
Work in Progress: Exploring Schedule-Based Side-Channels in
TrustZone-Enabled Real-Time Systems

Mohamed Anis Aguida and Monowar Hasan
School of Computing, Wichita State University, Wichita, KS, USA

Email: mxaguida@shockers.wichita.edu, monowar.hasan@wichita.edu

Abstract—Our research demonstrates the existence of
side-channel information leaks in TrustZone-enabled real-time
systems. Our algorithm can infer the critical tasks’ arrival
times and pinpoint when the system switches between regular
and secure execution modes. By precisely obtaining such timing
information, an adversary could infer the task execution patterns
inside the secure system — thus putting the system’s safety,
security, and integrity at risk. Considering that secure enclaves
such as TrustZone are used for executing security-critical
functionalities, our findings will help designers be aware of
side-channel vulnerabilities and assist them in designing better,
leakage-proof systems.

I. INTRODUCTION

Real-time systems find use in many safety-critical
applications such as avionics, automobiles, self-driving cars,
manufacturing and control systems, healthcare, to name but
a few. In the past, security was often not a design priority
for such systems due to (a) limited resources (e.g., processor,
memory, energy), (b) use of propitiatory protocols, hardware
(i.e., such systems were considered “air-gaped”), and (c)
popular beliefs (i.e., how does someone get in? what do
they do once they intrude?). However, with the increased
complexity, the use of off-the-shelf hardware/software stacks,
and the proliferation of emerging “connected” and IoT-specific
applications challenged those decade-long conceptions. The
sophisticated, real-world attacks on real-time systems (e.g.,
control systems [1], automobiles [2], airplanes [3], medical
devices [4], to name a few) show that security threats are
real and we need layered defense mechanisms to protect
those systems. One way to ensure tamper-proof execution
of embedded applications is to leverage Trusted Execution
Environments (TEEs), such as ARM TrustZone [5] available
on modern off-the-shelf processors. TrustZone allows the
execution of security-critical codes inside a “trusted enclave”
by using a hardware-software co-design approach. While the
vanilla TrustZone was not designed for real-time applications,
recently researchers show how TrustZone can be retrofitted for
real-time schedulers. Although TrustZone can provide means
for secure executions, without careful design/analysis such
systems can also “leak” critical information [6]. An adversary
can leverage such side-channel information and drive the
systems in an undesirable way. In this work, we investigate
the problem of information leakage in TrustZone-enabled
real-time microcontrollers. In particular, we study the existence
of schedule-based side-channels real-time TrustZone systems
running on Cortex-M processors. The goal of our research

is to identify whether an adversary can (a) infer when
the system transitions into a secure mode, for instance, to
execute security-critical codes; and (b) whether can predict
execution patterns of the tasks that are running inside the
secure enclave – all, without having sufficient privilege (i.e.,
an unprotected, non-secure, low-priority task running on the
userspace). Knowing such information is vital since it can
have detrimental aftereffects. For instance, if an adversary
can know when a security-critical code is running (say inside
the TrustZone secure enclave) or when a system transition is
to the secure mode, the attacker can prevent the code from
being executed, infer other side-channel information (e.g.,
cache usage) [7] or perform denial-of-service attacks that may
prevent the system to switch into secure execution mode —
hence deviates the main objective of placing a secure enclave
in the system. To the best of our knowledge, there exists
no prior work that examines schedule-based information. Our
preliminary study shows that it is feasible to infer when the
system switches to a secure mode from regular execution mode
(and vice-versa) and the arrival times of the security-critical
tasks. From an adversary’s point of view, this reveals the
secrets inside the TrustZone, which enables the attacker to
make an accurate, targeted attack; for instance, taking control
of a critical system component [7]. We will present the details
of our algorithm in later sections. Now, we start with the
background on ARM TrustZone before we present the system
and threat model.

