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Quality is never an accident; it is always the result of high

intention, sincere effort, intelligent direction and skillful execution;

it represents the wise choice of many alternatives.

WILLIAM A. FOSTER



Abstract

In this thesis, performance of relay-assisted Device-to-device (D2D) communi-

cation is investigated where D2D traffic is carried through relay nodes. I develop

resource management schemes to maximize end-to-end rate as well as conversing rate

requirements for cellular and D2D UEs under total power constraint. I also develop a

low-complexity distributed solution using the concept of message passing. Consider-

ing the uncertainties in wireless links (e.g., when interference from other relay nodes

and the link gains are not exactly known), I extend the formulation using robust re-

source allocation techniques. In addition, a distributed solution approach using stable

matching is developed to allocate radio resources in an efficient and computationally

inexpensive way under the bounded channel uncertainties. Numerical results show

that, there is a distance threshold beyond which relay-assisted D2D communication

significantly improves network performance at the cost of small increase in end-to-end

delay when compared to conventional approach.
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Chapter 1

Introduction

1.1 Overview and Motivation

Device-to-device (D2D) communication in cellular networks allows direct transmission

between two cellular devices with local communication needs. In recent years, new

applications such as content distribution and location-aware advertisement underlay-

ing cellular networks have drawn much attention to end-users and network providers.

The emergence of such new applications brings D2D communication under intensive

discussions in academia, industry, and standardization bodies. The concept of D2D

communication has been introduced to allow local peer-to-peer (P2P) transmission

among user equipments (UEs) bypassing the base station (e.g., eNB in a Long Term

Evolution Advanced [LTE-A] network) to cope with high data rate services (i.e., video

sharing, online gaming, proximity-aware social networking). D2D communication was

first proposed in [1] to enable multi-hop relaying in cellular networks. In addition to

traditional local voice and data services, other potential D2D use-cases have been

introduced in the literature such as P2P communication, local advertisement, multi-

player gaming, data flooding [2–4], multicasting [5], [6], video dissemination [7–9],

1



Chapter 1. Introduction

and machine-to-machine (M2M) communication [10].

Using local data transmissions, D2D communication offers the following advan-

tages: i) extended coverage [1]; ii) offloading users from cellular networks [11]; iii) in-

creased throughput and spectrum efficiency as well as improved energy efficiency [12].

However, in a D2D-enabled network, a number of practical considerations may

limit the advantages of D2D communication. In practice, setting up reliable direct

links between the D2D UEs while satisfying the quality-of-service (QoS) requirements

of both the traditional cellular UEs (CUEs) as well as the D2D UEs is challenging

due to the following reasons:

i) Large distance: the potential D2D UEs may not be in near proximity;

ii) Poor propagation condition: the link quality between potential D2D UEs may

not be favorable for direct communication;

iii) Interference to and from CUEs: in an underlay system, without an efficient power

control mechanism, the D2D transmitters may cause severe interference to other

receiving nodes. The D2D receivers may also experience interference from CUEs

and/or eNB. One remedy to this problem is to partition the available spectrum

(i.e., use overlay D2D communication). However, this can significantly reduce

the spectrum utilization [13,14].

In such cases, network-assisted transmissions through relays could efficiently en-

hance the performance of D2D communication when the D2D UEs are too far away

from each other or the quality of the channel between the UEs is not good enough

for direct communication.

Unlike most of the existing work on D2D communication, in this work, I consider

relay-assisted D2D communication in LTE-A cellular networks where D2D pairs are

2



Chapter 1. Introduction

served by the relay nodes. In particular, I consider LTE-A Layer-3 (L3) relays1.

I concentrate on scenarios in which the proximity and link condition between the

potential D2D UEs may not be favorable for direct communication. Therefore, they

may communicate via relays. The radio resources at the relays (e.g., resource blocks

[RBs] and transmission power) are shared among the D2D communication links and

the two-hop cellular links using these relays.

An use-case for such relay-aided D2D communication could be the M2M commu-

nication for smart cities. In such a communication scenario, automated sensors (i.e.,

UEs) are deployed within a macro-cell ranging a few city blocks; however, the link

condition and/or proximity between devices may not be favorable. Due to the nature

of applications, these UEs are required to periodically transmit data [16]. Relay-aided

D2D communication could be an elegant solution to provide reliable transmission as

well as improve overall network throughput in such a scenario.

1.2 Related Works and Contributions

Although resource allocation for D2D communication in orthogonal frequency-

division multiple access (OFDMA)-based wireless networks is one of the active areas

of research, only a very few work in the literature consider relays for D2D commu-

nication. In [17], a greedy heuristic-based resource allocation scheme is proposed for

both uplink and downlink scenarios where a D2D pair shares the same resources with

CUE only if the achieved signal-to-interference-plus-noise ratio (SINR) is greater than

a given SINR requirement. A new spectrum sharing protocol for D2D communication

overlaying a cellular network is proposed in [18], which allows the D2D users to com-

1An L3 relay performs the same operation as an eNB except that it has a lower transmit power
and a smaller cell size. The relay transmits its own control signals and the UEs are able to receive
scheduling information directly from the relay node [15]. The details of relaying mechanism in
LTE-A systems is given in Section 2.1.2.

3



Chapter 1. Introduction

municate bi-directionally while assisting the two-way communications between the

eNB and the CUE. In [14], the problem of mode selection and resource allocation for

D2D communication underlaying cellular networks is investigated and the solution

is obtained by particle swarm optimization. Through simulations, the authors show

that the proposed scheme improves system performance compared to overlay D2D

communication. In [6], D2D communication is proposed to improve the performance

of multicast transmission among the members of a multicast group. A graph-based

resource allocation method for cellular networks with underlay D2D communication

is proposed in [19]. Due to the intractability of resource allocation problem, the au-

thors propose a sub-optimal graph-based approach which accounts for interference

and capacity of the network. A resource allocation scheme based on a column gen-

eration method is proposed in [13] to maximize the spectrum utilization by finding

the minimum transmission length (i.e., time slots) for D2D links while protecting the

cellular users from interference and guaranteeing QoS. A two-phase resource alloca-

tion scheme for cellular network with underlaying D2D communication is proposed

in [20]. Due to NP-hardness of the optimal allocation problem, the author proposes

a two-phase low-complexity sub-optimal solution where after performing optimal re-

source allocation for cellular users, a heuristic subchannel allocation scheme for D2D

flows is applied which initiates the resource allocation from the flow with the mini-

mum rate requirements. The above works, however, do not consider relays for D2D

communication.

Although D2D communication was initially proposed to relay user traffic [1], not

many work consider using relays in the context of D2D communication. To the best of

my knowledge, relay-assisted D2D communication was first introduced in [21] where

the relay selection problem for D2D communication underlaying cellular network was
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studied. The authors propose a distributed relay selection method for relay assisted

D2D communication system which firstly coordinates the interference caused by the

coexistence of D2D system and cellular network and eliminates improper relays cor-

respondingly. Afterwards, the best relay is chosen among the optional relays using

a distributed method. In [22], the authors consider D2D communication for relaying

UE traffic toward the eNB and deduce a relay selection rule based on the interference

constraints. In [9], the authors propose an incremental relay mode for D2D communi-

cation where D2D transmitters multicast to both the D2D receiver and base station.

In case the D2D transmission fails, the base station retransmits the multicast message

to the D2D receiver. Although the base station receives a copy of the D2D message

which is retransmitted in case of failure, this incremental relay mode of communica-

tion consumes part of the downlink resources for retransmission and reduces spectrum

utilization. In [23, 24], the maximum ergodic capacity and outage probability of co-

operative relaying is investigated in relay-assisted D2D communication considering

power constraints at the eNB. The numerical results show that multi-hop relaying

lowers the outage probability and improves cell edge capacity by reducing the effect

of interference from the CUE.

It is worth noting that in [6,9,13,14,17–20,25,26], the effect of using relays in D2D

communication is not studied. As a matter of fact, relaying mechanism explicitly in

context of D2D communication has not been considered so far in the literature and

most of the resource allocation schemes consider only one D2D link. Taking the

advantage of L3 relays supported by the 3rd generation partnership project (3GPP)

standard, in Chapter 2 I study the network performance of network-integrated D2D

communication and show that relay-assisted D2D communication provides significant

performance gain for long distance D2D links. However, the proposed solution in

5
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Chapter 2 is obtained in a centralized manner by a central controller (i.e., L3 relay);

which could be a bottleneck for a dense network with large number of UEs. To

address this issue, in Chapter 3, I develop a distributed solution technique utilizing the

message passing strategy on a factor graph. Factor graph and other graphical models

have been used as powerful solution techniques to tackle a wide range of problems

in various domains; however, they have not been commonly used in the context of

resource allocation in cellular wireless networks. According to this message passing

approach each UE sends and receives information messages to/from the relay node in

an iterative manner with the goal of achieving an optimal allocation. Therefore, the

computational effort is distributed among all the UEs and the corresponding relay

node.

In all of the above cited work, it has generally been assumed that complete system

information (e.g., channel state information [CSI]) is available to the network nodes,

which is unrealistic for a practical system. To address this issue, in Chapter 4 I extend

the work presented in Chapter 2 and Chapter 3 utilizing the theory of worst-case

robust optimization. According to this approach, the interference link gain between

UE and other relays (to which the UE is not associated) is modeled with ellipsoidal

uncertainty sets.

One shortcoming of the approach presented in Chapter 4 is that the uncertain-

ties in direct channel gain between relay (eNB) and the UE (relay) are not consid-

ered. To resolve this issue and to make the model more practical, in Chapter 5 I

present a distributed resource allocation algorithm using stable matching considering

the uncertainties in all the wireless channel gains. Matching theory, a sub-field of

Economics, is a promising concept for distributed resource management in wireless

networks. The matching theory allows low-complexity algorithmic manipulations to

6



Chapter 1. Introduction

provide a decentralized self-organizing solution to the resource allocation problems.

In matching-based resource allocation, each of the agents (e.g., radio resources and

UEs) ranks the opposite set using a preference relation. The solution of the matching

is able to assign the resources with the UEs depending on the preferences.

A summary of the related work and comparison with my proposed approaches is

presented in Table 1.1.

1.3 Scholastic Outputs and Achievements

This thesis includes some material previously published/submitted in peer-reviewed

journals and conferences as summarized in Table 1.2. This work would not have been

possible without the contribution of all co-authors of the above referenced publica-

tions. The copyright as well as all rights of those works (and therefore the parts of

the thesis) are retained by the authors and/or by other copyright holders.

1.4 Organization of the Thesis

As can be seen from Fig. 1.1, I organize the major contents of the thesis into four

chapters. The brief organization of the thesis is given below.

• In Chapter 2, I present the system model and the framework of the relay-

aided communication scheme. To this end, an optimization-based radio resource

allocation algorithm is proposed.

• Considering the computational complexity at the relay nodes, in Chapter 3 I

propose a reduced complexity distributed solution using the concept of message

passing. The convergence and optimality of the proposed distributed solution

is analyzed.
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Chapter 1. Introduction

Table 1.2: Summary of Scholastic Outputs

Publications* Appearance

4. M. Hasan and E. Hossain, “Distributed resource allocation
for relay-aided device-to-device communication under channel
uncertainties: A stable matching approach,” submitted to the
IEEE Transactions on Communications (under second round
of revision).

Chapter 5

3. M. Hasan and E. Hossain, “Distributed resource allocation
for relay-aided device-to-device communication: A message
passing approach,” IEEE Transactions on Wireless Commu-
nications, vol. 13, no. 11, pp. 6326-6341, Nov. 2014.

Chapter 3

2. M. Hasan, E. Hossain, and D. I. Kim, “Resource allocation
under channel uncertainties for relay-aided device-to-device
communications underlaying LTE-A cellular networks,” IEEE
Transactions on Wireless Communications, vol. 13, no. 4, pp.
2322-2338, Apr. 2014.

Chapter 4

1. M. Hasan and E. Hossain, “Resource allocation for network-
integrated device-to-device communications using smart re-
lays,” in Proc. of IEEE Globecom Workshops (GC Wkshps),
pp. 597-602, Dec. 2013.

Chapter 2

*According to reverse order of submission.

• Since in practical wireless systems the link gains are uncertain (e.g., imperfectly

known), in Chapter 4 I reformulate the problem considering uncertainties in

the interference links and propose a gradient-based solution. The robustness-

optimality trade-off is discussed both analytically and numerically.

• Despite the fact the model presented in Chapter 4 captures the uncertainty in

interference links, the direct link between the users and serving nodes (such

as relay and eNB) assumes to be perfectly known. Hence, in Chapter 5, I

extend the previous formulation considering uncertainties in both the direct

and interference link gain. I use the theory of stable matching and proposed

a distributed solution. The analytical properties (e.g., stability, optimality,
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Figure 1.1: Organization of the thesis.

convergence etc.) are also discussed.

• I conclude the thesis in Chapter 6 highlighting the directions for future research.
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Chapter 2

A Resource Allocation Framework

for Relay-Aided D2D

Communication

With increasing number of autonomous heterogeneous devices in future mobile

networks, an efficient resource allocation scheme is required to maximize network

throughput and achieve higher spectral efficiency. The goal of this work is to develop

a resource allocation framework for relay-aided D2D communication. This frame-

work will be used at the relays (specifically, at the L3 relays) for allocation of RBs

and transmission power for cellular users as well as the D2D users served by the relays.

The motivation of using relay-assisted D2D communication stems from the fact that

relaying of D2D traffic may improve network performance when the D2D users are far

apart. In my considered model, the presence of heterogeneous users (e.g., cellular and

D2D) and multiple relays in the two-hop system with different destinations (e.g., eNB

is the destination for cellular transmitters and D2D receivers are the destinations for

D2D transmitters), and the combinatorial nature of the resource allocation problem

11
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in multi-channel OFDMA systems make the formulation/analysis more challenging.

The main contributions of this chapter can be summarized as follows:

• I model and analyze the performance of relay-assisted D2D communication in

a multi-channel OFDMA-based cellular (e.g., LTE-A) network. The problem

of RB and power allocation at the relay nodes for the CUEs and D2D UEs is

formulated.

• As opposed to most of the resource allocation schemes in the literature where

only a single D2D link is considered, I consider multiple D2D links along with

multiple cellular links that are supported by the relay nodes.

• I compare the performance of my proposed method with an underlay D2D

communication scheme where the D2D UEs communicate directly without the

assistance of relays. The numerical results show that after a distance threshold

for the D2D UEs, relaying D2D traffic provides significant gain in achievable

data rate.

I organize the rest of the chapter as follows. Section 2.1 introduces LTE-A access

methods and the relaying mechanisms. In Section 2.2, I present the system model

and formulate the resource allocation problem (RAP). The permanence evaluation

results are presented in Section 2.4 and I conclude the chapter in Section 2.5 outlining

possible extensions.

12
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2.1 Radio Access and Relaying in 3GPP LTE-A

2.1.1 Radio Access Methods in LTE-A Networks

In the LTE-A radio interface, two consecutive time slots create a subframe where

each time slot spans 0.5 msec. Resources are allocated to UEs1 in units of RBs over

a subframe. Each RB occupies 1 slot (0.5 msec) in time domain and 180 KHz in

frequency domain with subcarrier spacing of 15 KHz. The multiple access scheme for

downlink (i.e., eNB/relay-to-UE) is OFDMA while the access scheme for uplink (i.e.,

UE-to-relay/eNB, relay-to-UE) is single carrier-FDMA (SC-FDMA). In general, SC-

FDMA requires contiguous set of subcarrier allocation to UEs. Resource allocation in

downlink supports both block-wise transmission (localized allocation) and transmis-

sion on non-consecutive subcarriers (distributed allocation). For uplink transmission,

current specification supports only localized resource allocation [27].

2.1.2 Relays in LTE-A Networks

Relay node in LTE-A is wirelessly connected to radio access network through a donor

eNB and serves UEs. Depending on the function, different relaying mechanisms used

in LTE-A [15]. Layer 1 (L1) relays act as repeaters, amplifying the input signal

without and decoding/re-encoding. The L1 relays can either use the same carrier

frequency (i.e., in-band relaying) or an orthogonal carrier frequency (i.e., out-of-band

relaying). The main advantages of L1 relays are simplicity, cost-effectiveness, and

low delay. However, with L1 relaying, noise and interference are also amplified and

retransmitted. Hence, the SINR of the signal may deteriorate.

Layer 2 (L2) relays are also known as decode and forward (DF) relay which in-

1By the term “UE”, I refer to both cellular and D2D user equipments.
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volves decoding the source signal at the relay node. The advantage of DF relays is that

noise and interference do not propagate to the destination. However, a substantial

delay occurs during the relaying operation. A L2 relay does not issue any scheduling

information or any control signal (i.e., HARQ and channel feedback). Hence, an L2

relay cannot generate a complete cell and from a UE’s perspective, it is only a part

of donor cell.

Layer 3 (L3) relays with self-backhauling configuration performs the same opera-

tion as eNB except for lower transmit power and smaller cell size. It controls cell(s)

and each cell has its own cell identity. The relay shall transmit its own control signals

and UE shall receive scheduling information and HARQ feedback directly from the

relay node.

When the link condition between D2D peers is poor or the distance is too far

for direct communication, with the support of L3 relays, scheduling and resource

allocation for D2D UE can be done in relay node and D2D traffic can be transmitted

through relay. I refer to this scheme as relay-aided D2D communication which can

be an alternative approach to provide higher data rate between distant D2D-links.

In the next section, I describe the network configuration and present the formulation

for resource allocation.

2.2 System Model

2.2.1 Network Model

Let L = {1, 2, . . . , L} denote the set of fixed-location L3 relays in the network as

shown in Fig. 2.1. The system bandwidth is divided into N orthogonal RBs de-

noted by N = {1, 2, . . . , N} which are used by all the relays in a spectrum underlay

14
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fashion. The set of CUEs and D2D pairs are denoted by C = {1, 2, . . . , C} and

D = {1, 2, . . . , D}, respectively. I assume that association of the UEs (both cellular

and D2D) to the corresponding relays are performed before resource allocation. Prior

to resource allocation, D2D pairs are also discovered and the D2D session is setup by

transmitting known synchronization or reference signals [28].

I assume that the CUEs are outside the coverage region of the eNB and/or having

bad channel condition, and therefore, the CUE-eNB communications need to be sup-

ported by the relays. Besides, direct communication between two D2D UEs requires

the assistance of a relay node due to poor propagation condition. The UEs assisted

by relay l are denoted by ul. The set of UEs assisted by relay l is Ul = {1, 2, . . . , Ul}

such that Ul ⊆ {C ∪ D},∀l ∈ L,
⋃
l Ul = {C ∪ D}, and

⋂
l Ul = ∅.

In the second hop, there could be multiple relays transmitting to their associated

D2D UEs. I assume that multiple relays transmit to the eNB (in order to forward

CUEs’ traffic) using orthogonal channels and this scheduling of relays is done by the

eNB2. Note that, in the first hop, the transmission between a UE (i.e., either a CUE

or a D2D UE) and a relay can be considered as an uplink transmission. In the second

hop, the transmission between a relay and the eNB can be considered as an uplink

transmission from the perspective of the eNB whereas the transmission from a relay

to a D2D UE can be considered as a downlink transmission. In my system model,

taking advantage of the capabilities of L3 relays, scheduling and resource allocation

for the UEs is performed in the relay nodes to reduce the computational load at the

eNB.

2Scheduling of relay nodes by the eNB is out of the scope of this work.
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L3 relay

eNB

L3 relay

L3 relay

D2D UE

Cellular UE

Figure 2.1: A schematic diagram of a single cell system with multiple relay nodes. I
assume that the CUE-eNB links are unfavorable for direct communication and they
need the assistance of relays. The D2D UEs are also supported by the relay nodes
due to long distance and/or poor link condition between peers.

2.2.2 Achievable Data Rate

Let γ
(n)
ul,l,1

denote the unit power SINR for the link between UE ul ∈ Ul and relay l

using RB n in the first hop and γ
(n)
l,ul,2

be the unit power SINR for the second hop. Note

that, in the second hop, when the relays transmit CUEs’ traffic (i.e., ul ∈ {C ∩ Ul}),

γ
(n)
l,ul,2

denotes the unit power SINR for the link between relay l and the eNB. On the

other hand, when a relay transmits to a D2D UE (i.e., ul ∈ {D ∩Ul}), γ(n)
l,ul,2

refers to

the unit power SINR for the link between relay l and the receiving D2D UE for the

D2D-pair.

Let P
(n)
i,j ≥ 0 denote the transmit power in the link between i and j over RB n

and BRB is the bandwidth of an RB. The achievable data rate3 for ul in the first hop

can be expressed as r
(n)
ul,1

= BRB log2

(
1 + P

(n)
ul,l
γ

(n)
ul,l,1

)
. Note that, this rate expression

is valid under the assumption of Gaussian (and spectrally white) interference which

holds for a large number of interferers. Similarly, the achievable data rate in the

3I will present the rate expressions in Section 2.3.1.
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second hop is r
(n)
ul,2

= BRB log2

(
1 + P

(n)
l,ul
γ

(n)
l,ul,2

)
. Since I am considering a two-hop

communication, the end-to-end data rate4 for ul on RB n is half of the minimum

achievable data rate over two hops [29], i.e.,

R(n)
ul

=
1

2
min

{
r

(n)
ul,1
, r

(n)
ul,2

}
. (2.1)

2.3 Formulation of the RAP

In the following, I present the formulation of the RAP. For each relay, the objective

of radio resource (i.e., RB and transmit power) allocation is to obtain the assignment

of RB and power level to the UEs that maximizes the system capacity, which is

defined as the minimum achievable data rate over two hops. Let the maximum

allowable transmit power for UE (relay) is Pmax
ul

(Pmax
l ) and let the QoS (i.e., data

rate) requirement for UE ul be denoted by Qul . The RB allocation indicator is a

binary decision variable x
(n)
ul ∈ {0, 1}, where

x(n)
ul

=


1, if RB n is assigned to UE ul

0, otherwise.

(2.2)

2.3.1 Objective Function

LetRul =
N∑
n=1

x(n)
ul
R(n)
ul

denote the achievable sum-rate over allocated RB(s). I consider

that the same RB(s) will be used by the relay in both the hops (i.e., for communication

between relay and eNB and between relay and D2D UEs). The objective of RAP is

4In a conventional D2D communication approach where two D2D UEs communicate directly
without a relay, the achievable data rate for D2D UE u ∈ D over RB n can be expressed as

R̃
(n)
u = BRB log2

(
1 + P

(n)
u γ̃

(n)
u

)
, where γ̃

(n)
u =

h(n)
u,u∑

∀j∈Ûu

P
(n)
j g

(n)
u,j+σ

2
, h

(n)
u,u is the channel gain of the link

between the D2D UEs and Ûu denotes the set of UEs transmitting using the same RB(s) as u.
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to maximize the end-to-end rate for each relay l ∈ L as follows:

max
x

(n)
ul
,P

(n)
ul,l

,P
(n)
l,ul

∑
ul∈Ul

N∑
n=1

x(n)
ul
R(n)
ul

(2.3)

where the rate of UE ul over RB n

R(n)
ul

=
1

2
min

{
BRB log2

(
1 + P

(n)
ul,l
γ

(n)
ul,l,1

)
, BRB log2

(
1 + P

(n)
l,ul
γ

(n)
l,ul,2

)}
.

