s

(b) Projection of the state space
into the plane ε̇ = −0.3Radian/s,

ρ̇ = 0, λ = 0, and λ̇ =
0.3Radian/s

Figure 3: Calculated safe restarting time for the 3DOF helicopter
system from various states. Darkest black points represent a
possible restart time of 1.23 seconds.

In Figure 3, for 3DOF helicopter, the maximum calculated

safe restart time (i.e., the darkest points in the gray region)

is 1.23 seconds. As seen in the Figure, restart time is

maximum in the center where it is farthest away from the

boundaries of unsafe states. In Figure 3(b), the angular

elevation speed of the helicopter is ε̇ = −0.3Radian/s. This

indicates that the helicopter is heading towards the surface

with the rate of 0.3 Radian per second. As a result, the plant

cannot be stabilized from the lower elevations levels (i.e., the

green region). Moreover, values of the safe restart times are

smaller in Figure 3(b) compared to the Figure 3(a). Because

crashing the 3DOF helicopter with the initial downward

speed requires less time than the case without any downward

angular velocity.

Figures 4(a) and 4(a), plot the calculated safe restart times

for the warehouse temperature system. For this system, when

the outside temperature is too high or too low, the attacker

requires less time to take the temperature beyond or below

the safety range. One major difference of this system with

the 3DOF helicopter is that due to the slower dynamics,

18

Outside Temp (ºC)
-20 0 20 40 60

R
oo

m
 T

em
p(

ºC
)

19

21

23

25

27

29

31

(a) Projection of states to TF =
25oC

Outside Temp (ºC)
-20 0 20 40 60

R
oo

m
 T

em
p(

ºC
)

19

21

23

25

27

29

31

(b) Projection of states to TF =
29oC

Figure 4: Safe restarting times calculated for the embedded
controller system of warehouse temperature.

safety window has values up to 6235s. In other words, if the

attacker obtains root access when the inside temperature is

25◦C and outside temperature is 25◦C, and runs the heaters

at maximum capacity, it would take at least 6235s for the

inside temperature to reach above safety range (which is

30◦C). In the warehouse system, the rate of the change of

the temperature even when the heater/coolers run at their

maximum capacity is slow and hence, the attacker needs

more time to take the system to unsafe states.

If above systems are restarted at rates smaller or equal

to the calculated safe operation windows, the physical plant

is guaranteed to remain safe under an attacker who gains

full control immediately after SEI ends5. Achieving this

goal is very reasonable for systems such as the warehouse

temperature control and many other similar systems with

applications in Internet of Things (IoT), city infrastructure,

and etc.. For systems with faster and more unstable dynamics

such as the helicopter, the calculated restart times might

become very short. The fast restart rate, even though

theoretically possible, in practice may create implementation

challenges. For instance, initializing a connection with

the remote user over the Internet may require more time

than the calculated safe restart time. For our particular

3DOF controller implementation, we use the serial port

for communication which has a very small initialization

overhead. Despite short restart times, we demonstrate that

the system remains stable and functional.

D. Impact on Availability and Control

During the restart, the embedded system is unavailable

and actuators keep executing the last command that was re-

ceived before the restart occurred. Results from Section V-B

guarantee that such unavailability does not compromise

safety and stability of the physical plant. However, low

availability may reduce the control performance and slow

5Recall that the system is assumed to remain trusted during the SEI.

down the progress of the system towards its goal. In this

section, we measure the average ratio of the time that the

embedded system is available when restart-based protection

is implemented.
The ”availability” of the controller is the ratio of the time

that the main controller is running (not rebooting and not

in SEI) to the total operation time of the system. In every

restart cycle, availability is (δr)/(δr + Ts + Tr) where δr
is the safe restart window (main controller is active during