II. BACKGROUND, MODELS & ASSUMPTIONS

A. Background — ARM TrustZone

ARM TrustZone is a set of hardware security improvements
for Arm application processors (Cortex-A) and Cortex-M
family of Arm microcontrollers [8]. TrustZone takes a system-
wide, system-on-chip (SoC) and hardware/software-based
approach to ensure security [5]. The TrustZone technology
is based on the concept of “secure world” and “non-secure
(normal) world” protection zones. The processor’s software
can run in either a secure or a non-secure state. In this work,
we investigate side channels on a Cortex-M-based TrustZone
enabled real-time system. On Cortex-M microcontrollers, the
bridge between two worlds is handled by a set of mechanisms
built into the core logic. Both worlds are hardware segregated,
with non-secure software unable to access secure world
resources directly. This strong hardware-enforced separation
of worlds opens up new possibilities for application and data

1



security. Critical programs can reside inside the secure world
without relying on the regular operating system (called rich
OS) for protection. This is achieved by restricting the rich OS
to operate inside the normal world only [8].

B. System Model

We consider a uniprocessor, fixed-priority, preemptive
real-time system, running on a Cortex-M-based TrustZone
platform. The system is divided into two modes (viz., secure
world (S), and non-secure world (NS)) and consists of n
real-time tasks Γ = {τ1, ...τN}. We denote the set of tasks that
run in the secure world and non-secure world as ΓS and ΓNS ,
respectively. We assume that the secure tasks are periodic, and
the non-secure tasks can be either periodic or sporadic. Each
task τi is characterized by (pi, di, ei, ai, prii, s) where pi is
the period, di is the relative deadline, ei is the worst-case
execution time (WCET), ai is the initial task offset (i.e., the
arrival time) and prii is the priority. and s is the state of the
task whether it is secure or non-secure (i.e., S: for secure, NS:
for non-secure). We consider an implicit deadline system (i.e.,
di = pi), and each task has a distinct period. We use the same
symbol τi to represent a task’s job for simplicity of notation.
We further assume that the taskset is “schedulable” by a
fixed-priority, preemptive real-time scheduler and scheduled
using the Rate Monotonic (RM) scheduling algorithm [9]. Let
hp(τi) denote the set of tasks that have higher priorities than
that of τi and lp(τi) denote the set of tasks that have lower
priorities than τi. Let Ω define all secure tasks periods where
Ω = {pi; i ∈ S}. We define an “execution interval” of a task
to be an interval of time [a, b) during which the task runs
continuously. If τi is preempted, then the execution will be
partitioned into multiple execution intervals, each of which
has a length less than ei.

C. Threat Model

We assume that the attacker can gain access to a user space
of a non-secure task that we refer to as observer task τo, and
is targeting some secure tasks τti called victim tasks, where
τo ∈ ΓNS and τti ∈ ΓS . We assume that the attacker knows all
the tasks periods and their execution times. The attacker may
have access to the system timer. Note that gaining access to the
victim task or making the attack after inferring the switching
points between secure and non-secure worlds are out of our
scope. In this work, we focus on (a) modeling the timing side-
channel attack on Cortex-M based TrustZone-enabled systems
to infer the exact time of the switching between the two worlds
and (b) getting the arrival times of the secure tasks inside the
secure enclave.

III. SCHEDULE-BASED INFORMATION LEAKAGE

Recall from the earlier discussion that non-secure software
is unable to access secure world resources directly by design.
In this work we show that it is feasible to infer schedule
and task execution patterns by using the information observed
from a non-privileged, non-secure (i.e., normal world) task
τi ∈ ΓNS . We infer the arrival times of the secure tasks

Observer Task (non-secure)

Secure tasks

Secure Mode Non-Secure ModeNon-Secure Mode

Switching point 
(non-secure to secure)

Switching point
(secure to non-secure)

Arrival times of secure tasks

Time

Fig. 1. High-level schematic of our proposed approach.