In (2.3), the unit power SINR for the first hop,

γ
(n)
ul,l,1

=
h

(n)
ul,l,1∑

∀uj∈Uj ,
j 6=l,j∈L

x
(n)
uj P

(n)
uj ,j

g
(n)
uj ,l,1

+ σ2
(2.4)

where h
(n)
i,j,k denotes the direct link gain between node i and j over RB n for hop

k ∈ {1, 2}, σ2 = N0BRB in which N0 denotes thermal noise. The interference link

gain between relay (UE) i and UE (relay) j over RB n in hop k is denoted by g
(n)
i,j,k,

where UE (relay) j is not associated with relay (UE) i. Similarly, the unit power

SINR for the second hop5,

γ
(n)
l,ul,2

=



h
(n)
l,ul,2∑

∀uj∈{D∩Uj},
j 6=l,j∈L

x
(n)
uj
P

(n)
j,uj

g
(n)
j,eNB,2+σ2

, ul ∈ {C ∩ Ul}

h
(n)
l,ul,2∑

∀uj∈Uj ,
j 6=l,j∈L

x
(n)
uj
P

(n)
j,uj

g
(n)
j,ul,2

+σ2
, ul ∈ {D ∩ Ul}

(2.5)

5According to LTE-A standard, the L3 relays are able to peform similar operation as an eNB.
Besides, the relays in the network are interconnected through X2 interface for better interference
management [30]. Since the relays can estimate the CQI values (and hence the interference level)
using X2 interface, it is straightforward to account for interference in (2.4) and (2.5). Consequently,
interference from other transmitter nodes (e.g., UEs associated to other relays in the first hop or
other relays in the second hop) will appear as a constant term in (2.4) and (2.5).
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where hl,ul,2 denotes the channel gain between relay-eNB link for CUEs (e.g., ul ∈

{C ∩ Ul}) or the channel gain between relay and receiving D2D UEs (e.g., ul ∈

{D∩Ul}). From (2.1), the maximum data rate for UE ul over RB n is achieved when

P
(n)
ul,l
γ

(n)
ul,l,1

= P
(n)
l,ul
γ

(n)
l,ul,2

. Therefore, in the second hop, the power Pl,ul allocated for

UE ul, can be expressed as a function of power allocated for transmission in the first

hop, Pul,l as follows: P
(n)
l,ul

=
γ

(n)
ul,l,1

γ
(n)
l,ul,2

P
(n)
ul,l

. Hence the data rate for ul over RB n can be

expressed as R
(n)
ul = 1

2
BRB log2

(
1 + P

(n)
ul,l
γ

(n)
ul,l,1

)
. Considering the above, the objective

function in (2.3) can be rewritten as

max
x

(n)
ul
,P

(n)
ul,l

∑
ul∈Ul

N∑
n=1

1
2
x(n)
ul
BRB log2

(
1 + P

(n)
ul,l
γ

(n)
ul,l,1

)
. (2.6)

For each relay l ∈ L in the network, the objective of RAP is to obtain the RB

and power allocation vectors, i.e., xl =
[
x

(1)
1 , . . . , x

(N)
1 , . . . , x

(1)
Ul
, . . . , x

(N)
Ul

]T
and Pl =[

P
(1)
1,l , . . . , P

(N)
1,l , . . . , P

(1)
Ul,l
, . . . , P

(N)
Ul,l

]T
respectively, which maximize the data rate.

2.3.2 Constraint Sets

In order to ensure the required data rate to the UEs while protecting all receiver

nodes from harmful interference, I define the following set of constraints.

• The constraint in (2.7) ensures that each RB is assigned to only one UE, i.e.,

∑
ul∈Ul

x(n)
ul
≤ 1, ∀n ∈ N . (2.7)

• The following constraints limit the transmit power in both the hops to the
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maximum power budget:

N∑
n=1

x(n)
ul
P

(n)
ul,l
≤ Pmax

ul
, ∀ul ∈ Ul (2.8)

∑
ul∈Ul

N∑
n=1

x(n)
ul
P

(n)
l,ul
≤ Pmax

l . (2.9)

• Similar to [31], I assume that there is a maximum tolerable interference thresh-

old limit for each allocated RB. The constraints in (2.10) and (2.11) limit the

amount of interference introduced to the other relays and the receiving D2D

UEs in the first and second hop, respectively, to be less than some threshold,

i.e.,

∑
ul∈Ul

x(n)
ul
P

(n)
ul,l
g

(n)
u∗l ,l,1

≤ I
(n)
th,1, ∀n ∈ N (2.10)

∑
ul∈Ul

x(n)
ul
P

(n)
l,ul
g

(n)
l,u∗l ,2

≤ I
(n)
th,2, ∀n ∈ N . (2.11)

• The minimum data rate requirements for the CUE and D2D UEs is ensured by

the following constraint:

Rul ≥ Qul , ∀ul ∈ Ul. (2.12)

• The binary decision variable on RB allocation and non-negativity condition of

transmission power is defined by

x(n)
ul
∈ {0, 1}, P

(n)
ul,l
≥ 0, ∀ul ∈ Ul,∀n ∈ N . (2.13)
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Note that in constraint (2.10) and (2.11), I adopt the concept of reference user. For

example, to allocate the power level considering the interference threshold in the first

hop, each UE ul associated with relay node l obtains the reference user u∗l associated

with the other relays and the corresponding channel gain g
(n)
u∗l ,l,1

for ∀n according to

the following equation:

u∗l = argmax
j

g
(n)
ul,j,1

, ul ∈ Ul, j 6= l, j ∈ L. (2.14)

Similarly, in the second hop, for each relay l, the transmit power will be adjusted

accordingly considering interference introduced to the receiving D2D UEs (associated

with other relays) considering the corresponding channel gain g
(n)
l,u∗l ,2

for ∀n, where the

reference user is obtained by

u∗l = argmax
uj

g
(n)
l,uj ,2

, j 6= l, j ∈ L, uj ∈ {D ∩ Uj}. (2.15)

Based on the objective function (2.6) and the constraints given by Section 2.3.2,

the RAP can be written as the following optimization problem.
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(P2.1)

max
x

(n)
ul
,P

(n)
ul,l

∑
ul∈Ul

N∑
n=1

1
2
x(n)
ul
BRB log2

(
1 + P

(n)
ul,l
γ

(n)
ul,l,1

)
subject to

∑
ul∈Ul

x(n)
ul
≤ 1, ∀n (2.16a)

N∑
n=1

x(n)
ul
P

(n)
ul,l
≤ Pmax

ul
,∀ul (2.16b)

∑
ul∈Ul

N∑
n=1

x(n)
ul

γ
(n)
ul,l,1

γ
(n)
l,ul,2

P
(n)
ul,l
≤ Pmax

l (2.16c)∑
ul∈Ul

x(n)
ul
P

(n)
ul,l
g

(n)
u∗l ,l,1

≤ I
(n)
th,1, ∀n (2.16d)

∑
ul∈Ul

x(n)
ul

γ
(n)
ul,l,1

γ
(n)
l,ul,2

P
(n)
ul,l
g

(n)
l,u∗l ,2

≤ I
(n)
th,2, ∀n (2.16e)

N∑
n=1

1
2
x(n)
ul
BRB log2

(
1 + P

(n)
ul,l
γ

(n)
ul,l,1

)
≥ Qul , ∀ul (2.16f)

P
(n)
ul,l
≥ 0, ∀n, ul. (2.16g)

2.3.3 Continious Relaxation and Reformulation

As mentioned in the following corollary, the optimization problem P2.1 is a mixed-

integer non-linear program (MINLP) which is computationally intractable.

Corollary 2.1. The objective function in (2.6) and the set of constraints in (2.7)-

(2.13) turn the optimization problem P2.1 to a MINLP with non-convex feasible set.

MINLP problems have the difficulties of both of their sub-classes, i.e., the combinato-

rial nature of mixed integer programs (MIPs) and the difficulty in solving nonlinear

programs (NLPs). Since MIPs and NLPs are NP-complete, the RAP P2.1 is strongly

NP-hard.

A well-known approach to solve the above problem is to relax the constraint that

an RB is used by only one UE by using the time-sharing strategy [32]. In particular,
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I relax the optimization problem by replacing the non-convex constraint x
(n)
ul ∈ {0, 1}

with the convex constraint 0 < x
(n)
ul ≤ 1. Thus x

(n)
ul represents the sharing factor where

each x
(n)
ul denotes the portion of time that RB n is assigned to UE ul and satisfies the

constraint
∑
ul∈Ul

x(n)
ul
≤ 1, ∀n. Besides, I introduce a new variable S

(n)
ul,l

= x
(n)
ul P

(n)
ul,l
≥ 0,

which denotes the actual transmit power of UE ul on RB n [33]. Then the relaxed

problem can be stated as follows:

(P2.2)

max
x

(n)
ul
,S

(n)
ul,l

∑
ul∈Ul

N∑
n=1

1
2
x(n)
ul
BRB log2

(
1 +

S
(n)
ul,l

γ
(n)
ul,l,1

x
(n)
ul

)
(2.17a)

subject to
∑
ul∈Ul

x(n)
ul
≤ 1, ∀n (2.17b)

N∑
n=1

S
(n)
ul,l
≤ Pmax

ul
, ∀ul (2.17c)

∑
ul∈Ul

N∑
n=1

γ
(n)
ul,l,1

γ
(n)
l,ul,2

S
(n)
ul,l
≤ Pmax

l (2.17d)∑
ul∈Ul

S
(n)
ul,l
g

(n)
u∗l ,l,1

≤ I
(n)
th,1, ∀n (2.17e)

∑
ul∈Ul

γ
(n)
ul,l,1

γ
(n)
l,ul,2

S
(n)
ul,l
g

(n)
l,u∗l ,2

≤ I
(n)
th,2, ∀n (2.17f)

N∑
n=1

1
2
x(n)
ul
BRB log2

(
1 +

S
(n)
ul,l

γ
(n)
ul,l,1

x
(n)
ul

)
≥ Qul , ∀ul (2.17g)

0 < x(n)
ul
≤ 1, S

(n)
ul,l
≥ 0, ∀n, ul (2.17h)

where γ
(n)
ul,l,1

=
h

(n)
ul,l∑

∀uj∈Uj ,
j 6=l,j∈L

S
(n)
uj,j

g
(n)
uj,l,1

+σ2
.

Corollary 2.2. The objective function in (2.17a) is concave, the constraint in (2.17g)

is convex, and the remaining constraints in (2.17b), (2.17c)-(2.17h) are affine. There-

fore, the optimization problem P2.2 is convex.
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The duality gap of any optimization problem satisfying the time-sharing condi-

tion becomes negligible as the number of RBs becomes significantly large. Since

P2.2 is a non-linear convex problem, each relay can solve the optimization problem

using standard algorithms such as interior point method [34, Chapter 11]. Note that,

the optimization problem P2.2 satisfies the time-sharing condition. Therefore, the

solution of the relaxed problem is asymptotically optimal [35].

2.3.4 Algorithm for Resoruce Allocation

Each relay in the network independently allocates resources to its associated UEs.

Based on the mathematical formulation in the previous section, the overall resource

allocation algorithm is shown in Algorithm 1.

Algorithm 1 Joint RB and power allocation algorithm

1: UEs measure interference level from previous time slot and inform the respective
relays.

2: Each relay l ∈ L obtains the channel state information among all relays j; j 6=
l, j ∈ L and to its scheduled UEs ∀uj ∈ Uj; j 6= l, j ∈ L.

3: For each relay and its associated UEs, obtain the reference node for the first and
second hops according to (2.14) and (2.15).

4: Solve the optimization problem P2.2 for each relay independently to obtain RB
and power allocation vectors, e.g., xl,Pl for ∀l ∈ L.

5: Allocate resources (i.e., RB and transmit power) to associated UEs for each relay
and calculate average achievable data rate.

The proposed solution can be referred to as a semi-distributed approach in a

sense that instead of solving the resource allocation globally by the eNB, the com-

putational load is distributed among the relays. Hence, these relays perform the

resource allocation locally. It is worth mentioning that at each relay l, solving

P2.2 by using the interior point method incurs a complexity of O
(
(|xl|+ |Sl|)3)

[34, Chapter 11], [36] where xl =
[
x

(1)
1 , · · · , x(N)

1 , · · · , x(1)
Ul
, · · · , x(N)

Ul

]T
and Sl =
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S

(1)
1,l , · · · , S

(N)
1,l , · · · , S

(1)
Ul,l
, · · · , S(N)

Ul,l

]T
.

Since the L3 relays can perform the same operation as an eNB, these relays can

communicate using the X2 interface [30] defined in the 3GPP LTE-A standard. There-

fore, in the proposed algorithm, the relays can obtain the channel state information

through inter-relay message passing without increasing signalling overhead at the

eNB.

2.4 Performance Evaluation

The performance results for the resource allocation schemes obtained by a simulator

written in MATLAB6. In order to study network performance in presence of the L3

relay, I compare the performance of the proposed scheme with a reference scheme [17]

in which an RB allocated to CUE can be shared with at most one D2D-link. D2D

UE shares the same RB(s) (allocated to CUE by solving optimization problem) and

communicate directly between peers without relay only if the QoS requirements for

both CUE and D2D UE are satisfied.

2.4.1 Numerical Results

Achievable data rate vs. distance between D2D-links

In Fig. 2.2, I illustrate the average achievable data rate R̄ for D2D UEs which is

calculated as R̄ =

∑
u∈D

Rach
u

|D| , where Rach
u is the achievable data rate for UE u and

| · | denotes set cardinality. Although the reference scheme outperforms when the

distance between D2D-link is closer (i.e., d < 60m); my proposed algorithm can

greatly increase the data rate especially when the distance increases. This is due to

6For details of the simulator and the parameters used in the simulation refer to Appendix A.
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Figure 2.2: Average achievable data rate with varying distance; number of CUE,
|C| = 15 (i.e., 5 CUEs assisted by each relay), number of D2D-pair, |D| = 9 (i.e., 3
D2D-pair assisted by each relay) and interference threshold -70 dBm.

the fact that when the distance is higher, the performance of direct communication

deteriorates due to poor propagation medium. Besides, when the D2D UEs share

resources with only one CUE, the spectrum may not utilize efficiently and decreases

the achievable rate. Consequently, the gap between the achievable rate of my proposed

algorithm and that of the reference scheme becomes wider when the distance increases.

Rate gain vs. distance between D2D-links

Fig. 2.3(a) depicts the rate gain in terms of aggregated achievable rate for the UEs.

I calculate the gain as follows:

Rgain =
Rprop −Rref

Rref

× 100%, (2.18)

where Rprop and Rref denote the aggregate data rate for the D2D UEs in the proposed

scheme and the reference scheme, respectively. It is observed from the figure that, with

the increasing distance between D2D-links my proposed scheme provides significant

26



Chapter 2. A Resource Allocation Framework for Relay-Aided D2D Communication

gain in terms of achievable data rate. To observe the effect of gain in different network

realization I vary the number of D2D UE in Fig. 2.3(b). It is clear from figure that

irrespective of the number of D2D UEs in the network, my proposed scheme provides

considerable rate gain for distant D2D-pairs.

2.5 Summary and Discussions

I have provided a mathematical formulation for radio resource allocation and analyzed

the performance of relay-assisted D2D communication. The performance evaluation

results have shown that relay-assisted D2D communication is beneficial to provide

higher rate for distant D2D-links. However, when the number of UEs is large, solv-

ing the optimization problem P2.2 centrally could be bottleneck for the relay nodes.

Besides when the perfect channel knowledge is not available, the effects of uncertain-

ties in the system parameter need to be considered by using a robust optimization

formulation. These issues will be discussed in the following chapters.
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Figure 2.3: Gain in aggregated achievable data rate with varying distance (for |C| =
15, interference threshold -70 dBm): (a) 3 D2D-pairs assisted by each relay (i.e., |D| =
9); (b) number of D2D-pairs varies from 1 to 4 UE(s)/relay (i.e., |D| = 3, 6, 9, 12).
There is a critical distance d (i.e., d ≈ 60m here), beyond which relaying provides
significant performance gain.
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Chapter 3

Distributed Solution for

Relay-Aided D2D Communication

: A Message Passing Approach

As I have shown in Corollary 2.1, the RAP P2.1 is NP-hard. Instead of solving

P2.1 in a centralized manner using relaxation techniques as presented in Chapter

2, in this chapter I present a distributed approach. The centralize solutions for

wireless radio resource allocation problems generally not scalable, and also incur huge

computational and signaling overheads. Therefore, goal of this chapter is to design a

practical resource allocation algorithm for relay-aided D2D communications. I show

that the RAP can be converted to a max-sum message passing (MP) problem over

a graphical model. The MP algorithms have been recognized as powerful tools that

can be used to solve many problems in signal processing, coding theory, machine

learning, natural language processing, and computer vision. When MP is applied to

solve a problem, the messages represent probabilities (i.e., beliefs) exchanged with

the goal of achieving optimal decisions. Analogously, in the context of the resource
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allocation for relay-aided D2D communication, the MP strategy can be applied to

pass messages between UEs and relays until a global allocation is obtained. The

advantage of applying MP strategy in resource allocation is that it provides a low-

complexity distributed solution and reduces the computation burden at the controller

node. Motivated by the above fact, in this chapter, I apply the max-sum variation

of the message passing technique to represent the resource allocation problem by a

factor graph. To this end, I propose a distributed solution approach with polynomial

time-complexity and low signaling overhead. The main contributions of this chapter

can be summarized as follows:

• I provide a novel solution technique using message passing. Utilizing message

passing strategy, I develop a low-complexity distributed solution by which RBs

and transmission power can be allocated in a distributed fashion.

• I analyze the complexity and the optimality of the solution. To this end, I

compare the performance of my relay-based D2D communication scheme with a

direct D2D communication method and observe that relaying improves network

performance for distant D2D peers without increasing the end-to-end delay

significantly.

The remainder of this chapter is organized as follows. I introduce the message

passing strategy to solve the RAP in Section 3.1. A distributed solution is proposed

in Section 3.2 and the performance evaluation results are presented in Section 3.3. I

summarize and conclude the chapter in Section 3.4.
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3.1 Message Passing Approach to Solve the RAP

3.1.1 MP Strategy for the Max-sum Problem

Given the RAP formulation P2.1, I focus on the max-sum variant [37] of MP

paradigm. Let me consider a generic function f(y1, y2, . . . , yJ) : Dy → R where

each variable yj corresponds to a finite alphabet a, i.e., Dy = aJ . I concentrate on

maximizing the function f(·), i.e.,

Z̃ = max
y

f(y). (3.1)

That is, Z̃ represents the maximization over all possible combinations of the vector

y ∈ aJ where y = [y1, y2, . . . , yJ ]T. The marginal of Z̃ with respect to variable yj is

given by

φj(yj) = max
∼(yj)

f(y) (3.2)

where max
∼(α)

f(·) denotes the maximization over all variables in f(·) except variable

α. Let me decompose f(y) into the summation of K functions fk(·) : Dŷk → R, k ∈

{1, 2, . . . , K}, i.e., f(y) =
K∑
k=1

fk(ŷk), where ŷk is a subset of elements of y and Dŷk ⊂

Dy. Besides, let f(·) = [f1(·), f2(·), . . . , fK(·)]T denote the vector of K functions and

fj represent the subset of functions in f(·) where the variable yj appears. Hence, (3.2)

can be rewritten as

φj(yj) = max
∼(yj)

K∑
k=1

fk(ŷk). (3.3)

Utilizing any MP algorithm, the computation of marginals involves passing mes-

sages between nodes represented by a specific graphical model. Among different

graphical models, in this work, I consider factor graph [38] to capture the structure

of generic function f(·). The factor graph consists of two different types of nodes,
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namely, function (or factor) nodes and variable nodes. A function node is connected

with a variable node if and only if the variable appears in the corresponding function.

Consequently, a factor graph contains two types of messages, i.e., message from factor

nodes to variable nodes and vice-versa. According to the max-sum MP strategy, the

message passed by any variable node yj, j ∈ {1, 2, . . . , J}, to any generic function

node fk(·), k ∈ {1, 2, . . . , K}, is given as

δyj→fk(·)(yj) =
∑
i∈fj ,
i 6=k

δfi(·)→yj(yj). (3.4)

Likewise, the message from factor node fk(·) to variable node yj is given as follows:

δfk(·)→yj(yj) = max
∼(yj)

fk(y1, . . . , yJ) +
∑
i∈ŷk,
i 6=j

δyi→fk(·)(yi)

 . (3.5)

When the factor graph is cycle free, it is represented as a tree (i.e., there is a

unique path connecting any two nodes); hence, all the variable nodes can compute

the marginals as

φj(yj) =
K∑
k=1

δfk(·)→yj(yj). (3.6)

By invoking the general distributive law (i.e., max
∑

=
∑

max) [39], the maximiza-

tion in (3.1) can be computed as

Z̃ =
J∑
j=1

max
yj

φj(yj). (3.7)
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W1,l  W|ul|,l  

x1
(1)

 x|ul|
(N)

 x1
(N)

 x|ul|
(1)

 

R1,l  RN,l  

Figure 3.1: An arbitrary factor graph representing MP formulation of the RAP. For
ease of representation, the variables are denoted by circular nodes whereas the func-
tions are denoted by square nodes. A variable node x

(n)
ul is connected to the function

nodes Rn,l(·) and Wul,l(·) if and only if the variable appears in the corresponding
function.

3.1.2 Utility Functions

In the following, I develop a joint RB and power allocation mechanism that lever-

ages the dynamics of MP strategy. Compared to centralized optimization solutions,

MP allows to distribute the computational burden of achieving a feasible resource

allocation by exchanging information among UEs and the corresponding relay.

Let me consider the original optimization problem P2.1 as presented in Page

22. In order to solve RAP P2.1 using the MP scheme, I reformulate it as a utility

maximization (i.e., cost minimization) problem and define the utility functions as in

(3.8) and (3.9) where unfulfilled constraints result in infinite cost. Per RB constraints

[i.e., (2.16a), (2.16c), (2.16d), (2.16e)] are incorporated in the utility function Rn,l(·)
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as follows:

Rn,l(·) =



0, if
∑
ul∈Ul

x(n)
ul
≤ 1

∑
ul∈Ul

x(n)
ul

γ
(n)
ul,l,1

γ
(n)
l,ul,2

P
(n)
ul,l
≤ P

(n)
l

max

∑
ul∈Ul

x(n)
ul
P

(n)
ul,l
g

(n)
u∗l ,l,1

≤ I
(n)
th,1

∑
ul∈Ul

x(n)
ul

γ
(n)
ul,l,1

γ
(n)
l,ul,2

P
(n)
ul,l
g

(n)
l,u∗l ,2

≤ I
(n)
th,2

−∞, otherwise

(3.8)

where P
(n)
l

max
=

Pmaxl

N
. On the other hand, per UE constraints are incorporated in the

utility function Wul,l(·) which is the achievable rate of each UE only if the constraints

in (2.16b) and (2.16f) are satisfied, i.e.,

Wul,l(·) =



N∑
n=1

x(n)
ul
R(n)
ul
, if

N∑
n=1

x(n)
ul
P

(n)
ul,l
≤ Pmax

ul

N∑
n=1

x(n)
ul
R(n)
ul
≥ Qul

−∞, otherwise.