δr), Ts is the length of SEI, and Tr is the reboot time of

the embedded platform. Value of δr is not fixed and changes

according to the state of the plant. To measure availability,

we divide the state space into three sub-regions based on

how often the physical plant is expected to operate in those

regions. The availability values computed for the states in

the most common region are assigned a weight of 1, second

most common region a weight of 0.5 and the least common

region a weight of 0.3. These weights are calculated by

the operating system in normal condition and recording the

trace of the system. Then we measured the number of the

data points in each region and assign weights according

to this number. We calculated the expected availability of

the controller for all the states in the operational range

of the system. At the end, the weighted average of the

availability was calculated according to the aforementioned

weights. For the value of the Tr, we used 390ms for the

reboot time of the 3DOF embedded controller (measured

on the ZedBoard [7] used in the implementation of the

controller in next section) and 10s for reboot time of

the temperature controller embedded system (we assumed

platform with embedded Linux OS). The ranges for the

regions and obtained availability results are presented in

Table I.
From these results, the impact of our approach on the

temperature control system is negligible. However, there is

a considerable impact on the availability of the helicopter

controller due to frequent restarts. Notice that, the helicopter

system is among the most unstable systems and therefore,

one of the most challenging ones to provide guaranteed
protection. As a result, the calculated results for the

helicopter system can be considered as an approximated

upper bound on the impact of our approach on controller

availability among all the systems. In the next section, we

demonstrate that, despite the reduced the availability, the

helicopter and temperature plants remain safe and make

progress. Reduced availability of the controller is the cost

to pay for safety and can be measured ahead of time by

designers to evaluate the trade-offs.

E. Attacks on the Embedded System
To evaluate the effectiveness of the proposed approach, we

tested three types of attacks on the implemented controllers

of the 3DOF helicopter (with the actual plant) and one

attack on the hardware-in-the-loop implementation of the

warehouse temperature control system. In these experiments,

our focus is on the actions of the attacker after the breach

into the system has taken place. Hence, the breaching

approach and exploitation of the vulnerabilities are not a

19

Regions (From most

common to least Common)
Avail.

15<TO <40

0<TO <15 or 40 <TO <60

Temperature

Control

System TO <0 or 60 <TO

%99.9

−ε+ |ρ| < 0.1 & ε < 0.2 & |ρ| < π/8
0.2< −ε+ |ρ| < 0.1 & 0.2 < ε < 0.3

& π/8 < |ρ| < π/6

3DOF

Helicopter

−ε+ |ρ| < 0.2 & 0.3 < ε & π/6 < |ρ|

%64.3

Table I: Weighted average availability of the embedded system.

Figure 5: Trace of 3DOF Helicopter during two restart cycles when
the system is under worst-case attack that is active immediately
after SEI. Green: SEI, red: normal operation (In this case attacker),
white: system reboot

concern for these experiments. An attacker may use any

number of exploits to get into the controller device.
In the first attack experiment, we evaluate the protection

provided by our approach in presence of an attacker who,

once activated, is capable of killing the main controller task.

The attack is activated at a random time after the end of SEI.

We observed that under this attack, the 3DOF helicopter did

not hit the surface (i.e., it always remained within the set of

admissible states).
In the second attack experiment, attacker replaces the

sensor readings of the system with corrupted values with

the aim of destabilizing the plant and reducing its progress.

The activation time of this attack, similar to the previous one,

is dictated by a random variable. Similar to the first attack

experiment, the system remained safe throughout the attacks.

As expected, reducing the activation time of the attack, the

stability of the system and progress towards the set points

was also reduced.
In the third attack experiment, we investigate the impact

of an attacker who becomes active immediately after the

SEI and replaces the original controller with a malicious

process that turns off the fans of the helicopter forcing it

to hit the surface. This is the worst-case scenario attack

because the attacker is active immediately after the SEI. We

observed that the system was able to tolerate this attack and

did not hit the surface. The trace of the system during a

time interval of activity is plotted in Figure 5. In this figure,

elevation and pitch along with the control input (voltages

of the motor) are depicted. The safety factor in the third

graph is obtained from the safety condition for the 3DOF as

described in Section VI-A.
From the figure, it can be seen the controller spends

most of the time in SEI (red region) or in reboot (white

region). This is due to the fact that this extreme-case attack

is activated immediately after each SEI and destabilizes the

helicopter. By the time that the reboot is complete (end of

the white region), system is close to unsafe states. Hence,

SEI becomes longer as SC is stabilizing the system. Under

this very extreme attack model, the system did not make

any progress towards its designated path, yet it remained

safe which is the primary goal in this situation.
In the last experiment, an attack is performed on the