running inside the secure enclave, as well as the switching
points between the two execution modes (i.e., from non-secure
to secure, and from secure to non-secure), as shown in
Figure 1. For instance, if we precisely know the switching
point between the two worlds, this information can lead to
a malicious/unprotected task (say controlled by the attacker)
stopping the execution of the targeted secure task. Hence, such
timing and schedule information inference in the secure world
would lead to information leakage, resulting in undesirable
manipulation by the adversary. Our research aims to design
an analytical framework to infer the arrival times of all the
tasks executed in the secure world, by using a userspace
non-privileged, non-secure task (Section III-A). Our proposed
techniques can also infer the context switching time points
between the two worlds. We now introduce our proposed
algorithm. Figure 2 presents the workflow of our scheme.
Our inference algorithm is a five-step process performed as
follows:

1) Monitoring execution intervals: We first construct the
execution intervals of the observer task τo.

2) Analyzing execution intervals: We arrange the con-
structed execution intervals in a timeline that will help
us in the following (inference) phase.

3) Inferring secure tasks’ arrival times: We then predict
the arrival time of the highest priority secure task. Once
we infer its future arrivals, we then move to the next
highest priority secure task. We repeat the above steps
until we iterate all the secure tasks.

4) Constructing the schedule: We organize the constructed
execution intervals of the secure tasks to predict the
schedule.

5) Infer the switching points: Finally, we infer the context
switching points between the two worlds.

A. Overview

The key idea of our inference algorithm is to leverage
scheduler characteristics for inferring the timing information.
In particular, we leverage the fact that lower priority tasks
can only execute when a higher priority task is not running.
Thus, when inferring the arrival time of each secure task (i.e.,
tasks that are running inside the enclave), we first track the
execution of an observer task (i.e., non-secure task). We then

2



Step 5: Infer the switching points

Step 4: Construct the scheduler

Step 3: Infer secure tasks arrival times

Step 2: Analyze the execution intervals

Attack

Online

Offline

Step 1: Monitor the execution intervals of the observer task

Inference*
*focus of this work

Fig. 2. High-level workflow of our inference process.

predict the execution of a secure task. This process works due
to the fact that a secure task can not execute when the observer
task is executing by definition.

Algorithm 1 formally presents our idea. First, we initialize
the variables: (a) Ω denotes all secure tasks’ periods, (b) the
hyperperiod H is the minimum interval of time after which the
schedule repeats itself, and (c) ExecInterv is the variable that
contains the execution intervals of the tasks that we already
investigated (i.e., observer task, secure tasks). We monitor the
observer task τo and construct its execution intervals (line
6), this step is done at runtime (i.e., online). Note that, to
ensure that the task completes before its deadline, the inference
operation must take minimal time. The function IntervalsOF
constructs the execution intervals. We iterate on all the secure
tasks and construct their execution intervals by predicting
their arrival times and inferring their future arrival times. This
process starts by selecting the lowest period among all secure
tasks periods (lines 9-10). We then use a timeline divided
into windows that match the period of the secure task (see
Section III-C for details). Hence we can predict the secure
task arrival time (line 11) and infer future arrival times. Once
we construct the execution intervals of the secure task, we add
it to the ExecInterv variable to be used for the next secure task
(line 12). Finally, we can construct the task schedule inside
the enclave. As a result, we can also infer the switching points
between the secure and non-secure worlds (line 15).

B. Monitoring the Execution Intervals

As mentioned earlier, the first step of our inference process
is to monitor the observer task’s execution intervals. Using
the system timer, we implement a function in the observer
task that keeps track of its execution intervals. For a stealthy
attack, we need to ensure that the observer task is executing
in a timely manner in addition to the function of constructing
the execution intervals without exceeding its deadline. We
note that this is the only step that is executed online; all the
remaining steps can be performed offline (i.e., on the attacker
system).