(3.9)

3.1.3 MP Formulation for the RAP

Using the utility functions above, the RAP for each relay l can be rewritten as

x∗l = max
x

(
N∑
n=1

Rn,l(·) +
∑
ul∈Ul

Wul,l(·)

)
. (3.10)

By exploiting the concept described in Section 3.1.1, let me associate (3.10) with

a factor graph as shown in Fig. 3.1. Following an MP strategy, the variable and

function nodes exchange messages along their connecting edges until the values of
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x
(n)
ul are determined for ∀ul, n. Let φ

(n)
ul be the marginalization of (3.10) with respect

to x
(n)
ul and given as

φ(n)
ul

(
x(n)
ul

)
= max
∼
(
x

(n)
ul

)
(

N∑
n=1

Rn,l(·) +
∑
ul∈Ul

Wul,l(·)

)
. (3.11)

Let δ
Rn,l(·)→x

(n)
ul

(
x

(n)
ul

)
and δ

x
(n)
ul
→Rn,l(·)

(
x

(n)
ul

)
denote the message exchanged be-

tween function nodes Rn,l(·) and the connected variable nodes for ∀ul, n. Similarly,

δ
Wul,l

(·)→x(n)
ul

(
x

(n)
ul

)
and δ

x
(n)
ul
→Wul,l

(·)

(
x

(n)
ul

)
denote the exchanged messages between

function nodes Wul,l(·) and variable nodes for ∀ul, n. Let me consider a generic RB

n in the factor graph. The square node in Fig. 3.1 corresponding to Rn,l(·) which is

connected to all variable nodes x
(n)
ul for ∀ul ∈ Ul. Hence from (3.5), the message to

be delivered to the particular variable node x
(n)
ul is obtained as follows:

δ
Rn,l(·)→x

(n)
ul

(
x(n)
ul

)
= max

∑
j∈Ul,j 6=ul

δ
x

(n)
j →Rn,l(·)

(
x

(n)
j

)
subject to

∑
ul∈Ul

x(n)
ul
≤ 1

∑
ul∈Ul

x(n)
ul

γ
(n)
ul,l,1

γ
(n)
l,ul,2

P
(n)
ul,l
≤ P

(n)
l

max

∑
ul∈Ul

x(n)
ul
P

(n)
ul,l
g

(n)
u∗l ,l,1

≤ I
(n)
th,1

∑
ul∈Ul

x(n)
ul

γ
(n)
ul,l,1

γ
(n)
l,ul,2

P
(n)
ul,l
g

(n)
l,u∗l ,2

≤ I
(n)
th,2. (3.12)

Let me consider a generic user ul. As illustrated in Fig. 3.1, the square nodes

corresponding to function Wul,l(·) in factor graph are connected to all variable nodes

x
(n)
ul for ∀n ∈ N . Using (3.5) and (3.9), the message from function node Wul,l(·) to

any variable node x
(n)
ul is given by (3.13).
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δ
Wul,l

(·)→x(n)
ul

(
x(n)
ul

)
= x(n)

ul
R(n)
ul

+ max

 N∑
j=1,
j 6=n

x(j)
ul
R(j)
ul

+ δ
x

(j)
ul
→Wul,l

(·)

(
x(j)
ul

)
subject to

N∑
n=1

x(n)
ul
P

(n)
ul,l
≤ Pmax

ul
,

N∑
n=1

x(n)
ul
R(n)
ul
≥ Qul . (3.13)

From (3.12) and (3.13), the marginal φ
(n)
ul

(
x

(n)
ul

)
can be obtained as

φ(n)
ul

(
x(n)
ul

)
= δ

Rn,l(·)→x
(n)
ul

(
x(n)
ul

)
+ δ

Wul,l
(·)→x(n)

ul

(
x(n)
ul

)
. (3.14)

Consequently, the RB allocation indicator for UE ul over RB n is given by

x(n)
ul

∗
= argmax

x
(n)
ul

[
φ(n)
ul

(
x(n)
ul

)]
. (3.15)

From (3.12) and (3.13), it can be noted that both the messages, i.e.,

δ
Rn,l(·)→x

(n)
ul

(
x

(n)
ul

)
and δ

Wul,l
(·)→x(n)

ul

(
x

(n)
ul

)
solve a local optimization problem with

respect to the allocation variable x
(n)
ul . It is worth noting that, in my system model,

each function node Wul,l(·) and corresponding variable nodes are located at the UE

ul, while all δRn,l(·) nodes are located at the relay. Hence, sending messages δRn,l(·)

from variable nodes to function nodes (and vice-versa) requires actual transmission

on the radio channel. However, the message exchanges between variable nodes and

function nodes Wul,l(·) are performed locally at the UEs without actual transmission

on the radio channel.
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3.1.4 An Effective Implementation of MP Strategy

In a practical LTE-A system, since the exchange of messages actually involves effec-

tive transmissions over the channel, the MP scheme described in the preceding section

might be limited by the signaling overhead due to transfer of messages between re-

lay and UEs. In the following, I observe that the amount of message signaling can

be significantly reduced by some algebraic manipulations. Note that, the message

δ
Wul,l

(·)→x(n)
ul

(1) carries information regarding the use of RB n by UE ul with trans-

mission power P
(n)
ul,l

, while δ
Wul,l

(·)→x(n)
ul

(0) carries information regarding the lack of

transmission on RB n by UE ul, i.e., P
(n)
ul,l

= 0. Hence, each UE eventually delivers a

real-valued vector of two elements, i.e.,

∆
Wul,l

(·)→x
(n)
ul

=
[
δ
Wul,l

(·)→x(n)
ul

(1) , δ
Wul,l

(·)→x(n)
ul

(0)
]T
.

Let κul denote the required number of RB(s)1 to satisfy the data rate requirement

Qul for UE ul. Therefore, the constraint in (2.16f) can be rewritten as

N∑
n=1

x(n)
ul
≥ κul , ∀ul. (3.16)

Now, replacing the constraint in (3.13) with that in (3.16) and subtracting the

constant term
N∑
j=1;
j 6=n

δ
x

(j)
ul
→Wul,l

(·) (0) from both sides of (3.13), I obtain (3.17). Let

me introduce the normalized messages ψ̃
(n)
ul,l

= δ
x

(n)
ul
→Wul,l

(·) (1) − δ
x

(n)
ul
→Wul,l

(·) (0) =

δ
Rn,l(·)→x

(n)
ul

(1) − δ
Rn,l(·)→x

(n)
ul

(0). It can be observed that the terms within the sum-

mation in (3.17) are either 0 or R
(n)
ul + ψ̃

(n)
ul,l

depending on whether the RB allocation

indicator variable x
(n)
ul is 0 or 1.

1The calculation of κul
is given in Appendix B.1.
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δ
Wul,l

(·)→x(n)
ul

(
x(n)
ul

)
−

N∑
j=1;
j 6=n

δ
x

(j)
ul
→Wul,l

(·) (0) = x(n)
ul
R(n)
ul

+ max

 N∑
j=1,
j 6=n

x(j)
ul
R(j)
ul

+ δ
x

(j)
ul
→Wul,l

(·)

(
x(j)
ul

)
− δ

x
(j)
ul
→Wul,l

(·) (0)


subject to

N∑
n=1

x(n)
ul
P

(n)
ul,l
≤ Pmax

ul
,

N∑
n=1

x(n)
ul
≥ κul . (3.17)

Given the above, the maximization is straightforward. For instance, consider the

vector

χul
=
[
R(1)
ul

+ ψ̃
(1)
ul,l
, . . . , R(j)

ul
+ ψ̃

(j)
ul,l
, . . . , R(N)

ul
+ ψ̃

(N)
ul,l

]T
and 〈υ(j)

ul 〉z\n be the z-th sorted element of χul
without considering the term R

(j)
ul +ψ̃

(j)
ul,l

so that

〈υ(j)
ul
〉(z−1)\n ≥ 〈υ(j)

ul
〉z\n ≥ 〈υ(j)

ul
〉(z+1)\n

for ∀j ∈ N , j 6= n. Hence, for x
(n)
ul = 1, the maximum rate will be achieved if [40]

δ
Wul,l

(·)→x(n)
ul

(1)−
N∑
j=1,
j 6=n

δ
x

(j)
ul
→Wul,l

(·) (0)

= R(n)
ul

+

κul−1∑
z=1

〈υ(j)
ul
〉z\n. (3.18)

Similarly, for x
(n)
ul = 0, the maximum is given by [40]

δ
Wul,l

(·)→x(n)
ul

(0)−
N∑
j=1;
j 6=n

δ
x

(j)
ul
→Wul,l

(·) (0) =

κul∑
z=1

〈υ(j)
ul
〉z\n. (3.19)
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Since by definition

ψ
(n)
ul,l

= δ
Wul,l

(·)→x(n)
ul

(1)− δ
Wul,l

(·)→x(n)
ul

(0) ,

from (3.18) and (3.19), the normalized messages can be derived as follows:

ψ
(n)
ul,l

= R(n)
ul
− 〈υ(j)

ul
〉κul\n

= R(n)
ul
− 〈R(j)

ul
+ ψ̃

(j)
ul,l
〉κul\n (3.20)

where j ∈ N and j 6= n. Note that the messages sent from UE ul to RB n in factor

graph is a scalar quantity. Similarly, the normalized messages from RB n to UE ul,

i.e., ψ̃
(n)
ul,l

= δ
Rn,l(·)→x

(n)
ul

(1)− δ
Rn,l(·)→x

(n)
ul

(0) becomes [40]

ψ̃
(n)
ul,l

= − max
i∈Ul,
i 6=ul

ψ
(n)
i,l . (3.21)

Note that, for any arbitrary graph, the allocation variables may keep oscillating

and might not converge to any fixed point. In the context of loopy graphical models,

by introducing a suitable weight, the messages in (3.20) and (3.21) perturb to a fixed

point. Accordingly, (3.20) and (3.21) can be rewritten as [41]

ψ
(n)
ul,l

= R(n)
ul
− ω

〈
R(j)
ul

+ ψ
(j)
ul,l

〉
κul\n

+ (1− ω)
(
R(n)
ul

+ ψ̃
(n)
ul,l

)
(3.22a)

ψ̃
(n)
ul,l

= −ω max
i∈Ul,
i 6=ul

ψ
(n)
i,l − (1− ω)ψ

(n)
ul,l
. (3.22b)

Note that, when ω = 1, (3.22a) and (3.22b) reduce to the original formulation, i.e.,

(3.20) and (3.21), respectively. Thus the solution x
(n)
ul

∗
can be easily obtained by

calculating the node marginals for each UE-RB pair, i.e., for all ul ∈ Ul, n ∈ N pair
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as follows:

τ
(n)
ul,l

= ψ
(n)
ul,l

+ ψ̃
(n)
ul,l
. (3.23)

Hence, from (3.15), the optimal RB allocation can be computed as

x(n)
ul

∗
=


0, if τ

(n)
ul,l

< 0

1, otherwise.

(3.24)

3.2 Distributed Solution for the Resource Allocation Prob-

lem

3.2.1 Algorithm Development

Once the optimal RB allocation is obtained, the transmission power of the UEs on

assigned RB(s) is obtained as follows. I couple the classical generalized distributed

constrained power control scheme (GDCPC) [42] with an autonomous power control

method [43] which considers the data rate requirements of UEs while protecting other

receiving nodes from interference. More specifically, at each iteration, the transmis-

sion power is updated using (3.26) where P
(n)
ul

max
=

Pmaxul

N∑
n=1

x(n)
ul

and P̂
(n)
ul,l

is obtained

as

P̂
(n)
ul,l

= min
(
P̃

(n)
ul,l
, min

(
P (n)
ul

max
, $

(n)
ul,l

))
. (3.25)
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P
(n)
ul,l

(t+ 1) =


2Qul−1

2Rul (t)−1
P

(n)
ul,l

(t), if 2Qul−1

2Rul (t)−1
P

(n)
ul,l

(t) ≤ P
(n)
ul

max

P̂
(n)
ul,l
, otherwise

(3.26)

In (3.25), P̃
(n)
ul,l

is chosen arbitrarily within the range of 0 ≤ P̃
(n)
ul,l
≤ P

(n)
ul

max
and

$
(n)
ul,l

is given by

$
(n)
ul,l

= min

(
I

(n)
th,1

g
(n)

u∗
l
,l,1

,
γ

(n)
l,ul,2

γ
(n)
ul,l,1

· I
(n)
th,2

g
(n)

l,u∗
l
,2

)
. (3.27)

Each relay independently performs the resource allocation and allocates resources

to the associated UEs. For completeness, the distributed joint RB and power alloca-

tion algorithm is summarized in Algorithm 2.

Algorithm 2 Allocation of RB and transmission power using message passing

1: Estimate channel quality indicator (CQI) matrices from previous time slot.

2: Initialize t := 0, P
(n)
ul,l

(0) :=
Pmaxul

N
, ψ

(n)
ul,l

(0) := 0, ψ̃
(n)
ul,l

(0) := 0 for ∀ul ∈ Ul, n ∈ N .
3: repeat

4: Each UE ul sends messages ψ
(n)
ul,l

(t+ 1) = R
(n)
ul (t)−ω

〈
R

(j)
ul (t) + ψ

(j)
ul,l

(t)
〉
κul\n

+

(1− ω)
(
R

(n)
ul (t) + ψ̃

(n)
ul,l

(t)
)

to the relay l ∈ L for each RB n ∈ N .

5: The relay l ∈ L sends messages ψ̃
(n)
ul,l

(t+ 1) = −ω max
i∈Ul,
i 6=ul

ψ
(n)
i,l (t)− (1− ω)ψ

(n)
ul,l

(t)

to each associated UE ul ∈ Ul for ∀n ∈ N .
6: Each UE ul computes the marginals as τ

(n)
ul,l

(t+1) = ψ
(n)
ul,l

(t)+ψ̃
(n)
ul,l

(t) for ∀n ∈ N
and reports to the corresponding relay.

7: Each relay l calculates the RB and power allocation vector for each UE accord-
ing to (3.24) and (3.26), respectively.

8: Calculate the aggregated achievable network rate as Rl(t+1) :=
∑
ul∈Ul

Rul(t+1).

9: Update t := t+ 1.
10: until t = Tmax or the convergence criterion met (i.e., abs{Rl(t+ 1)−Rl(t)} < ε,

where ε is the tolerance for convergence).
11: Allocate resources (i.e., RB and transmit power) to the associated UEs for each

relay.
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Remark 3.1. Since xl
∗ satisfies the binary constraints, and the optimal allocation

(xl
∗,Pl

∗) satisfies all the constraints in P2, for a sufficient number of available RBs,

the solution obtained by Algorithm 2 gives a lower bound on the solution of the

original RAP P2.1.

3.2.2 Complexity Analysis

If the algorithm requires T iterations to converge, it is easy to verify that the time

complexity at each relay l ∈ L is of O(T |Ul|N). Similarly, considering a standard

sorting algorithm (e.g., merge sort, heap sort) to generate the outputs 〈υ(j)
ul 〉z\n for

∀n with a worst-case complexity of O(N logN), the overall time complexity at each

UE is O (TN2 logN).

3.2.3 Convergence of the Algorithm and Optimality of the Solution

Proposition 3.1. If the algorithm converges to a fixed point message, this point

follows the slackness condition of P2.1, and hence it becomes the optimal solution for

the original RAP.

Proof. See Appendix B.2.

Proposition 3.2. The message passing algorithm converges to a solution with zero

duality gap as the number of resource blocks goes to infinity, i.e., dual problem of

P2.1 [e.g., Dl, given by (B.7)] has the same optimal objective function value [44].

Proof. See Appendix B.3.
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3.2.4 End-to-End Delay for the Proposed Solution

I measure the total end-to-end delay due to relaying for the proposed framework as

follows [45]:

D2hop = tschedule + t
[1]
delivery + tdecode + t

[2]
delivery (3.28)

where tschedule is the time required to schedule the UEs and perform resource allo-

cation, tdecode is the decoding time at relay nodes before data packets are forwarded

in second hop, and t
[j]
delivery = t

[j]
transmit + t

[j]
pd is the sum of packet transmission time

and propagation delay for hop j ∈ {1, 2}. While calculating delay using (3.28), I

assume that each scheduled UE is ready to transmit data and the waiting time before

transmission is zero (i.e., there is no queuing delay).

3.2.5 Implementation of Proposed Solution in a Practical LTE-A Sce-

nario

Let ψul
=
[
ψ

(1)
ul , ψ

(2)
ul , . . . , ψ

(N)
ul

]T
and ψ̃ul

=
[
ψ̃

(1)
ul , ψ̃

(2)
ul , . . . , ψ̃

(N)
ul

]T
denote the mes-

sage vectors for UE ul. These messages can be mapped into standard LTE-A schedul-

ing control messages as illustrated in Fig. 3.2. In an LTE-A system, UEs periodically

sense the physical uplink control channel (PUCCH) and transmit known sequences

using sounding reference signal (SRS). After reception of scheduling request (SR)

from UEs, an L3 relay performs scheduling and resource allocation. After scheduling,

the L3 relay allocates RB(s) and informs to the UEs by sending scheduling grant

(SG) through physical downlink control channel (PDCCH). Once the allocation of

RB(s) is received, the UEs periodically send the buffer status report (BSR) using

PUCCH to the relay in order to update the resource requirement, and in response,

the relay sends back an acknowledgment (ACK) in physical hybrid-ARQ indicator
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Figure 3.2: Possible implementation of the MP scheme in an LTE-A system.

channel (PHICH). Considering the above scenario, my proposed message passing ap-

proach can be implemented by incorporating ψul
messages in SR and BSR, and ψ̃ul

messages in SG and ACK control signals, respectively.

3.3 Results

3.3.1 Convergence

In Fig. 3.3, I depict the convergence behavior of the proposed algorithm. In partic-

ular, I show the average achievable data rate versus the number of iterations. The

average achievable rate Ravg for UEs is calculated as Ravg =

∑
u∈{C∪D}

Rach
u

C+D
where Rach

u

is the achievable data rate for UE u. Note that the higher the number of users, the

lower the average data rate.
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Figure 3.3: Convergence behavior of the proposed algorithm with different number
of UEs: Dr,d = 80 meter, Dd,d = 140 meter.

3.3.2 Performance of Relay-aided D2D Communication

Average achievable data rate vs. distance between D2D UEs:

The average achievable data rate of D2D UEs for both the proposed and reference

schemes is illustrated in Fig. 3.4. I find the similar trends in performance evalua-

tion results with those observed in Chapter 2. For example, although the reference

scheme outperforms when the distance between D2D UEs is small (i.e., d < 70 m), my

proposed approach using MP scheme, which uses relays for D2D traffic, can greatly

improve the data rate especially when the distance increases. This is due to the fact

that when the distance increases, the performance of direct communication deterio-

rates due to increased signal attenuation. Besides, when the D2D UEs share resources

with only one CUE, the spectrum may not be utilized efficiently, and therefore, the

achievable rate decreases. As a result, the gap between the achievable rate with

my proposed algorithm and that with the reference scheme becomes wider when the

distance increases.
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Figure 3.4: Average achievable data rate for both the proposed and reference schemes
with varying distance between D2D UEs: number of CUE, |C| = 15 and number of
D2D pairs, |D| = 9 (i.e., 5 CUE and 3 D2D-pairs are assisted by each relay, and hence
|Ul| = 8 for each relay). Dr,d is considered 80 meter.

Gain in aggregated achievable data vs. varying distance between D2D

UEs:

The gain in terms of aggregated achievable data rate is shown in Fig. 3.5(a). Similar

to previous chapter, I calculate the rate gain using (2.18). In Fig. 3.5(b), I compare

the rate gain with the asymptotic upper bound2. The figures show that, compared

to direct communication, with the increasing distance between D2D UEs, relaying

provides considerable gain in terms of achievable data rate and hence spectrum uti-

lization. In addition, my proposed distributed solution performs nearly close to the

upper bound.

2The asymptotic upper bound is obtained by solving the optimization problem P2.2, e.g., relaxing
the constraint that an RB is used by only one UE by using the time-sharing factor [32]. Thus

x
(n)
ul ∈ (0, 1] represents the sharing factor where each x

(n)
ul denotes the portion of time that RB n is

assigned to UE ul and satisfies the constraint
∑
ul∈Ul

x(n)ul
≤ 1, ∀n.
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Figure 3.5: (a) Gain in aggregated achievable data rate and (b) Comparing gain
with asymptotic upper bound using the similar setup of Fig. 3.4. There is a critical
distance, beyond which relaying of D2D traffic provides significant performance gain.
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Effect of relay-UE distance and distance between D2D UEs on rate

gain:

The performance gain in terms of the achievable aggregated data rate under different

relay-D2D UE distance is shown in Fig. 3.6. It is clear from the figure that, even

for relatively large relay-D2D UE distances, e.g., Dr,d ≥ 80 m, relaying D2D traffic

provides considerable rate gain for distant D2D UEs.
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Figure 3.6: Effect of relay distance on rate gain: |C| = 15, |D| = 9. For every Dr,d,
there is a distance threshold (i.e., upper side of the lightly shaded surface) beyond
which relaying provides significant gain in terms of aggregated achievable rate.

Effect of number of D2D UEs and distance between D2D UEs on rate

gain:

I vary the number of D2D UEs and plot the rate gain in Fig. 3.7 to observe the

performance of my proposed scheme in a dense network. The figure suggests that

even in a moderately dense situation (e.g., |C| + |D| = 15 + 12 = 27) my proposed

method provides a higher rate compared to direct communication between distant

D2D UEs.
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Figure 3.7: Effect of number of D2D UEs on rate gain: |C| = 15, Dr,d = 80 meter.
The upper position of lightly shaded surface illustrates the positive gain in terms of
aggregated achievable rate.

Impact of relaying on delay:

In Fig. 3.8, I show results on the delay performance of the proposed relay-aided

D2D communication approach. In particular, I observe the empirical complementary

cumulative distribution function (CCDF)3 for both the proposed scheme (which uses

relay for D2D communication) and reference scheme (where D2D UEs communicate

without relay). Note that in the reference scheme, the delay for one hop communi-

cation is given by D1hop = tschedule + tdelivery. The variation in end-to-end delay is

experienced due to variation in achievable data rate and propagation delay at differ-

ent values of Dr,d and Dd,d. From this figure it can be observed that the relay-aided

D2D communication increases the end-to-end delay. However, this increase (e.g.,

0.431−0.189 = 0.242 msec) of delay would be acceptable for many D2D applications.