embedded controller of the warehouse temperature. In this

experiment, the outside temperature is set to 45◦C and

initial temperature of the room is set to 25◦C. The attacker

takes full control of the system and immediately after the

SEI activates both heaters to increase the temperature. We

observed that system restarts before the room temperature

reached above 30◦C and after the restart, SC drove the

temperature towards the safe range.

VII. DISCUSSION

Suitable Applications: Restart-based protection provides

very strong safety guarantees for the CPS. However, it

is not necessarily applicable to every system. Applying

restart-based protection to very unstable physical systems

may require very frequent restarts which will reduce

the controller’s available time and essentially prevent the

system from making any progress. It may also create

implementation challenges; a system may require some time

to establish a connection over the Internet or to authenticate

that may not be possible if the system has to restart very

frequently.
Our proposed approach is most suitable for two categories

of systems; first, CPS for which the control device restart

time is very small relative to the speed of the physical system

dynamics. Many embedded systems have reboot times that

range from tens of milliseconds [26] to tens of seconds

which are considered negligible for many applications such

as temperature/humidity control in storage/transportation

industries, process control in chemical plants, pressure

control in water distribution systems, and oxygen level

control in patient bodies. Second, CPSs in which damage

to the plant has more severe consequences than the reduced

control performance due to proactive restarts. For instance, a

delivery drone carrying a very expensive/sensitive shipment

can be considered as examples of this category. Many

applications fit in above categories and will benefit from

our approach.
Software Diversification After Restarts: Despite the

effectiveness of restarting and software reloading in remov-

ing the malicious components, restarting does not fix the

vulnerabilities of the system that provided the opportunity

for the intruder to breach into the system. An attacker may

be able to re-launch the same attack after the restart and

gain control of the system. Diversifying the software after

20

each reboot can effectively complement our approach to

increase the difficulty of launching attacks by canceling

the effect of previously learned information. There is a

comprehensive body of work on diverse replicas including

relocation and/or padding the run-time stack by random

amounts [20], rearranging basic blocks and code within

basic blocks [20], randomly changing the names of system

calls [18], or instruction opcodes [11] , randomizing the

heap memory allocator [12] , and randomizing schedule of

system [41].

VIII. CONCLUSION

In this paper, we present an attack-tolerant design

for embedded control devices that protect the safety of

physical plants in the presence of adversaries. Because of

inertia, pushing a physical plant from a given (potentially

safe) state to an unsafe state – even with complete

adversarial control – is not instantaneous and often takes

finite (even considerable) time. We leverage this property to

calculate a safe operational window and combine it with the

effectiveness of system-wide restarts to protect the safety of

the physical system. We evaluate our approach on realistic

systems and demonstrate its feasibility.

ACKNOWLEDGEMENTS

The material presented in this paper is based upon work

supported by the National Science Foundation (NSF) under

grant numbers CNS-1646383, SaTC-1718952, and CNS-

1423334. We would also like to thank Disha Agarwal for her

help in performing some of the experiments. Any opinions,

findings, and conclusions or recommendations expressed

in this publication are those of the authors and do not

necessarily reflect the views of the NSF.

REFERENCES

[1] FreeRTOS . http://www.freertos.org, 2016. Accessed: Sep. 2016.
[2] https://github.com/emsoft2017restart/restart-based-framework-demo, 2017.
[3] F. Abdi, M. Hasan, S. Mohan, D. Agarwal, and M. Caccamo. ReSecure: A

restart-based security protocol for tightly actuated hard real-time systems. In
IEEE CERTS, pages 47–54, 2016.