While constructing the execution interval of the observer
task, the task could be preempted by other higher-priority

Algorithm 1 Inferring Context Switch Points
1: INITIALIZATION
2: Ω = {pi; i ∈ S}
3: H = lcm(pi; i ∈ T )
4: ExecIterv ← {}
5: BEGIN
6: Construct the execution intervals of a non-secure task (observer

task)
7: ExecIterv ← {IntervalsOF (τo)}
8: while Ω ̸= NONE do
9: S ← min{Ω}

10: τ ← {τi; τi ∈ Γ} where Period(τ) == S
11: Predict the arrival time, and infer the future arrival times of τ

(see Section III-C-III-D)
12: ExecInterv ← ExecInterv + IntervalsOF (τ)
13: Ω← Ω− S
14: end while
15: Infer the switching points between secure and non-secure worlds
16: END

tasks. Hence, it is not straightforward to construct the exact
execution interval since we do not know the exact point for
the preemption. To overcome the preemption problem, we can
check the periods of tasks that have a priority higher than the
observer task hp(τo). For this, we calculate the modulo to
each tick time in the execution interval. Algorithm 2 formally
presents the calculation of preemption points to accurately
construct the execution intervals. Let us define Φ to represent
the tasks that have higher priority than the observer task τo.
Further, let Ψ define the tasks that preempt the observer task.
We start our inference by (a) getting the begin time, (b)
executing the observer logic, and then (c) getting the end time
(lines 5-7). We initialize the TickCount variable by the begin
time. We then iterate the interval [BeginT ime,EndT ime] by
incrementing TickCount by one. Note that we iterate over all
the tasks defined by Φ (lines 8 to 11). In each iteration, we
calculate the modulo of the TickCount with the period of a
task τj ∈ Φ. If the modulo equal to zero, which implies that
the task is arrived in the TickCount point. We add the task
to Ψ along with the tick time point as Ψ← {τj , T ickCount}
(lines 12-13). At the end, we return Ψ (line 20). Once we find
the arrival time of all the tasks that appear in this execution, we
can precisely construct the execution interval of the observer
task.

C. Analyzing the Execution Intervals

Once we constructed the execution intervals of the observer
task, the next step is to analyze these intervals in a way that
we can extract a piece of useful information from them. For
this, we use a timeline divided into windows that match the
period of the secure tasks. To be specific, we arrange the
observer task execution intervals into a timeline. Each window
of the timeline equals the period of the secure task (i.e.,
the task under analysis to infer its execution intervals). This
representation allows us to observe how the observer task is
affected by the secure task. A way to graphically represent this
timeline is using the “schedule ladder diagram” [7]. As the
length of the window is equal to the period of the secure task,

3



Algorithm 2 Infer Observer Task Preemption Points
1: INITIALIZATION
2: Φ = {hp(τo)}
3: Ψ← {}
4: BEGIN
5: BeginT ime← getT ime()
6: ObserverTask logic execution
7: EndTime← getT ime()
8: T ickCount← BeginT ime
9: j ← 0

10: while T ickCount ≤ EndTime do
11: while j ≤ lengthOf(Φ) do
12: if T ickCount mod pj = 0 then
13: Ψ← {τj , T ickCount}
14: end if
15: j ++
16: end while
17: T ickCount++
18: j ← 0
19: end while
20: Retrurn Ψ
21: END

we can assure that each time window contains an instance of
the secure task (recall that secure tasks are periodic). Using
the fact both observer and the secure task cannot execute at the
same time, we can use some experimental techniques to predict
the arrival time of the secure task. Note: our experiments are
ongoing, and we omit the details due to space constraints.

D. Inferring Secure Tasks Arrival Times

After constructing the intervals of the observer task, we can
now predict the arrival time of the secure task. As mentioned
in the previous section, we organize the observer executions
in a timeline, then we take the first secure task which has
the highest priority task among all secure tasks τs where
hpΓS

(τs) = None (i.e., the lowest period). This condition
will (i) accurately predict the first arrival time (and, hence,
future arrivals), and (ii) ensure that there is no other secure
task is executing at that time. We use a combination of
experimental and analytical techniques to predict the arrival
time of τs and then its future arrival time. This latter secure
task execution interval is added (as well as the observer task
execution intervals) in a new timeline with a window length
equal to the period of the next highest priority secure task. We
perform the same operation described above for all the secure
tasks.