3The empirical CCDF of delay is defined as D̂η(t) = 1
η

η∑
i=1

I[delayi>t] where η is the total number

of distance observations (e.g., UE-relay distance for the proposed scheme and the distance between
D2D UEs for the reference scheme, respectively) used in the simulation, delayi is the end-to-end
delay at i-th distance observation, and t represents the x-axis values in Fig. 3.8. The indicator
function I[·] outputs 1 if the condition [·] is satisfied and 0 otherwise.
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Figure 3.8: End-to-end delay for the proposed and reference scheme where |C| = 15,
|D| = 9. I vary the distances Dr,d and Dd,d from 60 to 140 meter with 5 meter
interval. The decoding delay at a relay node is assumed to be 0.173 millisecond
(obtained from [45]).

3.4 Summary and Discussions

This chapter presented a comprehensive resource allocation framework for relay-

assisted D2D communication. Due to the NP-hardness of original RAP, I have utilized

the max-sum message passing strategy and presented a low-complexity distributed

solution based on the message passing approach. The convergence and optimality of

the proposed scheme have been proved. The performance of the proposed method has

been evaluated through simulations and I have observed that after a distance margin,

relaying of D2D traffic improves system performance and provides a better data rate

to the D2D UEs at the cost of a small increase in end-to-end delay.

In the following chapters, I reformulate the RAP considering the uncertainties in

the channel gains. Due to random nature of wireless channels, resource allocation

schemes considering the link gain uncertainties in such relay-aided D2D communica-

tion is worth investigating for practical implementations.
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Chapter 4

Resource Allocation Under

Channel Uncertainties

In the previous two chapters, I have studied the performance of network-assisted D2D

communications assuming the availability of perfect CSI and showed that relay-aided

D2D communication provides significant performance gain for long distance D2D

links. However, the assumption of perfect information availability is unrealistic for a

practical wireless communication system. Considering the time-varying and random

nature of wireless channel, in this chapter I extend the previous work utilizing the

theory of worst-case robust optimization. To be specific, I formulate a robust RAP

with an objective to maximizing the end-to-end rate (i.e., minimum achievable rate

over two hops) for the UEs while maintaining the QoS (i.e., rate) requirements for

cellular and D2D UEs under total power constraint at the relay node. The link gains,

the interference among relay nodes, and interference at the receiving D2D UEs are

not exactly known (i.e., estimated with an additive error). The robust problem for-

mulation is observed to be convex, and therefore, I apply a gradient-based method

to solve the problem distributively at each relay node with polynomial complexity.
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I demonstrate that introducing robustness to deal with channel uncertainties affects

the achievable network sum-rate. To reduce the cost of robustness defined as the

corresponding reduction of achievable sum-rate, I utilize the chance constraint ap-

proach to achieve a trade-off between robustness and optimality by adjusting some

protection functions.

The main contributions of this chapter can be summarized as follows:

• I analyze the performance of relay-assisted D2D communication under uncertain

system parameters. The problem of RB and power allocation at the relay nodes

for the CUEs and D2D UEs is formulated and solved for the globally optimal

solution when perfect channel gain information for the different links is available.

• Assuming that the perfect channel information is unavailable, I formulate a

robust RAP for relay-assisted D2D communication under uncertain channel

information in both the hops and show that the convexity of the robust formu-

lation is maintained. I propose a distributed algorithm with a polynomial time

complexity.

• The cost of robust resource allocation is analyzed. In order to achieve a bal-

ance between the network performance and robustness, I provide a trade-off

mechanism.

The rest of this chapter is organized as follows. In Section 4.2, I formulate the

RB and power allocation problem for the nominal (i.e., non-robust) case. The robust

RAP is formulated in Section 4.3. In order to allocate resources efficiently, I propose

a robust distributed algorithm and discuss the robustness-optimality trade-off in Sec-

tion 4.4. The performance evaluation results are presented in Section 4.5 and finally

I conclude the chapter in Section 4.6.
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4.1 Modeling the Channel Uncertainties in Wireless Systems

Uncertainty in the CSI (in particular the channel quality indicator [CQI] in an LTE-A

system) can be modeled by sum of estimated CSI (i.e., the nominal value) and some

additive error (the uncertain element). Accordingly, by using robust optimization

theory, the nominal optimization problem (i.e., the optimization problem without

considering uncertainty) is mapped to another optimization problem (i.e., the ro-

bust problem). To tackle uncertainty, two approaches have commonly been used in

robust optimization theory. First, the Bayesian approach (Chapter 6.4 in [34]) con-

siders the statistical knowledge of errors and satisfies the optimization constraints in

a probabilistic manner. Second, the worst-case approach (Chapter 6.4 in [34], [46])

assumes that the error (i.e., uncertainty) is bounded in a closed set called the uncer-

tainty set and satisfies the constraints for all realizations of the uncertainty in that

set. Although the Bayesian approach has been widely used in the literature (e.g.,

in [47], [48]), the worst-case approach is more appropriate due to the fact that it

satisfies the constraints in all error instances. By applying the worst-case approach,

the size of the uncertainty set can be obtained from the statistics of error. As an

example, the uncertainty set can be defined by a probability distribution function

of uncertainty in such a way that all realizations of uncertainty remain within the

uncertainty set with a given probability.

Applying robustness brings in new variables in the optimization problem, which

may change the nominal formulation to a non-convex optimization problem and re-

quire excessive calculations to solve. To avoid this difficulty, the robust problem is

converted to a convex optimization problem and solved in a traditional way.
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4.2 Reformulation of the RAP : The Nominal Problem

In order to model the uncertainties in my model, I first modify some of the constraints

the optimization problem P2.2. The resource optimization problem (given in Page

55) is known as nominal problem since no uncertainties is considered. In Section 4.3.1

I will extend this formulation to introduce the channel uncertainties.

Let the variable I
(n)
ul,l,1

and I
(n)
l,ul,2

denote the interference received by ul over RB n

in the first and second hop, respectively, and are given as follows:

I
(n)
ul,l,1

=
∑

∀uj∈Uj ,j 6=l,j∈L

x(n)
uj
P

(n)
uj ,j

g
(n)
uj ,l,1

(4.1)

I
(n)
l,ul,2

=


∑

∀uj∈{D∩Uj},j 6=l,j∈L

x(n)
uj
P

(n)
j,uj
g

(n)
j,eNB,2, ul ∈ {C ∩ Ul}

∑
∀uj∈Uj ,j 6=l,j∈L

x(n)
uj
P

(n)
j,uj
g

(n)
j,ul,2

, ul ∈ {D ∩ Ul}.
(4.2)

Using (4.1) and (4.2) I can express the unit power SINR for the first hop,

γ
(n)
ul,l,1

=
h

(n)
ul,l,1

I
(n)
ul,l,1

+ σ2
(4.3)

and the unit power SINR for the second hop,

γ
(n)
l,ul,2

=


h

(n)
l,eNB,2

I
(n)
l,ul,2

+σ2
, ul ∈ {C ∩ Ul}

h
(n)
l,ul,2

I
(n)
l,ul,2

+σ2
, ul ∈ {D ∩ Ul}

(4.4)

Hence the data rate of ul over RB n is given by

R(n)
ul

=
1

2
min

{
BRB log2

(
1 + P

(n)
ul,l
γ

(n)
ul,l,1

)
, BRB log2

(
1 + P

(n)
l,ul
γ

(n)
l,ul,2

)}
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which can be equivalently expressed as expressed as

R(n)
ul

=
1

2
BRB log2

(
1 + P

(n)
ul,l
γ

(n)
ul,l,1

)
. (4.5)

4.2.1 Formulation of the Nominal RAP

Utilizing the time-sharing concept (e.g., x
(n)
ul ∈ (0, 1] denotes the portion of time that

RB n is assigned to UE ul and satisfies the constraint
∑
ul∈Ul

x(n)
ul
≤ 1, ∀n.) introduced

in Section 2.3.3, I can state the nominal problem as follows:

(P4.1)

max
x

(n)
ul
,S

(n)
ul,l

,ω
(n)
ul

∑
ul∈Ul

N∑
n=1

1

2
x(n)
ul
BRB log2

(
1 +

S
(n)
ul,l
h

(n)
ul,l,1

x
(n)
ul ω

(n)
ul

)
subject to

∑
ul∈Ul

x(n)
ul
≤ 1, ∀n (4.6a)

N∑
n=1

S
(n)
ul,l
≤ Pmax

ul
,∀ul (4.6b)

∑
ul∈Ul

N∑
n=1

h
(n)
ul,l,1

h
(n)
l,ul,2

S
(n)
ul,l
≤ Pmax

l (4.6c)∑
ul∈Ul

Snul,lg
(n)
u∗l ,l,1

≤ I
(n)
th,1, ∀n (4.6d)

∑
ul∈Ul

h
(n)
ul,l,1

h
(n)
l,ul,2

S
(n)
ul,l
g

(n)
l,u∗l ,2

≤ I
(n)
th,2, ∀n (4.6e)

N∑
n=1

1

2
x(n)
ul
BRB log2

(
1 +

S
(n)
ul,l
h

(n)
ul,l,1

x
(n)
ul ω

(n)
ul

)
≥ Qul , ∀ul (4.6f)

S
(n)
ul,l
≥ 0, ∀n, ul (4.6g)

I
(n)
ul,l

+ σ2 ≤ ω(n)
ul
, ∀n, ul (4.6h)

where ω
(n)
ul is an auxiliary variable for ul over RB n and let I

(n)
ul,l

= max
{
I

(n)
ul,l,1

, I
(n)
l,ul,2

}
.

Since the objective function is concave, the constraint in (4.6f) is convex, and all the
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remaining constraints are affine, the optimization problem P4.1 is convex. Due to

convexity of the optimization problem P4.1, there exists a unique optimal solution.

Statement 4.1. (a) The power allocation for UE ul over RB n is given by

P
(n)
ul,l

∗
=
S

(n)
ul,l

∗

x
(n)
ul

∗ =

[
δ

(n)
ul,l
− ω

(n)
ul

h
(n)
ul,l,1

]+

(4.7)

where δ
(n)
ul,l

=
1
2
BRB

(1+λul
)

ln 2

ρul+
h

(n)
ul,l,1

h
(n)
l,ul,2

νl+g
(n)

u∗
l
,l,1

ψn+
h

(n)
ul,l,1

h
(n)
l,ul,2

g
(n)

l,u∗
l
,2
ϕn

and [ε]+ = max {ε, 0}.

(b) The RB allocation is determined as follows:

x(n)
ul

∗
=


1, µn ≤ χ

(n)
ul,l

0, µn > χ
(n)
ul,l

(4.8)

and χ
(n)
ul,l

is defined as

χ
(n)
ul,l

= 1
2
(1 + λul)BRB

[
log2

(
1 +

S
(n)
ul,l

h
(n)
ul,l,1

x
(n)
ul
ω

(n)
ul

)
− θ(n)

ul,l

]
(4.9)

where θ
(n)
ul,l

=
S

(n)
ul,l

γ
(n)
ul,l,1(

x
(n)
ul
ω

(n)
ul

+S
(n)
ul,l

γ
(n)
ul,l,1

)
ln 2

.

Proof. See Appendix C.1.

In the above problem formulation it is assumed that each of the relays and D2D

UEs has the perfect information about the experienced interference. Also, the channel

gains between the relay and the other UEs (associated with neighbouring relays) are

known to the relay. However, estimating the exact values of link gains is not easy in

practice. To deal with the uncertainties in the estimated values, in the following I

apply the worst-case robust optimization method [49].
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4.3 Robust Resource Allocation

4.3.1 Formulation of Robust Problem

Let the vector of link gains between relay l and other transmitting UEs (associated

with other relays, i.e., for ∀j ∈ L, j 6= l) in the first hop over RB n be denoted by

g
(n)
l,1 =

[
g

(n)
1∗,l,1, g

(n)
2∗,l,1, · · · , g

(n)

|Ul|∗,l,1

]
, where |Ul| is the total number of UEs associated

with relay l. Similarly, the vector of link gains between relay l and receiving D2D

UEs (associated with other relays) in the second hop over RB n is given by g
(n)
l,2 =[

g
(n)
l,1∗,2, g

(n)
l,2∗,2, · · · , g

(n)

l,|Ul|∗,2

]
.

I assume that the link gains and the aggregated interference (i.e., I
(n)
ul,l

, ∀n, ul and

elements of g
(n)
l,1 ,g

(n)
l,2 , ∀n) are unknown but are bounded in a region (i.e., uncertainty

set) with a given probability. For example, the channel gain in the first hop is bounded

in <(n)
gl,1 , with estimated value ḡ

(n)
l,1 and the bounded error ĝ

(n)
l,1 , i.e., g

(n)
l,1 = ḡ

(n)
l,1 + ĝ

(n)
l,1 ,

and g
(n)
l,1 ∈ <

(n)
gl,1 , ∀n ∈ N , where <(n)

gl,1 is the uncertainty set for g
(n)
l,1 . Similarly, let

<(n)
gl,2 , ∀n be the uncertainty set for the link gains in the second hop and <(n)

Iul,l
, ∀n, ul

be the uncertainty set for interference level.

In the formulation of robust problem, I utilize a similar rate expression [i.e., equa-

tion (4.5)] as the one used in the nominal problem formulation. Although dealing

with similar utility function (i.e., rate equation) for both nominal and robust prob-

lems is quite common in literature (e.g., in [50–52]), when perfect channel information

is not available to receiver nodes, the rate obtained by (4.5) actually approximates

the achievable rate1. The solution to P4.12 is robust against uncertainties if and

only if for any realization of g
(n)
l,1 ∈ <

(n)
gl,1 ,g

(n)
l,2 ∈ <

(n)
gl,2 , and I

(n)
ul,l
∈ <(n)

Iul,l
, the optimal

1According to information-theoretic capacity analysis, in presence of channel uncertainties at
the receiver, the lower and upper bounds of the rate are given by equations (46) and (49) in [53],
respectively. However, for mathematical tractability, I resort to (4.5) to calculate the achievable
data rate in both the nominal and robust problem formulations.
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solution satisfies the constraints in (4.6d), (4.6e), and (4.6h). Therefore, the robust

counterpart of P4.1 is represented as

(P4.2)

max
x

(n)
ul
,S

(n)
ul,l

,ω
(n)
ul

∑
ul∈Ul

N∑
n=1

1

2
x(n)
ul
BRB log2

(
1 +

S
(n)
ul,l
h

(n)
ul,l,1

x
(n)
ul ω

(n)
ul

)
subject to (4.6a), (4.6b), (4.6c), (4.6d),

(4.6e), (4.6f), (4.6g), (4.6h)

and g
(n)
l,1 ∈ <

(n)
gl,1
, g

(n)
l,2 ∈ <

(n)
gl,2
, ∀n (4.10a)

I
(n)
ul,l
∈ <(n)

Iul,l
, ∀n,∀ul (4.10b)

where the constraints in (4.10a) and (4.10b) represent the requirements for the

robustness of the solution.

Proposition 4.1. When <(n)
gl,1 ,<

(n)
gl,2, and <Iul,l are compact and convex sets, P4.2 is

a convex optimization problem.

Proof. See Appendix C.2.

The problem P4.1 is the nominal problem of P4.2 where it is assumed that the

perfect channel state information is available, i.e., the estimated values are considered

as exact values. With the inclusion of uncertainty in (4.6d), (4.6e), and (4.6h), the

constraints in the optimization problem P4.2 are still affine. In order to express the

constraints in closed-form (i.e., to avoid using the uncertainty set), in the following,

I utilize the notion of protection function [49,54] instead of uncertainty set.

4.3.2 Uncertainty Set and Protection Function

From P4.2, the optimization problem is impacted by the uncertainty sets <(n)
gl,1 ,<

(n)
gl,2 ,

and <(n)
Iul,l

. To obtain the robust formulation, I consider that the uncertainty sets
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for the uncertain parameters are based on the differences between the actual (i.e.,

uncertain) and nominal (i.e., without considering uncertainty) values. These differ-

ences can be mathematically represented by general norms [54]. For example, the

uncertainty sets for channel gain in the first and second hops for ∀n ∈ N are given

by

<(n)
gl,1

=

{
g

(n)
l,1 | ‖M(n)

gl,1
·
(
g

(n)
l,1 − ḡ

(n)
l,1

)T
‖ ≤ Ψ

(n)
l,1

}
(4.11a)

<(n)
gl,2

=

{
g

(n)
l,2 | ‖M(n)

gl,2
·
(
g

(n)
l,2 − ḡ

(n)
l,2

)T
‖ ≤ Ψ

(n)
l,2

}
(4.11b)

where ‖ · ‖ denotes the general norm, Ψ
(n)
l,1 and Ψ

(n)
l,2 represent the bound on the un-

certainty set; g
(n)
l,1 , g

(n)
l,2 are the actual and ḡ

(n)
l,1 , ḡ

(n)
l,2 are the estimated (i.e., nominal)

channel gain vectors; M
(n)
gl,1 and M

(n)
gl,2 are the invertible R|Ul|×|Ul| weight matrices for

the first and second hop, respectively. Likewise, the uncertainty set for the experi-

enced interference is expressed as

<(n)
Iul,l

=
{
I

(n)
ul,l
| ‖M (n)

Iul,l
·
(
I

(n)
ul,l
− Ī(n)

ul,l

)
‖ ≤ Υ(n)

ul

}
(4.12)

where I
(n)
ul,l

and Ī
(n)
ul,l

are the actual and estimated interference levels, respectively; the

variable M
(n)
Iul,l

denotes weight and Υ
(n)
ul is the upper bound on the uncertainty set.

In the proof of Proposition 4.1 (refer to Page 125), the terms

∆(n)
gl,1

= max
g

(n)
l,1 ∈<

(n)
gl,1

∑
ul∈Ul

S
(n)
ul,l

(
g

(n)
u∗l ,l,1

− ḡ(n)
u∗l ,l,1

)
(4.13a)

∆(n)
gl,2

= max
g

(n)
l,2 ∈<

(n)
gl,2

∑
ul∈Ul

h
(n)
ul,l,1

h
(n)
l,ul,2

S
(n)
ul,l

(
g

(n)
l,u∗l ,2

− ḡ(n)
l,u∗l ,2

)
(4.13b)

∆
(n)
Iul,l

= max
I

(n)
ul,l
∈<(n)

Iul,l

(
I

(n)
ul,l
− Ī(n)

ul,l

)
(4.13c)
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are called protection functions for constraint (4.6d), (4.6e), and (4.6h), respectively,

whose value (i.e., protection value) depends on the uncertain parameters. Using the

protection function, the optimization problem can be rewritten as (P4.3)

max
x

(n)
ul
,S

(n)
ul,l

,ω
(n)
ul

∑
ul∈Ul

N∑
n=1

1

2
x(n)
ul
BRB log2

(
1 +

S
(n)
ul,l
h

(n)
ul,l,1

x
(n)
ul ω

(n)
ul

)
subject to (4.6a), (4.6b), (4.6c), (4.6f), (4.6g) and∑

ul∈Ul

S
(n)
ul,l
ḡ

(n)
u∗l ,l,1

+ ∆(n)
gl,1
≤ I

(n)
th,1, ∀n (4.14a)

∑
ul∈Ul

h
(n)
ul,l,1

h
(n)
l,ul,2

S
(n)
ul,l
ḡ

(n)
l,u∗l ,2

+ ∆(n)
gl,2
≤ I

(n)
th,2, ∀n (4.14b)

Ī
(n)
ul,l

+ ∆
(n)
Iul,l

+ σ2 ≤ ω(n)
ul
,∀n, ul (4.14c)

where ∆
(n)
gl,1 ,∆

(n)
gl,2 , and ∆

(n)
Iul,l

are defined by (4.13a), (4.13b), and (4.13c), respectively.

Proposition 4.2. The protection functions for the uncertainty sets represented by

general norms [i.e., by (4.11a), (4.11b), and (4.12)] are

∆(n)
gl,1

= Ψ
(n)
l,1 ‖M(n)

gl,1

−1 ·
(
S

(n)
l,1

)T
‖∗ (4.15a)

∆(n)
gl,2

= Ψ
(n)
l,2 ‖M(n)

gl,2

−1 ·
(
H

(n)
l · S

(n)
l,1

)T
‖∗ (4.15b)

∆
(n)
Iul,l

= Υ(n)
ul
‖M (n)

Iul,l

−1
· I(n)

ul,l
‖∗ (4.15c)

where S
(n)
l,1 =

[
S

(n)
1,l , S

(n)
2,l , · · · , S

(n)
|Ul|,l

]
, H

(n)
l =

[
h

(n)
1,l,1

h
(n)
l,1,2

,
h

(n)
2,l,1

h
(n)
l,2,2

, · · · ,
h

(n)
|Ul|,l,1

h
(n)
l,|Ul|,2

]
and ‖ · ‖∗ is

the dual norm of ‖ · ‖.

Proof. See Appendix C.3.

Since the dual norm is a convex function, the convexity of P4.3 is preserved.

In addition, when the uncertainty set for any vector y is a linear norm defined by

‖ y ‖α = (
∑

abs{y}α)
1
α with order α ≥ 2, where abs{y} is the absolute value of y and
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the dual norm is a linear norm with order β = 1 + 1
α−1

. In such cases, the protection

function can be defined as a linear norm of order β. Therefore, the protection function

becomes a deterministic function of the optimization variables (i.e., x
(n)
ul , S

(n)
ul,l

, and

ω
(n)
ul ), and the non-linear max function is eliminated from the protection functions

[i.e., from constraint (4.14a), (4.14b), and (4.14c)]. Consequently, the RAP turns out

to be a standard form of convex optimization problem as presented below

(P4.4)

max
x

(n)
ul
,S

(n)
ul,l

,ω
(n)
ul

∑
ul∈Ul

N∑
n=1

1

2
x(n)
ul
BRBlog2

1 +
S

(n)
ul,l
h

(n)
ul,l,1

x
(n)
ul ω

(n)
ul


subject to

∑
ul∈Ul

x(n)
ul
≤ 1, ∀n (4.16a)

N∑
n=1

S
(n)
ul,l
≤ Pmaxul

, ∀ul (4.16b)

∑
ul∈Ul

N∑
n=1

h
(n)
ul,l,1

h
(n)
l,ul,2

S
(n)
ul,l
≤ Pmaxl (4.16c)

∑
ul∈Ul

S
(n)
ul,l
ḡ

(n)
u∗l ,l,1

+ Ψ
(n)
l,1

 |Ul|∑
k=1

(
M(n)

gl,1

−1
(k, :) · S(n)

l,1

)β 1
β

≤ I
(n)
th,1, ∀n (4.16d)

∑
ul∈Ul

h
(n)
ul,l,1

h
(n)
l,ul,2

S
(n)
ul,l
ḡ

(n)
l,u∗l ,2

+ Ψ
(n)
l,2

 |Ul|∑
k=1

(
M(n)

gl,2

−1
(k, :) ·

(
H

(n)
l · S

(n)
l,1

))β 1
β

≤ I
(n)
th,2, ∀n (4.16e)

N∑
n=1

1

2
x(n)
ul
BRB log2

1 +
S

(n)
ul,l
h

(n)
ul,l,1

x
(n)
ul ω

(n)
ul

 ≥ Qul , ∀ul (4.16f)

S
(n)
ul,l
≥ 0, ∀n, ul (4.16g)

Ī
(n)
ul,l

+ ∆
(n)
Iul,l

+ σ2 ≤ ω(n)
ul
, ∀n, ul (4.16h)

where ∆
(n)
Iul,l

= Υ
(n)
ul ‖M

(n)
Iul,l

−1
· I(n)

ul,l
‖
β

and A(j, :) denotes the j-th row of matrix A.