[4] F. Abdi, R. Mancuso, S. Bak, O. Dantsker, and M. Caccamo. Reset-based
recovery for real-time cyber-physical systems with temporal safety constraints.
In IEEE 21st Conference on Emerging Technologies Factory Automation (ETFA
2016), 2016.

[5] F. Abdi, R. Tabish, M. Rungger, M. Zamani, and M. Caccamo. Application
and system-level software fault tolerance through full system restarts. In
Proceedings of the 8th International Conference on Cyber-Physical Systems,
ICCPS ’17, pages 197–206, New York, NY, USA, 2017. ACM.

[6] M. Arroyo, H. Kobayashi, S. Sethumadhavan, and J. Yang. FIRED: frequent
inertial resets with diversification for emerging commodity cyber-physical
systems. CoRR, abs/1702.06595, 2017.

[7] AVNET. Zedboard hardware user’s guide. http://zedboard.org/sites/default/
files/documentations/ZedBoard HW UG v2 2.pdf. Accessed: Apr. 2017.

[8] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and L. Sha.
The system-level simplex architecture for improved real-time embedded system
safety. In Real-Time and Embedded Technology and Applications Symposium,
2009. RTAS 2009. 15th IEEE, pages 99–107. IEEE, 2009.

[9] S. Bak, T. T. Johnson, M. Caccamo, and L. Sha. Real-time reachability for
verified simplex design. In Real-Time Systems Symposium (RTSS), 2014 IEEE,
pages 138–148. IEEE, 2014.

[10] S. Bak, K. Manamcheri, S. Mitra, and M. Caccamo. Sandboxing controllers
for cyber-physical systems. In Proceedings of the 2011 IEEE/ACM Second
International Conference on Cyber-Physical Systems, ICCPS ’11, pages 3–12,
Washington, DC, USA, 2011. IEEE Computer Society.

[11] E. G. Barrantes, D. H. Ackley, S. Forrest, and D. Stefanović. Randomized
instruction set emulation. ACM Trans. Inf. Syst. Secur., 8(1):3–40, Feb. 2005.

[12] E. D. Berger and B. G. Zorn. Diehard: Probabilistic memory safety for
unsafe languages. In Proceedings of the 27th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’06, pages 158–
168, New York, NY, USA, 2006. ACM.

[13] G. Candea and A. Fox. Recursive restartability: Turning the reboot
sledgehammer into a scalpel. In Hot Topics in Operating Systems, 2001.
Proceedings of the Eighth Workshop on, pages 125–130. IEEE, 2001.

[14] G. Candea and A. Fox. Crash-only software. In HotOS IX: The 9th Workshop
on Hot Topics in Operating Systems, pages 67–72, 2003.

[15] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox. Microreboot-
a technique for cheap recovery. In Proceedings of the 6th Conference on
Symposium on Opearting Systems Design & Implementation - Volume 6,
OSDI’04, pages 31–44, 2004.

[16] G. Candea, E. Kiciman, S. Zhang, P. Keyani, and A. Fox. Jagr: An autonomous
self-recovering application server. In Autonomic Computing Workshop. 2003.
Proceedings of the, pages 168–177. IEEE, 2003.

[17] M. Castro and B. Liskov. Practical byzantine fault tolerance and proactive
recovery. ACM Trans. Comput. Syst., 20(4):398–461, Nov. 2002.

[18] M. Chew and D. Song. Mitigating buffer overflows by operating system
randomization. Technical report, School of Computer Science, Carnegie Mellon
University, 2002.

[19] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo. A survey of software
aging and rejuvenation studies. J. Emerg. Technol. Comput. Syst., 10(1):8:1–
8:34, Jan. 2014.

[20] S. Forrest, A. Somayaji, and D. H. Ackley. Building diverse computer systems.
In Proceedings. The Sixth Workshop on Hot Topics in Operating Systems (Cat.
No.97TB100133), pages 67–72, May 1997.

[21] S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi. Analysis of software
rejuvenation using markov regenerative stochastic petri net. In Software
Reliability Engineering, 1995. Proceedings., Sixth International Symposium on,
pages 180–187. IEEE, 1995.