E. Constructing the Schedule and Inferring the switching
points

To construct the schedule, we need to examine all the
secure tasks with the same steps that we mentioned earlier
(Sections III-B-III-D). We note that these steps do not affect
the performance of the system since they can be performed
offline. Only the first step (i.e., monitoring the observer task’s
executions) will be performed online for a single hyperperiod.

After constructing the schedule, we can pinpoint the arrival
times of the secure tasks. This may allow an attacker to
make more targeted attacks, for instance, to block any secure

task at the right time. Another information we can infer is
the time switching points between the secure and non-secure
worlds. Such information could help the attackers to carry out
further attacks such as interrupting the system or overriding
the behavior of a specific task.

IV. RELATED WORK & CONCLUSION

Researchers demonstrate side-channel attacks in various
contexts [10], [10]–[12]. However, they (i) are not designed
for TrustZone-based systems and (ii) do not consider real-time
properties. Assessing the security of the general-purpose
ARM TrustZone against side-channel attacks has also been
studied [6] Chen et al. [7] propose a scheduler side-channel
attack (called ScheduLeak) on a vanilla real-time system. In
contrast, our research shows that TrustZone-enabled real-time
systems are vulnerable to schedule-based inference attacks.
We introduce a novel timing side-channel attack that targets
ARM TrustZone-based real-time microcontrollers.

We are extending our preliminary findings with further
conceptual analysis and real-world demonstrations. As
proof of concept, we implemented our algorithm on an
NXP LPC55S69 platform running a TrustZone-enabled
real-time operating system (Amazon FreeRTOS). Knowing
that TrustZone technologies (or TEEs in general) act as a
“shield” for ensuring security, we believe that our findings
will provide valuable hints for the real-time engineers on how
to conceal schedule-based information leaks.

REFERENCES

[1] D. U. Case, “Analysis of the cyber attack on the ukrainian power grid,”
Electricity Information Sharing and Analysis Center (E-ISAC), vol. 388,
2016.

[2] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, et al., “Experimental
security analysis of a modern automobile,” in The Ethics of Information
Technologies, pp. 119–134, Routledge, 2020.

[3] H. Teso, “Aircraft hacking: Practical aero series,” in 4th Hack in the Box
Security Conference in Europe, 2013.

[4] S. S. Clark and K. Fu, “Recent results in computer security for
medical devices,” in International Conference on Wireless Mobile
Communication and Healthcare, pp. 111–118, Springer, 2011.

[5] S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive
survey,” ACM Computing Surveys (CSUR), vol. 51, no. 6, pp. 1–36,
2019.

[6] N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou, “Trusense:
Information leakage from trustzone,” in IEEE INFOCOM 2018-IEEE
Conference on Computer Communications, pp. 1097–1105, IEEE, 2018.

[7] C.-Y. Chen, S. Mohan, R. Pellizzoni, R. B. Bobba, and N. Kiyavash, “A
novel side-channel in real-time schedulers,” in 2019 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pp. 90–102,
IEEE, 2019.

[8] A. Holdings, “Building a secure system using trust-zone technology,”
2005.

[9] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” Journal of the ACM
(JACM), vol. 20, no. 1, pp. 46–61, 1973.

[10] D. Genkin, I. Pipman, and E. Tromer, “Get your hands off my
laptop: Physical side-channel key-extraction attacks on pcs,” Journal
of Cryptographic Engineering, vol. 5, no. 2, pp. 95–112, 2015.

[11] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and
countermeasures: the case of aes,” in Cryptographers’ track at the RSA
conference, pp. 1–20, Springer, 2006.

[12] J.-S. Coron, “Resistance against differential power analysis for elliptic
curve cryptosystems,” in International workshop on cryptographic
hardware and embedded systems, pp. 292–302, Springer, 1999.

4