In the LTE-A system, which exploits orthogonal frequency-division multiplexing

(OFDM) for radio access, fading can be considered uncorrelated across RBs [55,

Chapter 1]; hence, it can be assumed that uncertainty and channel gain in each
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element of g
(n)
l,1 and g

(n)
l,2 are i.i.d. random variables [56]. Therefore, M

(n)
gl,1 and M

(n)
gl,2

become a diagonal matrix. Note that for any diagonal matrix A with j-th diagonal

element ajj, the vector A−1(j, :) contains only non-zero elements 1
ajj

. In addition,

since the channel uncertainties are random, a commonly used approach is to represent

the uncertainty set by an ellipsoid, i.e., the linear norm with α = 2 so that the dual

norm is a linear norm with β = 2 [57, 58]. Hence, problem P4.4 turns to a conic

quadratic programming problem [59]. In order to solve P4.4 efficiently, a distributed

gradient-aided algorithm is developed in the following section.

4.4 Robust Distributed Algorithm

4.4.1 Algorithm Development

Statement 4.2. (a) The optimal power allocation for ul over RB n is given by the

following water-filling equation:

P
(n)
ul,l

∗
=
S

(n)
ul,l

∗

x
(n)
ul

∗ =

[
δ

(n)
ul,l
− ω

(n)
ul

h
(n)
ul,l,1

]+

(4.17)

where δ
(n)
ul,l

is given by

δ
(n)
ul,l

=
1
2
BRB

(1+λul )

ln 2

ρul + νl
h

(n)
ul,l,1

h
(n)
l,ul,2

+ ψn

(
ḡ

(n)
u∗l ,l,1

+ Ψ
(n)
l,1 m

(n)
ululgl,1

)
+ ϕn

h
(n)
ul,l,1

h
(n)
l,ul,2

(
ḡ

(n)
l,u∗l ,2

+ Ψ
(n)
l,2 m

(n)
ululgl,2

) .
(4.18)

(b) The RB allocation for ul over RB n is obtained by (4.8).

Proof. See Appendix C.4.

Based on Statement 4.2, I utilize a gradient-based method (given in Appendix
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C.5) to update the variables. Each relay independently performs the resource alloca-

tion and allocates resources to the associated UEs. For completeness, the distributed

joint RB and power allocation algorithm is summarized in Algorithm 3.

Algorithm 3 Joint RB and power allocation algorithm

1: Each relay l ∈ L estimates the reference gain ḡ
(n)
u∗l ,l,1

and ḡ
(n)
u∗l ,l,2

from previous time

slot ∀ul ∈ Ul and n ∈ N .

2: Initialize Lagrange multipliers to some positive value and set t := 0, S
(n)
ul,l

:=
Pmaxul

N

∀ul, n.
3: repeat
4: Set t := t+ 1.
5: Calculate x

(n)
ul and S

(n)
ul,l

for ∀ul, n using (4.8) and (4.17).
6: Update the Lagrange multipliers by (C.7a)–(C.7h) (see Page 128) and calculate

the aggregated achievable network rate as Rl(t) :=
∑
ul∈Ul

Rul(t).

7: until t = Tmax or the convergence criterion met (i.e., abs{Rl(t)−Rl(t− 1)} < ε,
where ε is the tolerance for convergence).

8: Allocate resources (i.e., RB and transmit power) to associated UEs for each relay
and calculate the average achievable data rate.

As I have mentioned in Chapter 2, the L3 relays are able to perform their own

scheduling (unlike L1 and L2 relays in [15]) as an eNB. These relays can obtain

information such as the transmission power allocation at the other relays, channel

gain information, etc. by using the X2 interface [30, Section 7] defined in the 3GPP

specifications. In particular, a separate load indication procedure is used over the X2

interface for interface management (for details refer to [30] and references therein).

As a result, the relays can obtain the channel state information without increasing

signaling overhead at the eNB.

4.4.2 Complexity Analysis

Proposition 4.3. Using a small step size in gradient-based updating, the proposed

algorithm achieves a sum-rate such that the difference in the sum rate in successive
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iterations is less than an arbitrary ε > 0 with a polynomial computation complexity

in |Ul| and N .

Proof. See Appendix C.6.

4.4.3 Cost of Robust Resource Allocation

An important issue in robust resource allocation is the substantial reduction in the

achievable network sum-rate. Reduction of achievable sum-rate due to introducing

robustness is measured by R∆ = ‖ R∗ −R∗∆ ‖2, where R∗ and R∗∆ are the optimal

achievable sum-rates obtained by solving the nominal and the robust problem, re-

spectively.

Proposition 4.4. Let ψ∗, ϕ∗, %∗ be the optimal values of Lagrange multipliers

for constraint (4.6d), (4.6e), and (4.6h) in P4.1, respectively. For all values of

∆
(n)
gl,1 ,∆

(n)
gl,2, and ∆

(n)
Iul,l

the reduction of achievable sum rate can be approximated as

R∆ ≈
N∑
n=1

ψ∗n∆(n)
gl,1

+
N∑
n=1

ϕ∗n∆(n)
gl,2

+
∑
ul∈Ul

N∑
n=1

%n∗ul ∆
(n)
Iul,l

. (4.19)

Proof. See Appendix C.7.

From Proposition 4.4, the value of R∆ depends on the uncertainty set and by

adjusting the size of ∆
(n)
gl,1 and ∆

(n)
gl,2 , R∆ can be controlled.

4.4.4 Trade-off Between Robustness and Achievable Sum-rate

The robust worst-case resource allocation dealing with channel uncertainties is very

conservative and often leads to inefficient utilization of resources. In practice, uncer-

tainty does not always correspond to its worst-case and in many instances the robust
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worst-case resource allocation may not be necessary. In such cases, it is desirable to

achieve a trade-off between robustness and network sum-rate. This can be achieved

through modifying the worst-case approach, where the uncertainty set is chosen in

such a way that the probability of violating the interference threshold in both the

hops is kept below a predefined level, and the network sum-rate is kept close to op-

timal value of nominal case. Therefore, I modify the constraints (4.6d) and (4.6e) in

P4.1 as

P

(∑
ul∈Ul

S
(n)
ul,l
g

(n)
u∗l ,l,1

≥ I
(n)
th,1

)
≤ Θ

(n)
l,1 , ∀n (4.20a)

P

(∑
ul∈Ul

h
(n)
ul,l,1

h
(n)
l,ul,2

S
(n)
ul,l
g

(n)
l,u∗l ,2

≥ I
(n)
th,2

)
≤ Θ

(n)
l,2 , ∀n (4.20b)

where Θ
(n)
l,1 and Θ

(n)
l,2 are given probabilities of violation of constraints (4.6d) and (4.6e)

for any n in the first hop and second hop, respectively. By changing Θ
(n)
l,1 and Θ

(n)
l,2 ,

the trade-off between robustness and optimality will be achieved. By reducing Θ
(n)
l,1

and Θ
(n)
l,2 , the network becomes more robust against uncertainty, while by increasing

Θ
(n)
l,1 and Θ

(n)
l,2 , the network sum-rate is increased.

To deal with this trade-off I use the chance constrained approach. When the

constraints are affine functions, for i.i.d. values of uncertain parameters, (4.6d) and

(4.6e) can be replaced by convex functions as their safe approximations [49]. Applying

this approach I obtain

∑
ul∈Ul

S
(n)
ul,l
g

(n)
u∗l ,l,1

=
∑
ul∈Ul

S
(n)
ul,l
ḡ

(n)
u∗l ,l,1

+
∑
ul∈Ul

ξ
(n)
ul,l,1

S
(n)
ul,l
ĝ

(n)
u∗l ,l,1∑

ul∈Ul

h
(n)
ul,l,1

h
(n)
l,ul,2

S
(n)
ul,l
g

(n)
l,u∗l ,2

=
∑
ul∈Ul

h
(n)
ul,l,1

h
(n)
l,ul,2

S
(n)
ul,l
ḡ

(n)
l,u∗l ,2

+
∑
ul∈Ul

ξ
(n)
l,ul,2

h
(n)
ul,l,1

h
(n)
l,ul,2

S
(n)
ul,l
ĝ

(n)
l,u∗l ,2
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∆̃(n)
gl,1

=
∑
ul∈Ul

η+

P(n)
ul,l,1

S
(n)
ul,l
ĝ

(n)
u∗l ,l,1

+
√

2 ln 1

Θ
(n)
l,1

(∑
ul∈Ul

τ 2

P(n)
ul,l,1

(
S

(n)
ul,l
ĝ

(n)
u∗l ,l,1

)2
)1

2

,∀n (4.23a)

∆̃(n)
gl,2

=
∑
ul∈Ul

η+

P(n)
l,ul,2

S
(n)
ul,l
ĝ

(n)
l,u∗l ,2

+
√

2 ln 1

Θ
(n)
l,2

(∑
ul∈Ul

τ 2

P(n)
l,ul,2

(
h

(n)
ul,l,1

h
(n)
l,ul,2

S
(n)
ul,l
ĝ

(n)
l,u∗l ,2

)2
)1

2

,∀n (4.23b)

where ξ
(n)
j =

g
(n)
j −ḡ

(n)
j

ĝ
(n)
j

,∀n is varied within the range [−1,+1]. Under the assumption

of uncorrelated fading channels, all values of ξ
(n)
ul,l,1

and ξ
(n)
l,ul,2

are independent of each

other and belong to a specific class of probability distribution P(n)
ul,l,1

and P(n)
l,ul,2

, re-

spectively. Now the constraints in (4.6d) and (4.6e) can be replaced by Bernstein

approximations of chance constraints [49] as follows:

∑
ul∈Ul

S
(n)
ul,l
ḡ

(n)
u∗l ,l,1

+ ∆̃(n)
gl,1
≤ I

(n)
th,1, ∀n (4.22a)

∑
ul∈Ul

h
(n)
ul,l,1

h
(n)
l,ul,2

S
(n)
ul,l
ḡ

(n)
l,u∗l ,2

+ ∆̃(n)
gl,2
≤ I

(n)
th,2, ∀n (4.22b)

where the protection functions ∆̃
(n)
gl,1 and ∆̃

(n)
gl,2 are given by (4.23a) and (4.23a), re-

spectively. The variables −1 ≤ η+
Pj ≤ +1 and τPj ≥ 0 are used for safe approximation

of chance constraints and depend on the probability distribution Pj. For a fixed value

of Pj the values of these parameters are listed in Table C.1 (see Appendix C.8). The

constraints in (4.22a) and (4.22b) turn the RAP into a conic quadratic programming

problem [59] and using the inequality ‖ y ‖2 ≤ ‖ y ‖1, the optimal RB and power

allocation can be obtained in a distributed manner similar to that in Algorithm 3.

Note that in (4.23a) and (4.23b), the protection functions depend on Θ
(n)
l,1 and Θ

(n)
l,2 .

By adjusting Θ
(n)
l,1 and Θ

(n)
l,2 , a trade-off between rate and robustness can be achieved.
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4.4.5 Sensitivity Analysis

In the previous section I have showed that the protection functions depend on Θ
(n)
l,1

and Θ
(n)
l,2 . In the following, I analyze the sensitivity of R∆ to the values of the trade-off

parameters. Using the protections functions (4.23a) and (4.23b), R∆ is given by

R∆ ≈
N∑
n=1

ψ∗n∆̃(n)
gl,1

+
N∑
n=1

ϕ∗n∆̃(n)
gl,2

+
∑
ul∈Ul

N∑
n=1

%n∗ul ∆
(n)
Iul,l

. (4.24)

Differentiating (4.24) with respect the to trade-off parameters Θ
(n)
l,1 and Θ

(n)
l,2 , the

sensitivity of R∆, i.e., S
Θ

(n)
l,i

(R∆) = ∂R∆

∂Θ
(n)
l,i

is obtained as follows:

S
Θ

(n)
l,1

(R∆)=−

ψ∗n

∑
ul∈Ul

τ 2

P(n)
ul,l,1

(
S

(n)
ul,l
ĝ

(n)
u∗l ,l,1

)2


1
2

Θ
(n)
l,1

√√√√2 ln

(
1

Θ
(n)
l,1

) (4.25a)

S
Θ

(n)
l,2

(R∆)=−

ϕ∗n

∑
ul∈Ul

τ 2

P(n)
l,ul,2

(
h

(n)
ul,l,1

h
(n)
l,ul,2

S
(n)
ul,l
ĝ

(n)
l,u∗l ,2

)2


1
2

Θ
(n)
l,2

√√√√2 ln

(
1

Θ
(n)
l,2

) .

(4.25b)

4.5 Performance Evaluation

In my simulations, I express the uncertainty bounds Ψ
(n)
l,1 ,Ψ

(n)
l,2 , and Υ

(n)
ul in percentage

as Ψ
(n)
l,1 =

‖g(n)
l,1 −ḡ

(n)
l,1 ‖2

‖ḡ(n)
l,1 ‖2

, Ψ
(n)
l,2 =

‖g(n)
l,2 −ḡ

(n)
l,2 ‖2

‖ḡ(n)
l,2 ‖2

, and Υ
(n)
ul =

‖I(n)
ul,l
−Ī(n)

ul,l
‖

2

‖Ī(n)
ul,l
‖

2

. As an example, for

any relay node l, if Ψ
(n)
l,1 = 0.5, the error in the channel gain over RB n for the first hop

is not more than 50% of its nominal value. I assume that the estimated interference

experienced at relay node and receiving D2D UEs is Ī
(n)
ul,l

= 2σ2 for all the RBs. The
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Figure 4.1: Convergence behavior of the proposed algorithm: number of CUE, |C| =
15 (i.e., 5 CUEs assisted by each relay), number of D2D pairs, |D| = 9 (i.e., 3 D2D
pairs are assisted by each relay), and hence |Ul| = 8 for each relay. The average
end-to-end-rate is calculated by Rl

|Ul|
, the maximum distance between relay-D2D UE,

Dr,d = 60 meter, and the interference threshold for both hops is −70 dBm. The errors
(in link gain and experienced interference) are considered to be not more than 50%
in each RB.

matrices M
(n)
gl,1 and M

(n)
gl,2 are considered to be identity matrices and M

(n)
Iul,l

is set to

1 for all the RBs. The results are obtained by averaging over 250 realizations of the

simulation scenarios (i.e., UE locations and link gains).

4.5.1 Results

Convergence of the proposed algorithm

I consider the same step size for all the Lagrange multipliers, i.e., for any Lagrange

multiplier κ, step size at iteration t is calculated as Λ
(t)
κ = a√

t
, where a is a small

constant. Fig. 4.1 shows the convergence behavior of the proposed algorithm when

a = 0.001 and a = 0.01. For convergence, the step size should be selected carefully.

It is clear from this figure that when a is sufficiently small, the algorithm converges

very quickly (i.e., in less than 20 iterations) to the optimal solution.
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Figure 4.2: Sensitivity of R∆ vs. trade-off parameter using a setup similar to that of
Fig. 4.1. I consider ĝ

(n)
l,1 = 0.5 × ḡ(n)

l,1 , ĝ
(n)
l,2 = 0.5 × ḡ(n)

l,2 and Θ
(n)
l,1 = Θ

(n)
l,2 = Θl for all

the RBs.

Sensitivity of R∆ to the trade-off parameter

The absolute sensitivity of R∆ considering Θl = Θ
(n)
l,1 = Θ

(n)
l,2 for ∀n is shown in

Fig. 4.2. For all the RBs, I assume that the probability density function of ĝ
(n)
l,1 and

ĝ
(n)
l,2 is Gaussian; hence, P(n)

ul,l,1
and P(n)

l,ul,2
correspond to the last row of Table C.1.

For a given uncertainty set and interference threshold, when Θl < 0.2, the value of

SΘl (R∆) is very sensitive to Θl. However, for higher values of Θl, the sensitivity of R∆

is relatively independent of Θl. From (4.24), increasing Θl proportionally decreases

R∆ which increases network sum-rate. Small values of Θl make the system more

robust against uncertainty, while higher values of Θl increase the network sum-rate.

Therefore, by adjusting Θl within the range of 0.2 a trade-off between optimality and

robustness can be attained.

Effect of relaying

In Fig. 4.3, I compare the performance of Algorithm 3 with asymptotic upper

bound. In order to obtain the upper bound, I solve P4.1 using interior point method
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Figure 4.3: Average achievable data rates for D2D UEs in both the proposed and
reference schemes compared to the asymptotic upper bound (for |C| = 15, |D| = 9,
Dr,d = 80 meter and interference threshold = −70 dBm).

(Chapter 11 in [34]). Note that solving P4.1 by using the interior point method

incurs a complexity of O
(
(|xl|+ |Sl|+ |ωl|)3) [34, Chapter 11], [36] where xl =[

x
(1)
1 , · · · , x(N)

1 , · · · , x(1)
|Ul|, · · · , x

(N)
|Ul|

]T
, Sl =

[
S

(1)
1,l , · · · , S

(N)
1,l , · · · , S

(1)
|Ul|,l, · · · , S

(N)
|Ul|,l

]T
and ωl =

[
ω

(1)
1 , · · · , ω(N)

1 , · · · , ω(1)
|Ul|, · · · , ω

(N)
|Ul|

]T
. From Fig. 4.3 it can be observed

that my proposed approach, which uses relays for D2D traffic, can greatly improve

the data rate in particular when the distance increases. In addition, proposed algo-

rithm performs close to upper bound with significantly less complexity.

The rate gains for both perfect CSI and under uncertainties are depicted in Fig.

4.4. As expected, under uncertainties, the gain is reduced compared to the case when

perfect channel information is available. Although the reference scheme outperforms

when the distance between D2D-link is closer, my proposed approach of relay-aided

D2D communication can greatly increase the data rate especially when the distance

increases. When the distance between D2D becomes higher, the performance of direct

communication deteriorates.

The performance gain in terms of the achievable aggregated data rate under dif-
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Figure 4.4: Gain in average achievable data rate for D2D UEs (for |C| = 15, |D| = 9,
Dr,d = 80 meter and interference threshold = −70 dBm). For uncertain CSI, the

bound on the uncertainty set for channel gain and interference (i.e., Ψ
(n)
l,1 ,Ψ

(n)
l,2 , and

Υ
(n)
ul ) is considered 20% for all the RBs.
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Figure 4.5: Gain in aggregated data rate with different distance between relay and
D2D UEs, Dr,d where |C| = 15, |D| = 9, interference threshold = −70 dBm, Ψ

(n)
l,1 ,Ψ

(n)
l,2 ,

and Υ
(n)
ul are considered 20% for all the RBs. For different values of Dr,d, there is

a distance margin beyond which relaying D2D traffic improves network performance
(i.e., the upper portion the of shaded surface where rate gain is positive).

ferent relay-D2D UE distance is shown in Fig. 4.5. It can be observed that, even

for relatively large relay-D2D UE distances, e.g., Dr,d ≥ 80 m, relaying D2D traffic

provides considerable rate gain for distant D2D UEs. To observe the performance of
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Figure 4.6: Gain in aggregated data rate with varying number of D2D UEs (for

|C| = 15, Dr,d = 80 meter, interference threshold = −70 dBm, Ψ
(n)
l,1 ,Ψ

(n)
l,2 , and Υ

(n)
ul is

considered 20% for all the RBs).

my proposed scheme in a dense network, I vary the number of D2D UEs and plot the

rate gain in Fig. 4.6. As can be seen from this figure, even in a moderately dense

situation (e.g., |C|+ |D| = 15 + 12 = 27) my proposed method provides a higher rate

compared to that for direct communication between distant D2D UEs.

4.6 Chapter Summary

I have investigated the radio resource management problem in a relay-aided D2D

network considering uncertainties in wireless channels. Considering two major sources

of uncertainty, namely, the link gain between neighboring relay nodes in both hops

and the experienced interference at each receiving network node, the uncertainty

has been modeled as a bounded difference between actual and nominal values. By

modifying the protection functions in the robust problem, I have shown that the

convexity of the problem is maintained. In order to allocate radio resources efficiently,

I have proposed a polynomial time distributed algorithm and to balance the cost of
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robustness defined as the reduction of achievable network sum-rate, I have provided

a trade-off mechanism.

It is worth noting that the formulation of this chapter only considers the un-

certainties in interference links (e.g., the experienced interference at each receiving

network node in both hops) and assumes the direct link gains (e.g., between UE

and relay in first hop and relay-eNB/receiving D2D UE in second hop) is perfectly

known. However, in practical systems, both the direct and interfering links could be

time-varying and random, and hence may not be perfectly estimated. Considering

this fact, in the following chapter I reformulate the RAP to capture the uncertainties

in both the direct and interference channel gains.
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Distributed Resource Allocation

Under Channel Uncertainties: A

Stable Matching Approach

The RAP formation given by P4.2-P4.4 do not consider the uncertainties in the di-

rect channel gains (e.g., the link gain between the UEs-relay and relay-eNB/receiving

D2D UEs for the first and second hop, respectively). To be specific, the previous

formulation assumes that the perfect information about the direct link gains (e.g.,

h
(n)
ul,l,1

and h
(n)
l,ul,2

for ∀l, ul, n) is available to the network nodes. In this chapter I

extend the previous model to consider the uncertainties in both the direct and inter-

ference link gains. I utilize time-sharing strategy and the reformulate the problem

using worst-case robust optimization theory. The uncertainties in channel gains (e.g.,

both the direct and interference links) are modeled using ellipsoidal uncertainty sets.

Each relay node can centrally solve the RAP taking channel uncertainty into consid-

eration. However, considering the high (e.g., cubic to the number of UEs and RBs)

computational overhead at the relay nodes, I provide a distributed solution based on
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stable matching theory which is computationally inexpensive (e.g., linear with the

number of UEs and RBs). I also analyze the stability, uniqueness, and optimality of

the proposed solution.

Considering the computational and signaling overheads and lack of scalability of

the centralized solutions, game theoretical models have been widely used for wireless

radio resource allocation problems. However, the analytical tractability of equilib-

rium in such game-theoretical models requires special properties for the objective

functions, such as convexity, which may not be satisfied for many practical cases [60].

In this context, resource allocation using matching theory has several beneficial prop-

erties [60,61]. For example, the stable matching algorithm terminates for every given

preference profile. The outcome of matching provides suitable solutions in terms of

stability and optimality, which can accurately reflect different system objectives. Be-

sides, with suitable data structures, a Pareto optimal stable matching (e.g., allocation

of resources to the UEs) can be obtained quickly for online implementation.

The main contributions of this work can be summarized as follows:

• I model and analyze the RAP for relay-aided D2D communication underlaying

an OFDMA cellular network considering the uncertainties in link gains. I show

that the convexity of the optimization problem is conserved under bounded

channel uncertainty.