[22] M. Grottke, R. Matias, and K. S. Trivedi. The fundamentals of software aging.
In 2008 IEEE International Conference on Software Reliability Engineering
Workshops (ISSRE Wksp), pages 1–6, Nov 2008.

[23] D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S. Clark, B. Defend,
W. Morgan, K. Fu, T. Kohno, and W. H. Maisel. Pacemakers and implantable
cardiac defibrillators: Software radio attacks and zero-power defenses. In 2008
IEEE Symposium on Security and Privacy (sp 2008), pages 129–142, May
2008.

[24] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton. Software rejuvenation:
Analysis, module and applications. In Fault-Tolerant Computing, 1995. FTCS-
25. Digest of Papers., Twenty-Fifth International Symposium on, pages 381–
390. IEEE, 1995.

[25] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, et al. Experimental security
analysis of a modern automobile. In IEEE Symposium on Security and Privacy,
pages 447–462. IEEE, 2010.

[26] Make Linux. Super fast boot of embedded linux. http://www.makelinux.com/
emb/fastboot/omap, 2017. Accessed: June 2017.

[27] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, and M. Caccamo. S3a: Secure
system simplex architecture for enhanced security and robustness of cyber-
physical systems. In Proceedings of the 2nd ACM international conference on
High confidence networked systems, pages 65–74. ACM, 2013.

[28] Quanser Inc. 3-DOF helicopter reference manual. Document Number 644,
Revision 2.1.

[29] Quanser Inc. Research papers related to quanser inc. http://www.quanser.com/
research papers/?Sort=Year-DESC. Accessed: June 2017.

[30] Quanser Inc. Q8 data acquisition board. http://www.quanser.com/products/q8,
2016. Accessed: September 2016.

[31] D. Seto, E. Ferreira, and T. F. Marz. Case study: Development of a
baseline controller for automatic landing of an f-16 aircraft using linear matrix
inequalities (lmis). Technical report, DTIC Document, 2000.

[32] D. Seto and L. Sha. A case study on analytical analysis of the inverted
pendulum real-time control system. Technical report, DTIC Document, 1999.

[33] L. Sha. Using simplicity to control complexity. IEEE Software, 18(4):20–28,
Jul 2001.

[34] P. Sousa, A. N. Bessani, M. Correia, N. F. Neves, and P. Verissimo. Highly
available intrusion-tolerant services with proactive-reactive recovery. IEEE
Transactions on Parallel and Distributed Systems, 21(4):452–465, April 2010.

[35] P. Sousa, N. F. Neves, and P. Verı́ssimo. Proactive resilience through
architectural hybridization. In Proceedings of the 2006 ACM Symposium on
Applied Computing, SAC ’06, pages 686–690, New York, NY, USA, 2006.
ACM.

[36] Texas Instruments. Msp-exp430g2 launchpad development kit. http://www.ti.
com/lit/ug/slau318g/slau318g.pdf, 2016. Accessed: April 2017.

[37] S. H. Trapnes. Optimal temperature control of rooms for minimum energy
cost. Master’s thesis, Institutt for kjemisk prosessteknologi, Norway, 2013.

[38] K. Vaidyanathan and K. S. Trivedi. A comprehensive model for software
rejuvenation. Dependable and Secure Computing, IEEE Transactions on,
2(2):124–137, 2005.

[39] P. Verı́ssimo. Future directions in distributed computing. chapter Uncertainty
and Predictability: Can They Be Reconciled?, pages 108–113. Springer-Verlag,
Berlin, Heidelberg, 2003.

[40] P. E. Verı́ssimo, N. F. Neves, and M. P. Correia. Intrusion-tolerant architectures:
Concepts and design. In Architecting Dependable Systems, pages 3–36.
Springer Berlin Heidelberg, 2003.

[41] M.-K. Yoon, S. Mohan, C.-Y. Chen, and L. Sha. TaskShuffler: A schedule
randomization protocol for obfuscation against timing inference attacks in real-
time systems. In IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 1–12. IEEE, 2016.

21