• I provide a distributed iterative solution using stable matching considering

bounded channel uncertainty. The stability, uniqueness, optimality, and com-

plexity of the proposed solution are analyzed.

• Numerical results show that the proposed distributed solution performs close to

the upper bound of the optimal solution obtained in a centralized manner; how-

ever it incurs a lower (e.g., linear compared to cubic) computational complexity.

75



Chapter 5. Distributed Resource Allocation Under Channel Uncertainties: A Stable
Matching Approach

Similar to previous chapters, I also compare the performance of the proposed

approach with a traditional underlay D2D communication scheme and observe

that after a distant margin, relaying of D2D traffic improves network perfor-

mance.

I organize the rest of the chapter as follows. Followed by the formulation of the

nominal RAP in Section 5.1, I reformulate the RAP considering the wireless link

uncertainties in Section 5.2. I develop the stable matching-based distributed resource

allocation algorithm in Section 5.3. Theoretical analysis of the proposed solution is

presented in Section 5.4. In Section 5.5 I present the performance evaluation results

before I conclude the chapter in Section 5.6.

5.1 Resource Allocation: Formulation of the Nominal Prob-

lem

As I have mentioned in Section 2.3.1 the end-to-end data rate for UE ul over RB n

given by (2.1) can be written is achieved when P
(n)
ul,l
γ

(n)
ul,l,1

= P
(n)
l,ul
γ

(n)
l,ul,2

. Hence in the

second hop, the power Pl,ul allocated for UE ul, can be expressed as a function of

power allocated for transmission in the first hop, Pul,l as follows

P
(n)
l,ul

=
γ

(n)
ul,l,1

γ
(n)
l,ul,2

P
(n)
ul,l
≈
h

(n)
ul,l,1

h
(n)
l,ul,2

P
(n)
ul,l
. (5.1)

Using (5.1), the relaxed problem can be stated as follows:
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(P5.1)

max
x

(n)
ul
,S

(n)
ul,l

∑
ul∈Ul

Rul

subject to
∑
ul∈Ul

x(n)
ul

≤ 1, ∀n (5.2a)

N∑
n=1

S
(n)
ul,l
≤ Pmax

ul
, ∀ul (5.2b)

∑
ul∈Ul

N∑
n=1

H
(n)
ul,l
S

(n)
ul,l
≤ Pmax

l (5.2c)∑
ul∈Ul

S
(n)
ul,l
g

(n)
u∗l ,l,1

≤ I
(n)
th,1, ∀n (5.2d)∑

ul∈Ul

H
(n)
ul,l
S

(n)
ul,l
g

(n)
l,u∗l ,2

≤ I
(n)
th,2, ∀n (5.2e)

N∑
n=1

1
2
x(n)
ul
BRB log2

(
1 + P

(n)
ul,l
γ

(n)
ul,l,1

)
≥ Qul , ∀ul (5.2f)

0 < x(n)
ul
≤ 1, S

(n)
ul,l
≥ 0, ∀n, ul (5.2g)

where γ
(n)
ul,l,1

=
h

(n)
ul,l∑

∀uj∈Uj ,
j 6=l,j∈L

S
(n)
uj,j

g
(n)
uj,l,1

+σ2
, H

(n)
ul,l

=
h

(n)
ul,l,1

h
(n)
l,ul,2

and Rul =

N∑
n=1

1
2
x(n)
ul
BRB log2

(
1 +

S
(n)
ul,l

γ
(n)
ul,l,1

x
(n)
ul

)
.

5.2 Resource Allocation Under Channel Uncertainty

In this section, I consider the uncertainty of the channel gains in RAP and use el-

lipsoid sets to describe the uncertainty. For worst-case robust resource optimization

problems, the channel state information is assumed to have a bounded uncertainty of

unknown distribution. An ellipsoid is often used (e.g., [62–64]) to approximate such

an uncertainty region.
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5.2.1 Uncertainty Sets

Let the variable F
(n)
ul,uj ,l

denote the normalized channel gain which is defined as follows:

F
(n)
ul,uj ,l

,
g

(n)
uj ,l,1

h
(n)
ul,l,1

, ∀uj ∈ Uj, j 6= l, j ∈ L. (5.3)

In addition, let F (n)
ul,l

denote the uncertainty set that describes the perturbation of

link gains for ul over RB n. The normalized gain is then denoted by

F
(n)
ul,uj ,l

= F̄
(n)
ul,uj ,l

+ ∆F
(n)
ul,uj ,l

(5.4)

where F̄
(n)
ul,uj ,l

is the nominal value and ∆F
(n)
ul,uj ,l

is the perturbation part. The uncer-

tainty in the CQI values of each user is modeled under an ellipsoidal approximation

as follows:

F (n)
ul,l

=

F̄ (n)
ul,uj ,l

+ ∆F
(n)
ul,uj ,l

:
∑
∀uj∈Uj ,
j 6=l,j∈L

|∆F (n)
ul,uj ,l

|2 ≤ ξ
(n)
1ul

;∀ul, n

 (5.5)

where ξ
(n)
1ul
≥ 0 is the uncertainty bound in each RB. Using (5.3) I rewrite the rate

expression for ul over RB n as

R(n)
ul

= 1
2
BRB log2

(
1 +

P
(n)
ul,l∑

∀uj∈Uj ,
j 6=l,j∈L

F
(n)
ul,uj ,l

P
(n)
uj,j

+σ̃
(n)
ul

)
(5.6)

where σ̃
(n)
ul , σ2

h
(n)
ul,l,1

and F
(n)
ul,uj ,l

is given by (5.4).

78



Chapter 5. Distributed Resource Allocation Under Channel Uncertainties: A Stable
Matching Approach

5.2.2 Reformulation of the Optimization Problem Considering Chan-

nel Uncertainty

Utilizing uncertainty sets similar to (5.5) in the constraints (5.2c)-(5.2e), the opti-

mization problem P5.1 can be equivalently represented under channel uncertainty as

follows:

(P5.2)

max
x

(n)
ul
,S

(n)
ul,l

min
∆F

(n)
ul,uj ,l

,∆g
(n)

u∗
l
,l,1

,

∆H
(n)
ul,l

,∆H
(n)
ul,l

g
(n)

l,u∗
l
,2

∑
ul∈Ul

Rul

subject to (5.2a), (5.2f), (5.2b), (5.2g) and∑
ul∈Ul

N∑
n=1

(
H̄

(n)
ul,l

+ ∆H
(n)
ul,l

)
S

(n)
ul,l
≤ Pmax

l (5.7)

∑
ul∈Ul

(
ḡ

(n)
u∗l ,l,1

+ ∆g
(n)
u∗l ,l,1

)
S

(n)
ul,l
≤ I

(n)
th,1, ∀n (5.8)

∑
ul∈Ul

(
H̄

(n)
ul,l
ḡ

(n)
l,u∗l ,2

+ ∆H
(n)
ul,l
g

(n)
l,u∗l ,2

)
S

(n)
ul,l
≤ I

(n)
th,2, ∀n (5.9)∑

∀uj∈Uj ,j 6=l,j∈L

|∆F (n)
ul,uj ,l

|2 ≤
(
ξ

(n)
1ul

)2
,∀ul, n (5.10)

∑
ul∈Ul

N∑
n=1

|∆H(n)
ul,l
|2 ≤ (ξ2l)

2 (5.11)∑
ul∈Ul

|∆g(n)
u∗l ,l,1
|2 ≤

(
ξ

(n)
3ul

)2
, ∀n (5.12)∑

ul∈Ul

|∆H(n)
ul,l
g

(n)
l,u∗l ,2
|2 ≤

(
ξ

(n)
4ul

)2
, ∀n (5.13)

where for any parameter y, ȳ denotes the nominal value and ∆y represents the

corresponding deviation part; ξ2l, ξ
(n)
3ul
, and ξ

(n)
4ul

are the maximum deviations (e.g.,
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uncertainty bounds) of corresponding entries in CQI values. In P3, Rul is given by

Rul =
N∑
n=1

1
2
x(n)
ul
BRB × log2

(
1 +

S
(n)
ul,l

x
(n)
ul∑

∀uj∈Uj ,
j 6=l,j∈L

(
F̄

(n)
ul,uj ,l

+∆F
(n)
ul,uj ,l

)
S

(n)
uj,j

+σ̃
(n)
ul

)
. (5.14)

The above optimization problem is subject to an infinite number of constraints

with respect to the uncertainty sets and hence becomes a semi-infinite programming

(SIP) problem [65]. In order to solve the SIP problem it is required to transform P5.2

into an equivalent problem with finite number of constraints. Similar to [62, 63], I

apply the Cauchy-Schwarz inequality [66] and transform the SIP problem. More

specifically, utilizing Cauchy-Schwarz inequality, I obtain the following:

∑
∀uj∈Uj ,
j 6=l,j∈L

∆F
(n)
ul,uj ,l

S
(n)
uj ,j
≤
√√√√ ∑
∀uj∈Uj ,
j 6=l,j∈L

|∆F (n)
ul,uj ,l

|2
∑
∀uj∈Uj ,
j 6=l,j∈L

|S(n)
uj ,j
|2

≤ ξ(n)
1ul

√√√√√ ∑
∀uj∈Uj ,
j 6=l,j∈L

(
S

(n)
uj ,j

)2

. (5.15)

Similarly,

∑
ul∈Ul

N∑
n=1

∆H
(n)
ul,l
S

(n)
ul,l
≤ ξ2l

√√√√∑
ul∈Ul

N∑
n=1

(
S

(n)
ul,l

)2

(5.16)

∑
ul∈Ul

∆g
(n)
u∗l ,l,1

S
(n)
ul,l
≤ ξ

(n)
3ul

√∑
ul∈Ul

(
S

(n)
ul,l

)2

(5.17)

∑
ul∈Ul

∆H
(n)
ul,l
g

(n)
l,u∗l ,2

S
(n)
ul,l
≤ ξ

(n)
4ul

√∑
ul∈Ul

(
S

(n)
ul,l

)2

. (5.18)

Note that, as presented in Section 5.2.1, to tackle the uncertainty in channel gains,

I have considered the worst-case approach, e.g., the estimation error is assumed to
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be bounded by a closed set (uncertainty set). Hence, from (5.15)-(5.18), under the

worst-case channel uncertainties, the optimization problem P5.2 can be rewritten as

follows

(P5.3)

max
x

(n)
ul
,S

(n)
ul,l

∑
ul∈Ul

Rul

subject to (5.2a), (5.2f), (5.2b), (5.2g) and∑
ul∈Ul

N∑
n=1

H̄
(n)
ul,l
S

(n)
ul,l

+ ξ2l

√√√√∑
ul∈Ul

N∑
n=1

(
S

(n)
ul,l

)2

≤ Pmax
l (5.19)

∑
ul∈Ul

ḡ
(n)
u∗l ,l,1

S
(n)
ul,l

+ ξ
(n)
3ul

√∑
ul∈Ul

(
S

(n)
ul,l

)2

≤ I
(n)
th,1, ∀n (5.20)

∑
ul∈Ul

H̄
(n)
ul,l
ḡ

(n)
l,u∗l ,2

S
(n)
ul,l

+ ξ
(n)
4ul

√∑
ul∈Ul

(
S

(n)
ul,l

)2

≤ I
(n)
th,2, ∀n. (5.21)

where Rul is given by

Rul =
N∑
n=1

1

2
x(n)
ul
BRB log2

1 +

S
(n)
ul,l

x
(n)
ul∑

∀uj∈Uj ,
j 6=l,j∈L

F̄
(n)
ul,uj ,l

S
(n)
uj ,j

+ ξ
(n)
1ul

√ ∑
∀uj∈Uj ,
j 6=l,j∈L

(
S

(n)
uj ,j

)2
+ σ̃

(n)
ul



=
N∑
n=1

1

2
x(n)
ul
BRB log2

1 +

S
(n)
ul,l

x
(n)
ul

h̄
(n)
ul,l,1∑

∀uj∈Uj ,
j 6=l,j∈L

ḡ
(n)
uj ,l,1

S
(n)
uj ,j

+ h̄
(n)
ul,l,1

ξ
(n)
1ul

√ ∑
∀uj∈Uj ,
j 6=l,j∈L

(
S

(n)
uj ,j

)2
+ σ2

.
(5.22)

The transformed problem is a second-order cone program (SOCP) [34, Chapter

4] and the convexity of P5.3 is conserved as shown in the following proposition.

Proposition 5.1. P5.3 is a convex optimization problem.

Proof. Using an argument similar to that in footnote 5, the objective function in
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(5.19) in P5.3 is concave. The constraints in (5.2a), (5.2b), (5.2g) are affine and the

constraint in (5.2f) is convex. In addition, the additional square root term in the

left hand side of the constraints in (5.19), (5.20), and (5.21) is the linear norm of

the vector of power variables S
(n)
ul,l

with order 2, which is convex [34, Section 3.2.4].

Therefore, the optimization problem P5.3 is convex.

The optimization problem P5.3 is solvable using standard centralized algorithms

such as interior point method. The joint RB and power allocation can be performed

similar to Algorithm 1 (see Page 24) and an upper bound for the solution to the

RAP can be obtained under channel uncertainty. It is worth noting that solving the

above SOCP using interior point method incurs a complexity of O
((

xl + Pl

)3
)

at

each relay node where y denotes the length of vector y. Besides, the size of the

optimization problem increases with the number of network nodes. Despite the fact

that the solution from Algorithm 1 outputs the optimal data rate, considering short

(e.g., 1 millisecond) scheduling period of LTE-A network, it may not be feasible to

solve the RAP centrally in practical networks. Therefore, in the following, I provide

a low-complexity distributed solution based on matching theory. That is, without

solving the RAP in a centralized manner using any relaxation technique (e.g., time-

sharing strategy as described in the preceding section), I apply the method of two-

sided stable many-to-one matching [67].

5.3 Distributed Solution Approach for the RAP Under

Channel Uncertainty

The resource allocation approach using stable matching involves multiple decision-

making agents, i.e., the available RBs and the UEs; and the solutions (i.e., matching
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between UE and RB) are produced by individual actions of the agents. The actions,

i.e., matching requests and confirmations or rejections are determined by the given

preference profiles. That is, for both the RBs and the UEs, the lists of preferred

matches over the opposite set are maintained. For each RB, the relay holds its pref-

erence list for the UEs. The matching outcome yields mutually beneficial assignments

between RBs and UEs. Stability in matching implies that, with regard to their initial

preferences, neither RBs nor UEs have an incentive to alter the allocation.

5.3.1 Concept of Matching

A matching (i.e., allocation) is given as an assignment of RBs to UEs forming the

set of pairs (ul, n) ∈ Ul × N . Note that a UE can be allocated more than one RB

to satisfy its data rate requirement; however, according to the constraint in (2.7),

one RB can be assigned to only one UE. This scheme corresponds to a many-to-one

matching in the theory of stable matching. More formally, I define the matching as

follows [68].

Definition 5.1. A matching µl for ∀l ∈ L is defined as a function, i.e., µl : Ul∪N →

Ul ∪N such that

1. µl(n) ∈ Ul ∪ {∅} and µl(n) ∈ {0, 1}

2. µl(ul) ∈ N and µl(ul) ∈ {1, 2, . . . , κul}

where the integer κul ≤ N , µl(ul) = n ⇔ µ(n) = ul for ∀n ∈ N ,∀ul ∈ Ul and µj(·)

denotes the cardinality of matching outcome µj(·).

The above definition implies that µl is a one-to-one matching if the input to the

function is an RB. On the other hand, µl is a one-to-many function, i.e., µl(ul) is

not unique if the input to the function is a UE. In order to satisfy the data rate
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requirement for each of the UEs, I introduce the parameter κul , which denotes the

number RB(s) which are sufficient to satisfy the minimum rate requirement Qul .

Consequently, the constraint in (5.2f) is rewritten as
N∑
n=1

x(n)
ul

= κul , ∀ul. Generally

this parameter is referred to as quota in the theory of matching [61]. Each user ul will

be subject to an acceptance quota κul over RB(s) within the range 1 ≤ κul ≤ N and

allowed for matching to at most κul RB(s). The outcome of the matching determines

the RB allocation vector at each relay l, e.g., µl ≡ xl.

5.3.2 Utility Matrix and Preference Profile

Let me consider the utility matrix Ul under the worst-case uncertainty, which denotes

the achievable data rate for the UEs in different RBs, defined as follows:

Ul =

 R
(1)
1 ··· R

(N)
1

...
...

...
R

(1)
Ul
··· R

(N)
Ul

 (5.23)

where Ul[i, j] denotes the entry of i-th row and j-th column in Ul, and R
(n)
ul is given

by

R(n)
ul

=
1

2
BRB log2

1 +
P

(n)
ul,l
h̄

(n)
ul,l,1∑

∀uj∈Uj ,
j 6=l,j∈L

x
(n)
uj ḡ

(n)
uj ,l,1

P
(n)
uj ,j

+ h̄
(n)
ul,l,1

ξ
(n)
1ul

√ ∑
∀uj∈Uj ,
j 6=l,j∈L

(
x

(n)
uj P

(n)
uj ,j

)2
+ σ2

.
(5.24)

Each of the UEs and RBs holds a list of preferred matches where a preference relation

can be defined as follows [69, Chapter 2].

Definition 5.2. Let � be a binary relation on any arbitrary set Ξ. The binary relation

� is complete if for ∀i, j ∈ Ξ, either i � j or j � i or both. A binary relation is

transitive if i � j and j � k implies that i � k for ∀k ∈ Ξ. The binary relation �
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is a (weak) preference relation if it is complete and transitive.

The preference profile of a UE ul ∈ Ul over the set of available RBs N is defined

as a vector of linear order Pul(N ) = Ul[ul, i]i∈N . The UE ul prefers RB n1 to n2 if

n1 � n2, and consequently, Ul[ul, n1] > Ul[ul, n2]. Likewise, the preference profile of

an RB n ∈ N is given by Pn(Ul) = Ul[j, n]j∈Ul .

5.3.3 Algorithm for Resource Allocation

Based on the discussions in the previous section, I utilize an improved version of

matching algorithm (adapted from [70, Chapter 1.2]) to allocate the RBs. The al-

location subroutine, as illustrated in Algorithm 4, executes as follows. While an

RB n is unmatched (i.e., unallocated) and has a non-empty preference list, the RB is

temporarily assigned to its first preference over UEs, i.e., ul. If the allocation does not

exceed κul , the allocation will persist. Otherwise, the worst preferred RB from ul’s

matching will be removed, even though it was previously allocated. The iterations

are repeated until there are unallocated pairs of RB and UE. The iterative process

dynamically updates the preference lists and hence leads to a stable matching.

Once the optimal RB allocation is obtained, the transmit power of the UEs on

assigned RB(s) is obtained similar to that approach presented in Section 3.2.1 (see

Page 40). To be specific, at each iteration t, the transmission power for each allocated

RB is updated as follows:

P
(n)
ul,l

(t) =


Λ(t− 1), if Λ(t− 1) ≤ P̂

(n)max

ul

P̂
(n)
ul,l
, otherwise

(5.25)

where
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Algorithm 4 RB allocation using stable matching

Input: The preference profiles Pul(N ), Pn(Ul); ∀ul ∈ Ul, n ∈ N .
Output: The RB allocation vector xl.

1: Initialize xl := 0.
2: while ∃n with x

(n)
ul = 0,∀ul ∈ Ul and Pn(Ul) 6= ∅ do

3: ump := most preferred UE from the profile Pn(Ul).
4: Set x

(n)
ump := 1. /* Temporarily allocate the RB */

5: if
N∑
j=1

x(j)
ump > κump then

6: nlp := least preferred resource allocated to ump.

7: Set x
(nlp)
ump := 0. /* Revoke allocation due to quota violation */

8: end if

9: if
N∑
j=1

x(j)
ump = κump then

10: nlp := least preferred resource allocated to ump.
11: /* Update preference profiles */

12: for each successor n̂lp of nlp on profile Pump(N ) do
13: remove n̂lp from Pump(N ).
14: remove ump from Pn̂lp(Ul).
15: end for
16: end if
17: end while

Λ(t− 1) = 2Qul−1

2Rul (t−1)−1
P

(n)
ul,l

(t− 1) (5.26)

P̂ (n)max

ul
= min

 Pmaxul
N∑
n=1

x
(n)
ul

,
Pmaxl(

H̄
(n)
ul,l

+ξ2ul

) ∑
ul∈Ul

N∑
n=1

x
(n)
ul

 (5.27)

and P̂
(n)
ul,l

is obtained as

P̂
(n)
ul,l

= min
(
P̃

(n)
ul,l
, min

(
P̂ (n)max

ul
, $

(n)
ul,l

))
. (5.28)

In (5.28), the parameter P̃
(n)
ul,l

is chosen arbitrarily within the range of 0 ≤ P̃
(n)
ul,l
≤
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Algorithm 5 Joint RB and power allocation algorithm

Phase I: Initialization
1: Each relay l ∈ L estimates the nominal CQI values from previous time slot and

determines reference gains ḡ
(n)
u∗l ,l,1

and ḡ
(n)
l,u∗l ,2

,∀ul, n.

2: Initialize t := 0, P
(n)
ul,l

:=
Pmaxul

N
∀ul, n and Ul based on CQI estimates.

Phase II: Update
3: for each relay l ∈ L do
4: repeat
5: Update t := t+ 1.
6: Build the preference profile Pn(Ul) for each RB n ∈ N based on utility matrix

and inform corresponding entries of Ul to UEs.
7: Each UE ul ∈ Ul builds the preference profile Pul(N ).
8: Obtain RB allocation vector using Algorithm 4.
9: Update the transmission power using (5.25) for ∀ul, n and update the utility

matrix Ul.
10: Inform the allocation variables xl, Pl to each relay j 6= l, j ∈ L and calculate

the achievable data rate based on current allocation as Rl(t) :=
∑
ul∈Ul

Rul(t).

11: until data rate not maximized or t = Tmax.
12: end for
Phase III: Allocation
13: For each relay, allocate resources (i.e., RB and transmit power) to the associated

UEs.

P̂
(n)max

ul and $
(n)
ul,l

is given by

$
(n)
ul,l

= min

(
I

(n)
th,1

ḡ
(n)

u∗
l
,l,1

+ξ
(n)
3ul

,
I

(n)
th,2

H̄
(n)
ul,l

ḡ
(n)

l,u∗
l
,2

+ξ
(n)
4ul

)
. (5.29)

Based on the RB allocation, the relay informs the parameter P̂
(n)max

ul and each

UE updates its transmit power in a distributed manner using (5.25). Each relay

independently performs resource allocation and allocates resources to corresponding

associated UEs. The joint RB and power allocation algorithm is summarized in

Algorithm 5.
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5.3.4 Signalling Over Control Channels

Assuming that the relays obtain the CQI prior to resource allocation, the centralized

approach (e.g., presented in Chapter 2) does not require any exchange of information

between a relay node and the associated UEs to perform resource allocation. However,

in the distributed approach, the relay node and the UEs need to exchange information

to update the preference profiles and transmit power. In both the approaches, the

relay nodes need to exchange the allocation variables among themselves (e.g., over

X2 interface) in order to calculate the interference levels at the receiving nodes.

In the distributed approach, the exchange of information between a UE and the

relay node during execution of the resource allocation algorithm can be mapped onto

the standard LTE-A scheduling control messages. For scheduling in LTE-A networks,

the exchanges of messages over control channels are as follows [71]. The UEs will pe-

riodically sense the physical uplink control channel (PUCCH) by transmitting known

sequences as sounding reference signals (SRS). When data is available for uplink

transmission, the UE sends the scheduling request (SR) over PUCCH. The relay, in

turn, uses the scheduling grant (SG) over physical downlink control channel (PD-

CCH) to allocate the appropriate RB(s) to the UE. Once the allocation of RB(s) is

received, the UE regularly sends buffer status report (BSR) using PUCCH in order

to update the resource requirement, and in response, the relay sends the acknowl-

edgment (ACK) over the physical hybrid-ARQ indicator channel (PHICH). Given

the above scenario, the UEs may provide the preference profile Pul(N ) with the SR

and BSR messages. The relays may provide the corresponding values in the utility

matrix, e.g., ûul,l = Ul[ul, j]j=1,··· ,N and inform the parameter P̂
(n)max

ul using SG and

ACK messages. Once the RB and power allocation is performed, the relays multicast

the allocation information over X2 interface.
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5.4 Analysis of the Proposed Solution

In the following, I analyze the performance of my proposed distributed resource allo-

cation approach under bounded channel uncertainty. More specifically, I analyze the

stability, optimality, and uniqueness of the solution, and its computational complex-

ity.

5.4.1 Stability

Definition 5.3. (a) The pair of UE and RB (ul, n) in Ul × N is acceptable if ul

and n prefer each other (to be matched) to being remain unmatched.

(b) A matching µl is called individually rational if no agent (i.e., UE or RB) ̃

prefers to remain unmatched to µ(̃).

Definition 5.4. A matching µl is blocked by a pair of agents (i, j) if they each prefer

each other to the matching they obtain by µl, i.e., i � µl(j) and j � µl(i).

From Definition 5.3, 5.4, the matching µl is blocked by RB n and UE ul if n

prefers ul to µl(n) and either i) ul prefers n to some n̂ ∈ µl(ul), or ii) µl(ul) < κul

and n is acceptable to ul. Using the above definitions, the stability of matching can

be defined as follows [72, Chapter 5].

Definition 5.5. A matching µl is stable if it is individually rational and there is no

pair (ul, n) in the set of acceptable pairs such that ul prefers n to µl(ul) and n prefers

ul to µl(n), i.e., not blocked by any pair of agents.

Proposition 5.2. The assignment performed in Algorithm 4 abides by the prefer-

ences of the UEs and RBs and it leads to a stable allocation.

Proof. See Appendix D.1.
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Note that the allocation of RBs is stable at each iteration of Algorithm 5. Since

after evaluation of the utility, the preference profile of UEs and RBs are updated and

the routine for RB allocation is repeated, a stable allocation is obtained.

5.4.2 Uniqueness

Proposition 5.3. If there are sufficient number of RBs (i.e., N ≥ Ul), and the

preference lists of all UEs and RBs are determined by the Ul × N utility matrix Ul

whose entries are all different and obtained from given uncertainty bound, then there

is a unique stable matching.

Proof. See Appendix D.2.

5.4.3 Optimality and Performance Bound

Definition 5.6. A matching µl is weak Pareto optimal if there is no other match-

ing µ̂l that can achieve a better sum-rate, i.e., µ̂l(·) ≥ µl(·), where the inequality is

component-wise and strict for one user.

Proposition 5.4. The proposed resource allocation algorithm is weak Pareto optimal

under bounded channel uncertainty.

Proof. See Appendix D.3.

Corollary 5.1. Since xl
∗ satisfies the binary constraint in (2.2), and the optimal

allocation (xl
∗,Pl

∗) satisfies all the constraints in the optimization problem P4, for

a sufficient number of available RBs, the data rate obtained by Algorithm 5 gives a

lower bound on the solution of the RAP under channel uncertainty.
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5.4.4 Complexity

Proposition 5.5. The subroutine for RB allocation terminates after some finite num-

ber of steps T ′.

Proof. Let the finite set X̃ represent all possible combinations of UE-RB matching

where each element x̃
(j)
i ∈ X̃ denotes that RB j is allocated to UE i. Since no UE

rejects the same RB more than once (see line 7 in Algorithm 4), the finiteness of

the set X̃ ensures the termination of RB allocation subroutine in finite number of

steps.

In line 6-7 of Algorithm 5, the complexity to output the ordered set of pref-

erence profiles for the RBs using any standard sorting algorithm is O (NUl logUl)

and for each UE, the complexity to build the preference profile is O (N logN). Let

β =

Ul∑
ul=1

Pul(N ) +
N∑
n=1

Pn(Ul) = 2NUl be the total length of input preferences in

Algorithm 4, where Pj(·) denotes the length of the profile vector Pj(·). From

Proposition 5.5 and [70, Chapter 1] it can be shown that, if implemented with

suitable data structures, the time complexity of RB allocation subroutine is linear

in the size of input preference profiles, i.e., O(β) ≈ O (NUl). Since Phase II of

Algorithm 5 runs at most fixed Tmax iterations, at each relay node l, the complexity

of the proposed solution is linear in N and Ul.

5.5 Results

In the following, I demonstrate the performance evaluation results for the pro-

posed relay-aided D2D communication approach. Similar to Chapter 4, I mea-

sure the uncertainty in channel gains as percentages and assume similar uncertainty

bounds in the CQI parameters for all the UEs. For example, uncertainty bound
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Figure 5.1: Convergence of the proposed solution where the number of CUEs and
D2D UEs served by each relay node is 5 and 3, receptively (e.g., |Ul| = 8). Dr,d and
Dd,d are set to 50 m, and uncertainty in CQI parameters is assumed to be not more
than 25%.

ξ = ξ
(n)
1ul

= ξ2l = ξ
(n)
3ul

= ξ
(n)
4ul

= 0.25 refers that uncertainty (e.g., estimation error) in

the CQI parameters for ∀ul, n, l is not more than 25% of their nominal values.

5.5.1 Convergence and Goodness of the Solution

In Fig. 5.1, I show the convergence behavior of my proposed distributed algorithm.

In particular, I plot the average achievable data rate for the UEs in different network

realizations versus the number of iterations. he algorithm starts with uniform power

allocation over RBs, which provides a higher data rate at the first iteration; however,

it may cause severe interference to other receiving nodes. As the algorithm executes,

the allocations of RB and power are updated considering the interference threshold

and data rate constraints. From this figure it can be observed that the solution

converges to a stable data rate very quickly (e.g., in less than 10 iterations).

I compare the performance of my proposed scheme with a dual-decomposition

based suboptimal resource allocation scheme proposed in [73]. I refer to this scheme
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as existing algorithm. In this scheme, the relay node allocates RBs considering the

data rate requirement and the transmit power is updated in an iterative manner by

updating the Lagrange dual variables. For details refer to [73, Algorithm 2]. The

complexity of this algorithm is of O (NUl logN +N logUl + ∆), where ∆ denotes

the number of iterations it takes for the power allocation vector to converge [73].

In Fig. 5.2(a), I show the performances of the proposed distributed scheme and the

existing algorithm, and the upper bound of the optimal solution which can be obtained

in a centralized manner using Algorithm 1. I use the MATLAB optimization toolbox

to obtain this upper bound. I plot the average achievable data rate for the UEs versus

the total number of UEs. The average data rate is given byRavg =

∑
u∈{C∪D}

Rach
u

C+D
, where

Rach
u is the achievable data rate for UE u. Note that, for a given number of RBs,

increasing the number of UEs decreases the data rate. Recall that, the complexity

of both the proposed and reference schemes is linear with the number of RBs and

UEs; and for the optimal solution, the complexity is cubic to the number of RBs and

UEs. As can be seen from this figure, the proposed approach outperforms the existing

algorithm and performs close to the optimal solution.

In order to obtain more insights into the performance, in Fig 5.2(b), I plot the

efficiency of the proposed scheme and existing algorithm for different number of UEs.

Similar to [74, Chapter 3], I measure the efficiency as η(·) =
R(·)
Roptm

, where Roptm is

the network sum-rate for optimal solution. The parameters Rprop and Rexst denote

the data rate for the proposed and existing schemes, respectively, which are used

to calculate the corresponding efficiency metric ηprop and ηexst. The closer the η(·)

to 1, the nearer the solution is to the optimal solution. Clearly, the efficiency of

the existing algorithm is lower compared to the proposed scheme. From the figure

I observe that even in a dense network scenario (i.e., C + D = 15 + 18 = 33) the
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proposed scheme performs 80% close to the optimal solution (compared to 60% for

the existing algorithm); however, with much less computational complexity.
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Figure 5.2: (a) Average achievable data rate for optimal upper bound, distributed
stable matching and existing algorithm. (b) Efficiency of the proposed solution and
the existing algorithm. Total number of UEs (i.e., C +D) are varied from 9 + 6 = 15
to 15 + 18 = 33. Dr,d and Dd,d are assumed to be 50 m.
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Figure 5.3: Gain in average achievable data rate with varying distance between D2D
peers using a setup similar to that for Fig. 5.1. The reference scheme is an underlay
D2D communication approach proposed in [17].

5.5.2 Impact of Relaying

Average achievable data rate vs. distance between D2D UEs:

The average achievable data rates of D2D UEs for both the proposed and reference

schemes are illustrated in Fig. 5.3. I find the trends in the performance evaluation

results are similar to those in earlier chapters. Although the reference scheme outper-

forms when the distance between the D2D UEs is small (i.e., d < 40 m), my proposed

relay-aided communication approach, can greatly improve the data rate especially

when the distance increases.

Gain in aggregate achievable data rate vs. varying distance between

D2D UEs:

The gain in terms of aggregate achievable data rate under both uncertain and perfect

CQI is shown in Fig. 5.4. The figure shows that, compared to direct communication,

with the increasing distance between D2D UEs, relaying provides considerable gain
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Figure 5.4: Gain in aggregate achievable data rate for both perfect and uncertain CQI
parameters. For uncertain CQI, uncertainty bound ξ = 0.25 and ξ = 0.50 refer that
uncertainty in CQI parameters is not more than 25% and 50%, respectively. For both
the perfect and uncertain cases, there is a critical distance, beyond which relaying of
D2D traffic provides significant performance gain.

in terms of achievable data rate and hence spectrum utilization. As expected, the

gain reduces under channel uncertainty since the algorithm becomes cautious against

channel fluctuations and allocates RBs and power accordingly to protect the receiving

nodes in the network. Note that there is a trade-off between performance gain and

robustness against channel uncertainty. For example, when the distance Dr,d = 50 m,

the performance gain of relaying under perfect CQI is 30%. In the case of uncertain

CQI, the gain reduces to 24% and 16% for the uncertainty bound parameter ξ = 0.25

and ξ = 0.50, respectively. As the uncertainty bounds increase, the system becomes

more roust against uncertainty; however, the achievable data rate degrades.
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Effect of relay-UE distance and distance between D2D UEs on rate

gain:

The performance gain in terms of the achievable aggregate data rate under different

relay-D2D UE distances is shown in Fig. 5.5. It is clear from the figure that, even

for relatively large relay-D2D UE distances, e.g., Dr,d > 60 m, relaying D2D traffic

provides considerable rate gain for distant D2D UEs.
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Figure 5.5: Effect of relay distance on rate gain: |C| = 15, |D| = 9. Uncertainty
in CQI parameters is assumed to be not more than 25%. For every Dr,d, there is
a distance threshold (i.e., upper position of the light-shaded surface) beyond which
relaying provides significant gain in terms of aggregate achievable rate.

5.6 Summary and Discussions

I have provided a comprehensive resource allocation framework for relay-assisted D2D

communication considering uncertainties in wireless channels and propose an iterative

distributed solution using stable matching. I have analyzed the stability, uniqueness,

and optimality of the proposed solution. I have also analyzed the complexity of the

proposed approach. Numerical results have shown that the distributed solution is
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close to the centralized optimal solution with significantly lower computational com-

plexity. I have also compared the proposed relay-aided D2D communication scheme

with an underlay D2D communication scheme. Through extensive simulations I have

observed that, in comparison with a direct D2D communication scheme, beyond a

distance threshold, relaying of D2D traffic for distant D2D UEs significantly improves

the network performance.
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Chapter 6

Conclusion and Future Directions

6.1 Concluding Remarks

Relay-aided D2D communication approach could be an effective solution for many

next generation (e.g., 5G) cellular wireless applications, especially when the distance

between D2D link is far and/or the link quality is not favorable. Considering a multi-

relay multi-user environment in a multi-channel OFDMA system, in this work I have

presented a radio resource allocation framework for relay-aided D2D communication

networks. In Chapter 2, I have developed a RB and power allocation algorithm where

the relays are able to perform resource allocation centrally. Since the complexity of

the centralized scheme is cubic to the available resources and the number of UEs,

in Chapter 3 I have developed a low complexity distributed solution. In Chapter

4 and Chapter 5, I have extended the mathematical formulations considering the

uncertainties in wireless link using robust optimization techniques. To be specific,

in Chapter 4 I have presented a gradient-based distributed solution considering the

uncertainties in the interference links. I have also discussed the trade-off between

robustness and optimality of the solution. Considering the uncertainties in both the
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direct and interference links, in Chapter 5 I have developed a distributed resource

allocation algorithm utilizing the concept of stable matching. In Chapter 3 and

Chapter 5, I have also briefly discussed the possible implementation approaches of

my proposed distributed solutions in practical LTE-A systems. From the numerical

results I can conclude that, there is a distance margin beyond which relaying of D2D

traffic improves the data rate without increasing the end-to-end delay significantly.

6.2 Future Research Directions

This work can be extended in two major directions to provide a comprehensive radio

resource management framework. Similar to most of the literature, in this work I

also assume that the potential D2D peers are already discovered. However, for a

relay-aided D2D communication approach, the D2D peers may wish to dynamically

select/discover the potential peers based on network dynamics. Furthermore, due to

large number of devices and and their frequent access in the radio channel, existing

medium access control (MAC) protocols need to be redesigned considering the relay-

aided communication paradigm. A brief discussion on these research directions is

provided below.

6.2.1 Device Discovery Schemes for Relay-Aided D2D Communica-

tion

Peer discovery methods for a D2D communication scenario is relatively under-

explored area of research. Most of the existing mechanisms (e.g., a-priori/a-posteriori

[28], beacon-based [75] etc.) are mainly centralized (e.g., operator/network con-

trolled); and therefore, may suffer from scalability issues for future dense deployment

scenarios. In addition since the D2D traffic could be assisted by relays, D2D UEs
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can opportunistically select/update their potential peers based on network dynamics

(e.g., link condition, network load, interference dynamics, application level require-

ments etc.). To the best of my knowledge, there is no prior work that considers

link uncertainties in peer discovery method for a relay-aided D2D communication

scenarios. The performance of existing D2D peer discovery mechanisms in a practi-

cal multi-user LTE-A scenario still remains unknown, and therefore, opens up new

research opportunities.

6.2.2 Design and Analysis of MAC Protocols

It is anticipated that future generation of mobile network will be a muti-tier hetero-

geneous architecture to improve the overall end-user quality of experience [76], [77].

In addition to conventional macrocell-tier (e.g., an eNB with corresponding CUEs),

these heterogeneous network tiers may include low power nodes (e.g., small cells, re-

lays etc.) as well as wireless P2P nodes (e.g., D2D and M2M UEs, sensors etc.). The

network-controlled P2P communications (e.g., similar to those approaches presented

in this work) in 5G systems will allow other nodes (such as relay or M2M gateway),

rather than the macro eNB, to control the communications among P2P nodes. It is

also expected that the deployments of heterogeneous nodes in 5G systems will signifi-

cantly have much higher density than present single-tier networks [78]. However, due

to large number of devices and their frequent access in the wireless channels, network

congestion will occur [16], and therefore, require an efficient radio access mechanism

(e.g., MAC protocol). Design and analysis of a unified MAC protocol incorporating

mode selection, device discovery, and such relay-aided D2D communication in the

context of 5G LTE-A heterogeneous networks will be an interesting area of research.
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Appendix A

A.1 Radio Propagation Model

For modeling the propagation channel, I consider distance-dependent path-loss and

shadow fading; furthermore, the channel is assumed to experience Rayleigh fading.

In particular, I consider realistic 3GPP propagation environment1 presented in [79].

For example, UE-relay (and relay-D2D) link follows the following path-loss equation:

PLul,l(`)[dB] = 103.8 + 20.9 log(`) + Lsu + 10 log(ς) (A.1)

where ` is the distance between UE and relay in kilometer, Lsu accounts for shadow

fading and is modelled as a log-normal random variable, and ς is an exponentially

distributed random variable which represents the Rayleigh fading channel power gain.

Similarly, the path-loss equation for relay-eNB link is expressed as

PLl,eNB(`)[dB] = 100.7 + 23.5 log(`) + Lsr + 10 log(ς) (A.2)

1Any other propagation model for D2D communication can be used for the proposed resource
allocation method.
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where Lsr is a log-normal random variable accounting for shadow fading. Hence given

the distance `, the link gain between any pair of network nodes i, j can be calculated

as 10−
PLi,j(`)

10 .

Relay 
cell radius

Dr,d

Dr,d

Dd,d

Figure A.1: D2D UEs are uniformly distributed within radius Dr,d and maintain
distance Dd,d between peers.

A.2 Simulation Setup

I develop a discrete-time simulator in MATLAB and evaluate the performance of my

proposed solution. I simulate a single three-sectored cell in a rectangular area of

700 m× 700 m, where the eNB is located in the center of the cell and three relays are

deployed, i.e., one relay in each sector. The CUEs are uniformly distributed within the

relay cell. The D2D UEs are located according to the clustered distribution model [80].

In particular, as shown in Fig. A.1, the D2D transmitters are uniformly distributed

over a radius Dr,d; and the D2D receivers are distributed uniformly in the perimeter

of the circle with radius Dd,d centered at the corresponding D2D transmitter. Both

Dr,d and Dd,d are varied as simulation parameters and the values are specified in

the corresponding figures. The simulation results are averaged over different network

realizations of user locations and link gains. I consider a snapshot model and all the
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Table A.1: Simulation Parameters
Parameter Values

Cell layout Isolated cell, hexagonal
grid, 3-sector sites

Carrier frequency 2.35 GHz

System bandwidth 2.5 MHz

Total number of available RBs 13

MAC frame duration 10 msec

Scheduling time 0.10 msec

Packet size 1500 bytes

Relay cell radius 200 meter

Distance between eNB and relays 125 meter

Minimum distance between UE and relay 10 meter

Total power available at each relay 30 dBm

Total power available at UE 23 dBm

Rate requirement for cellular UEs 128 Kbps

Rate requirement for D2D UEs 256 Kbps

Interference threshold −70 dBm

Standard deviation of shadow fading:

for relay-eNB links 6 dB

for UE-relay links 10 dB

Noise power spectral density −174 dBm/Hz

network parameters are assumed to remain unchanged during a simulation run.

A.3 Parameters

The parameter values used in the simulation are summarized in Table A.1.
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B.1 Required Number of RB(s) for a Given QoS Require-

ment

Let γ
(n)
ul,l,1

and γ̄
(n)
ul,l,1

denote the instantaneous and average SINR for the UE ul over

RB n. In order to determine the required number of RB(s) for a given data rate

requirement for any UE, I need to derive the probability distribution of
γ

(n)
ul,l,1

γ̄
(n)
ul,l,1

[81].

Note that, the channel gain due to Rayleigh fading and log-normal shadowing can

be approximated by a single log-normal distribution [82, 83]. In addition, the sum

of random variables having log-normal distribution can be represented by a single

log-normal distribution [84]. Therefore, Γ
(n)
ul,l,1

=
γ

(n)
ul,l,1

γ̄
(n)
ul,l,1

can be approximated by a

log-normal random variable whose mean and standard deviation can be calculated

as shown in [83]. Hence the average rate achieved by UE ul over RB n can be

written as (B.1) where F
Γ

(n)
ul,l,1

(ϑ) and f
Γ

(n)
ul,l,1

(ϑ) are the probability density function

and probability distribution function of Γ
(n)
ul,l,1

, respectively.

r̄
(n)
ul,l

=
1

2
BRB

∫
∞

0

log2

(
1 + P

(n)
ul,l

Γ
(n)
ul,l,1

γ̄
(n)
ul,l,1

)∏
j∈Ul,
j 6=ul

F
Γ

(n)
j,l,1

(ϑ)

 fΓ
(n)
ul,l,1

(ϑ)dϑ. (B.1)
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Now, let Rul,l
be the minimum rate achieved by UE ul. In order to maintain the

data rate requirement, I can derive the following inequality1:

Qul ≤ κul ≤ Rul,l
(|Ul|) (B.2)

where by Rul,l
(|Ul|) I explicitly describe the dependence of the minimum achievable

rate Rul,l
on the number of UEs |Ul|. Therefore, the minimum number of required

RBs is given by

κul ≥
⌈

Qul

Rul,l
(|Ul|)

⌉
. (B.3)

B.2 Proof of Proposition 3.1

Ll =
∑
ul∈Ul

N∑
n=1

1
2
x(n)
ul
R(n)
ul

+
N∑
n=1

än

(
1−

∑
ul∈Ul

x(n)
ul

)
+
∑
ul∈Ul

b̈ul

(
Pmax
ul
−

N∑
n=1

x(n)
ul
P

(n)
ul,l

)

+ c̈l

(
Pmax
l −

∑
ul∈Ul

N∑
n=1

γ
(n)
ul,l,1

γ
(n)
l,ul,2

x(n)
ul
P

(n)
ul,l

)
+

N∑
n=1

d̈n

(
I

(n)
th,1 −

∑
ul∈Ul

x(n)
ul
P

(n)
ul,l
g

(n)
u∗l ,l,1

)

+
N∑
n=1

ën

(
I

(n)
th,2 −

∑
ul∈Ul

γ
(n)
ul,l,1

γ
(n)
l,ul,2

x(n)
ul
P

(n)
ul,l
g

(n)
l,u∗l ,2

)
+
∑
ul∈Ul

f̈ul

(
N∑
n=1

1
2
x(n)
ul
R(n)
ul
−Qul

)
.

(B.4)

1Similar to [81], I assume that the long-term channel gains on different RBs are same, and hence,
the average rates achieved by a particular UE on different RBs are the same.
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Let me rearrange the Lagrangian of P2.1 defined by (B.4) as follows:

Ll =
∑
ul∈Ul

N∑
n=1

1
2
x(n)
ul
R(n)
ul
−

N∑
n=1

än
∑
ul∈Ul

x(n)
ul

−
∑
ul∈Ul

b̈ul

N∑
n=1

x(n)
ul
P

(n)
ul,l
− c̈l

∑
ul∈Ul

N∑
n=1

γ
(n)
ul,l,1

γ
(n)
l,ul,2

x(n)
ul
P

(n)
ul,l

−
N∑
n=1

d̈n
∑
ul∈Ul

x(n)
ul
P

(n)
ul,l
g

(n)
u∗l ,l,1

−
N∑
n=1

ën
∑
ul∈Ul

γ
(n)
ul,l,1

γ
(n)
l,ul,2

x(n)
ul
P

(n)
ul,l
g

(n)
l,u∗l ,2

−
∑
ul∈Ul

f̈ul

N∑
n=1

1
2
x(n)
ul
R(n)
ul

+ Õ. (B.5)

where Õ denote the leftover terms involving Lagrange multipliers, i.e., ä, b̈, c̈, d̈, ë, f̈ .

From above I can derive the following lemma:

Lemma B.2.1. The slackness conditions for P2.1 are

R̂(n)
ul
− λ̈(n)∗

ul
= max

1≤j≤N

(
R̂(j)
ul
− λ̈(j)∗

ul

)
(B.6)

where λ̈
(n)
ul involves the terms with Lagrange multipliers for ∀ul, n.

Proof. By Weierstrass’ theorem (Appendix A.2, Proposition A.8 in [85]), the dual

function can be calculated by (B.7).
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Dl = inf
xl

Ll

= inf
xl

∑
ul∈Ul

(
N∑
n=1

(
1
2
R(n)
ul
− än − b̈ulP

(n)
ul,l
− c̈l

γ
(n)
ul,l,1

γ
(n)
l,ul,2

P
(n)
ul,l
− d̈nP (n)

ul,l
g

(n)
u∗l ,l,1

− ën
γ

(n)
ul,l,1

γ
(n)
l,ul,2

P
(n)
ul,l
g

(n)
l,u∗l ,2

+ f̈ul
1
2
R(n)
ul

)
x(n)
ul

)
+ Õ

=
∑
ul∈Ul

(
N∑
n=1

inf
xl

(
1
2
R(n)
ul

(1 + f̈ul)− λ̈(n)
ul

)
x(n)
ul

)
+ Õ

=
∑
ul∈Ul

max
1≤n≤N

(
R̂(n)
ul
− λ̈(n)

ul

)
κul + Õ. (B.7)

Therefore, if P2.1 has an optimal solution, its dual has an optimal solution, i.e.,

Dl
∗ =

∑
ul∈Ul

N∑
n=1

R̂(n)
ul
x(n)
ul

∗
. (B.8)

Hence,

∑
ul∈Ul

max
1≤n≤N

(
R̂(n)
ul
− λ̈(n)∗

ul

)
κul + Õ =

∑
ul∈Ul

N∑
n=1

R̂(n)
ul
x(n)
ul

∗
. (B.9)

Since xl
∗ is an optimal allocation, from (B.9) I obtain

∑
ul∈Ul

max
1≤n≤N

(
R̂(n)
ul
− λ̈(n)∗

ul

)
κul =

∑
ul∈Ul

N∑
n=1

(
R̂(n)
ul
− λ̈(n)∗

ul

)
x(n)
ul

∗
. (B.10)
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In addition, since
N∑
n=1

x(n)
ul

= κul , (B.10) becomes

∑
ul∈Ul

N∑
n=1

(
R̂(n)
ul
− λ̈(n)∗

ul
− max

1≤n≤N

(
R̂(n)
ul
− λ̈(n)∗

ul

))
x(n)
ul

∗
= 0. (B.11)

Now, if x
(n)
ul

∗
> 0, I have R̂

(n)
ul − λ̈

(n)∗

ul = max
1≤j≤N

(
R̂

(j)
ul − λ̈

(j)∗

ul

)
.

From (3.24), at each iteration, each UE ul can distinguish between two different

subsets of RBs by sorting the marginals in an increasing order. Let me define the

first subset Ṅul ∈ N given by the first κul ≤ N RBs in the ordered list of marginals

where the second subset N̈ul ∈ N is given by the last N−κul of the list. Accordingly,

I can have the following lemma:

Lemma B.2.2. At convergence, R̂
(ṅ)
ul + ψ̃

(ṅ)
ul,l

< R̂
(n̈)
ul + ψ̃

(n̈)
ul,l

for ∀ul, ṅ ∈ Ṅul , n̈ ∈ N̈ul.

Proof. See [41].

From Lemma B.2.1 and B.2.2, it can be noted that, the inequality R̂
(ṅ)
ul −λ̈

(ṅ)∗

ul <

R̂
(n̈)
ul − λ̈

(n̈)∗

ul implies the slackness condition (B.6) by imposing λ̈
(ṅ)∗

ul = −ψ̃(ṅ)
ul,l

and

λ̈
(n̈)∗

ul = −ψ̃(n̈)
ul,l

; hence, the proof of Proposition 3.1 follows.

B.3 Proof of Proposition 3.2

From [35] and Proposition 4 of [86], there must exist a non-overlapping binary valued

feasible allocation even after relaxation when the number of RBs tends to infinity.

Since in my problem the number of RBs is sufficiently large, the messages converge

to a fixed point and I can conclude that the LP relaxation of P2.1, i.e., x
(n)
ul ∈ (0, 1]

achieves the same optimal objective value. Thus, directly following the theorem of

integer programming duality (i.e., if the primal problem has an optimal solution, then
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the dual also has an optimal one) for any finite N , the optimal objective value of Dl

lies between P2.1 and its LP relaxation.
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C.1 Power and RB Allocation for Nominal Problem

To observe the nature of power allocation for a UE, I use Karush-Kuhn-Tucker (KKT)

optimality conditions and define the Lagrangian function as follows

Ll(x,S,ω,µ,ρ, νl,ψ,ϕ,λ,%) =−
∑
ul∈Ul

N∑
n=1

1
2
x(n)
ul
BRB log2

(
1 +

S
(n)
ul,l

h
(n)
ul,l,1

x
(n)
ul
ω

(n)
ul

)

+
N∑
n=1

µn

(∑
ul∈Ul

x(n)
ul
− 1

)
+
∑
ul∈Ul

ρul

(
N∑
n=1

S
(n)
ul,l
− Pmax

ul

)

+ νl

(∑
ul∈Ul

N∑
n=1

h
(n)
ul,l,1

h
(n)
l,ul,2

S
(n)
ul,l
− Pmax

l

)

+
N∑
n=1

ψn

(∑
ul∈Ul

S
(n)
ul,l
g

(n)
u∗l ,l,1

− I(n)
th,1

)

+
N∑
n=1

ϕn

(∑
ul∈Ul

h
(n)
ul,l,1

h
(n)
l,ul,2

S
(n)
ul,l
g

(n)
l,u∗l ,2

− I(n)
th,2

)

+
∑
ul∈Ul

λul

(
Qul −

N∑
n=1

1
2
x(n)
ul
BRB log2

(
1 +

S
(n)
ul,l

h
(n)
ul,l,1

x
(n)
ul
ω

(n)
ul

))

+
∑
ul∈Ul

N∑
n=1

%nul

(
I

(n)
ul,l

+ σ2 − ω(n)
ul

)
. (C.1)
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where λ is the vector of Lagrange multipliers associated with individual QoS require-

ments for cellular and D2D UEs. Similarly, µ,ρ, νl,ψ,ϕ are the Lagrange multipliers

for the constraints in (4.6a)–(4.6e). Differentiating (C.1) with respect to S
(n)
ul,l

, I obtain

(4.7) for power allocation for the link ul over RB n. Similarly, differentiating (C.1)

with respect to x
(n)
ul gives the condition for RB allocation.

C.2 Proof of Proposition 4.1

The uncertainty constraints in (4.6d), (4.6e), and (4.6h) are satisfied if and only if

max
g

(n)
l,1 ∈<

(n)
gl,1

∑
ul∈Ul

S
(n)
ul,l
g

(n)
u∗l ,l,1

≤ I
(n)
th,1, ∀n

max
g

(n)
l,2 ∈<

(n)
gl,2

∑
ul∈Ul

h
(n)
ul,l,1

h
(n)
l,ul,2

S
(n)
ul,l
g

(n)
l,u∗l ,2

≤ I
(n)
th,2, ∀n

max
I

(n)
ul,l
∈<(n)

Iul,l

I
(n)
ul,l

+ σ2 ≤ ω(n)
ul
, ∀n, ul

which is equivalent to

∑
ul∈Ul

S
(n)
ul,l
ḡ

(n)
u∗l ,l,1

+ max
g

(n)
l,1 ∈<

(n)
gl,1

∑
ul∈Ul

S
(n)
ul,l

(
g

(n)
u∗l ,l,1

− ḡ(n)
u∗l ,l,1

)
≤ I

(n)
th,1, ∀n

∑
ul∈Ul

h
(n)
ul,l,1

h
(n)
l,ul,2

S
(n)
ul,l
ḡ

(n)
l,u∗l ,2

+ max
g

(n)
l,2 ∈<

(n)
gl,2

∑
ul∈Ul

h
(n)
ul,l,1

h
(n)
l,ul,2

S
(n)
ul,l

(
g

(n)
l,u∗l ,2

− ḡ(n)
l,u∗l ,2

)
≤ I

(n)
th,2, ∀n

Ī
(n)
ul,l

+ max
I

(n)
ul,l
∈<

I
(n)
ul,l

(
I

(n)
ul,l
− Ī(n)

ul,l

)
+ σ2 ≤ ω(n)

ul
, ∀n, ul.

Since the max function over a convex set is a convex function (Section 3.2.4 in [34]),

convexity of the problem P4.2 is conserved.
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C.3 Proof of Proposition 4.2

Using the expression w
(n)
l,1 =

M
(n)
gl,1
·
(
ḡ

(n)
l,1 −g

(n)
l,1

)T
Ψ

(n)
l,1

, the uncertainty set (4.11a) becomes

<(n)
gl,1

=
{

w
(n)
l,1 | ‖ w̄

(n)
l,1 −w

(n)
l,1 ‖ ≤ 1

}
, ∀n. (C.2)

Besides, the protection function (4.13a) can be rewritten as

max
g

(n)
l,1 ∈<

(n)
gl,1

∑
ul∈Ul

S
(n)
ul,l

(
g

(n)
u∗l ,l,1

− ḡ(n)
u∗l ,l,1

)
= max

g
(n)
l,1 ∈<

(n)
gl,1

S
(n)
l,1 ·

(
g

(n)
l,1 − ḡ

(n)
l,1

)T
= max

g
(n)
l,1 ∈<

(n)
gl,1

S
(n)
l,1 ·

(
M

(n)
gl,1

−1
·w(n)

l,1

)
. (C.3)

Note that, given a norm ‖ y ‖ for a vector y, its dual norm induced over the dual

space of linear functionals z is ‖ z ‖∗= max
‖y‖≤1

zTy [54]. Since the protection function

in (C.3) is the dual norm of uncertainty region in (4.11a), the proof follows. The

protection functions for the uncertainity sets in (4.11b) and (4.12) are obtained in a

similar way.

C.4 Power and RB Allocation for Robust Problem

To obtain a more tractable formula, for any vector y I use the inequality ‖ y ‖2 ≤

‖ y ‖1 and rewrite the constraints (4.16d) and (4.16e), respectively as follows

∑
ul∈Ul

S
(n)
ul,l
ḡ

(n)
u∗l ,l,1

+ Ψ
(n)
l,1

∑
ul∈Ul

m(n)
ululgl,1

S
(n)
ul,l
≤ I

(n)
th,1, ∀n (C.4a)

∑
ul∈Ul

h
(n)
ul,l,1

h
(n)
l,ul,2

S
(n)
ul,l
ḡ

(n)
l,u∗l ,2

+ Ψ
(n)
l,2

∑
ul∈Ul

m(n)
ululgl,2

h
(n)
ul,l,1

h
(n)
l,ul,2

S
(n)
ul,l
≤ I

(n)
th,2, ∀n (C.4b)
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L∆l(x,S,ωµ,ρ, νl,ψ,ϕ,λ,%) =

−
∑
ul∈Ul

N∑
n=1

1
2
x(n)
ul
BRB log2

(
1 +

S
(n)
ul,l

h
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x
(n)
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ω

(n)
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)
+

N∑
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ul
− 1

)
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ρul

(
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S
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)
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(∑
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h
(n)
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h
(n)
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S
(n)
ul,l
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l

)

+
N∑
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∑
ul∈Ul

S
(n)
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ḡ
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+ Ψ
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(
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)
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
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h
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ḡ
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(
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ululgl,2
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(n)
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h
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)
− I(n)

th,2


+
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1
2
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BRB log2
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1 +
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(n)
ul,l
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(n)
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ω
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+
∑
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Ī
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+ ∆
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+ σ2 − ω(n)
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)
. (C.5)

where for any diagonal matrix A, mjj represents the j-th element of A−1(j, :). Con-

sidering the convexity of P4.4, the Lagrange dual function can be obtained by (C.5)

in which µ,ρ, νl,ψ,ϕ,λ,% are the corresponding Lagrange multipliers. Differenti-

ating (C.5) with respect to S
(n)
ul,l

and x
(n)
ul gives (4.17) and (4.8) for power and RB

allocation, respectively.

C.5 Update of Variables and Lagrange Multipliers

After finding the optimal solution, i.e., P
(n)
ul,l

∗
and x

(n)
ul

∗
, the primal and dual variables

at the (t + 1)-th iteration are updated using (C.7a)–(C.7h), where Λ
(t)
κ is the small

step size for variable κ at iteration t and the partial derivative of the Lagrange dual
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ω(n)
ul

(t+ 1) =

[
ω(n)
ul

(t)− Λ
(t)

ω
(n)
ul

∂Ll

∂ω
(n)
ul

∣∣∣∣
t

]+

(C.7a)

µn(t+ 1) =

[
µn(t) + Λ(t)

µn

(∑
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− 1

)]+

(C.7b)

ρul(t+ 1) =
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ρul(t) + Λ(t)

ρul

(
N∑
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S
(n)
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− Pmax

ul
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(C.7d)

ψn(t+ 1) =

ψn(t) + Λ
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+ Ψ
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(C.7e)
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(C.7f)

λul(t+ 1) =

[
λul(t) + Λ
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Qul −
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ul
BRB log2

(
1 +

S
(n)
ul,l

γ
(n)
ul,l,1

x
(n)
ul
ω

(n)
ul

))]+

(C.7g)

%nul(t+ 1) =
[
%nul(t) + Λ

(t)
%nul

(
Ī

(n)
ul,l

+ ∆
(n)
Iul,l

+ σ2 − ω(n)
ul

)]+

. (C.7h)

function with respect to ω
(n)
ul is

∂L∆l

∂ω
(n)
ul

= 1
2
BRB

(λul + 1)x
(n)
ul S

(n)
ul,l
h

(n)
ul,l,1

ω
(n)
ul

(
x

(n)
ul ω

(n)
ul + S

(n)
ul,l
h

(n)
ul,l,1

)
ln 2
− %nul . (C.6)

C.6 Proof of Proposition 4.3

It is easy to verify that the computational complexity at each iteration of variable

updating in (C.7a)–(C.7h) is polynomial in |Ul| and N . There are |Ul|N computations
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R∗(a,b, c) = inf

{
max

x
(n)
ul
,S

(n)
ul,l

,ω
(n)
ul

∑
ul∈Ul

N∑
n=1

1

2
x(n)
ul
BRB log2

(
1 +

S
(n)
ul,l
h

(n)
ul,l,1

x
(n)
ul ω

(n)
ul

)∣∣∣∣∣ ,
∑
ul∈Ul

x(n)
ul
≤ 1,

N∑
n=1

S
(n)
ul,l
≤ Pmax

ul
,

∑
ul∈Ul

N∑
n=1

h
(n)
ul,l,1

h
(n)
l,ul,2

S
(n)
ul,l
≤ Pmax

l ,

∑
ul∈Ul

S
(n)
ul,l
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(n)
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≤ I

(n)
th,1,

∑
ul∈Ul

h
(n)
ul,l,1

h
(n)
l,ul,2

S
(n)
ul,l
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(n)
l,u∗l ,2

+ ∆(n)
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(n)
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N∑
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2
x(n)
ul
BRB log2

(
1 +

S
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ul,l
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≥ Qul , S

(n)
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≥ 0, Ī

(n)
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+ ∆
(n)
Iul,l

+ σ2 ≤ ω(n)
ul

}
.(C.8)

which are required to obtain the reference gains and if T iterations are required for

convergence, the overall complexity of the algorithm is O (|Ul|N + T |Ul|N).

For any Lagrange multiplier κ, if I choose κ(0) in the interval [0, κmax], the distance

between κ(0) and κ∗ is upper bounded by κmax. Then it can be shown that at iteration

t, the distance between the current best objective and the optimum objective is upper

bounded by

κ2
max+κ(t)2

t∑
i=i

Λ(i)
κ

2

2

t∑
i=i

Λ(i)
κ

. If I take the step size Λ
(i)
κ = a√

i
, where a is a small

constant, there are O
(

1
ε2

)
iterations required for convergence to have the bound less

than ε [87]. Hence, the complexity of the proposed algorithm is O
((

1 + 1
ε2

)
|Ul|N

)
.

C.7 Proof of Proposition 4.4

Since P4.3 is a perturbed version of P4.1 with protection functions in the constraints

(4.6d), (4.6e), and (4.6h), to obtain (4.19), I use local sensitivity analysis of P4.3 by

perturbing its constraints [88, Chapter IV], [34, Section 5.6]. Let the elements of

a,b, c contain ∆
(n)
gl,1 ,∆

(n)
gl,2 ∀n, and ∆

(n)
Iul,l
∀ul, n, where R∗(a,b, c) is given by (C.8).
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When ∆
(n)
gl,1 ,∆

(n)
gl,2 , and ∆

(n)
Iul,l

are small, R∗(a,b, c) is differentiable with respect to the

perturbation vectors a,b, and c [88, Chapter IV]. Using Taylor series, (C.8) can be

written as

R∗(a,b, c) = R∗(0,0,0) +
N∑
n=1

an
∂R∗(0,b, c)

∂an
+

N∑
n=1

bn
∂R∗(a,0, c)

∂bn
+
∑
ul∈Ul

N∑
n=1

cnul
∂R∗(a,b, c)

∂cnul
+ o (C.9)

where R∗(0,0,0) is the optimal value for P4.1, 0 is the zero vector, and o is the

truncation error in the Taylor series expansion. Note that R∗(0,0,0) and R∗(a,b, c)

are equal to R∗ and R∗∆, respectively. Since P4.1 is convex, R∗(a,b, c) is obtained

from the Lagrange dual function [i.e., (C.1)] of P4.1; and using the sensitivity analysis

(Chapter IV in [88]), I have ∂R∗(0,b,c)
∂an

≈ −ψ∗n, ∂R∗(a,0,c)
∂bn

≈ −ϕ∗n and ∂R∗(a,b,0)
∂cnul

≈ −%n∗ul .

Rearranging (C.9) I obtain

R∗∆ −R∗ ≈ −
N∑
n=1

ψ∗n∆(n)
gl,1
−

N∑
n=1

ϕ∗n∆(n)
gl,2
−
∑
ul∈Ul

N∑
n=1

%n∗ul ∆
(n)
Iul,l

. (C.10)

Since ψ∗n, ϕ
∗
n, %

n∗
ul

are non-negative Lagrange multipliers, the achievable sum-rate

is reduced compared to the case in which perfect channel information is available.

C.8 Parameters used for Approximations in the Chance Con-

straint Approach

In order to balance the robustness and optimality, the parameters used for safe ap-

proximations of the chance constraints (obtained from [49]) are given in Table C.1.
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Table C.1: Values of η+
Pj and τPj for Typical Families of Probability Distribution Pj

Pj η+
Pj τPj

sup {Pj} ∈ [−1,+1] 1 0

sup {Pj} is unimodal and sup {Pj} ∈ [−1,+1] 1
2

1√
12

sup {Pj} is unimodal and symmetric 0 1√
3
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D.1 Proof of Proposition 5.2

Note that any arbitrary matching is not necessarily stable. In the following, I show

that for any given preference profiles, each iteration of Algorithm 5 ends up with a

stable matching (i.e., there is no blocking pair). I prove the proposition by contradic-

tion. Let µl be a matching obtained by Algorithm 4 at any step t of Algorithm

5. Let me assume that RB n is not allocated to UE ul, but it has a higher order in

the preference list. According to this assumption, the (ul, n) pair will block µl.

Since the position of ul in the preference profile of n is higher compared to the user

ûl that is matched by µl, i.e., ul � µl(n), RB n must select ul before the algorithm

terminates. However, the pair (ul, n) does not match each other in the matching

outcome µl. This implies that ul rejects n (e.g., line 7 in Algorithm 4) and (ûl, n) is

a better assignment. As a result, the pair (ul, n) will not block µl, which contradicts

my assumption. Consequently, the matching outcome µl leads to a stable matching

since no blocking pair exists and the proof concludes.
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D.2 Proof of Proposition 5.3

The proof is followed by the induction of number of users Ul, that are supported

by relay l. For instance, let κul = 1, ∀ul ∈ Ul (the proof for κul > 1 can be done

analogously introducing dummy rows [i.e., UEs] in the utility matrix). The basis

(i.e., Ul = 1) is trivial, since the only user definitely gets the best RBs according to

her preference. When Ul ≥ 2, let me consider R
(j)
i to be the maximal entity of the

utility matrix Ul. For instance, let the matrix Ûl be obtained by removing the i-th

row and j-th column from the utility matrix Ul. If µl is a stable matching for Ul,

then by definition µl(i) = j and hence µl \ {(i, j)} must be a stable matching for

Ûl. By induction, there exists a unique stable matching µ̂l for the smaller matrix Ûl.

Therefore, the proof is concluded due to the fact that µl = µ̂l ∪ {(i, j)} is the unique

stable matching for the utility matrix Ul.

D.3 Proof of Proposition 5.4

Without loss of generality, let Rul,l(µl) denote the data rate achieved by UE ul for any

matching µl for given uncertainty bounds and Rl(µl) =
∑
ul∈Ul

Rul,l(µl) is the sum-rate

of all UEs. On the contrary, let µ̂l denote an arbitrary unstable outcome better than

µl, i.e., µ̂l can achieve a better sum-rate. There are two cases that make µ̂l unstable:

1) lack of individual rationality, and/or 2) blocked by a UE-RB pair [61]. I analyze

both the cases below.

Case 1 (lack of individual rationality): If RB n is not individually rational, then

the utility of n can be improved by removing user µ̂l(n) with any arbitrarily user

ul = µl(n). Hence, the utility of ul increases and Rul,l(µ̂l) < Rul,l(µl).

Case 2 (µ̂l is blocked): When µ̂l is blocked by any UE-RB pair (ul, n), RB n
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strictly prefers UE ul to µ̂l(n) and one of the following conditions must be true:

(i) ul strictly prefers n to some n̂ ∈ µ̂l(ul), or

(ii) µ̂l(ul) < κul and n is acceptable to ul.

If condition (i) is true, I can obtain a stable matching µl by interchanging n and

n̂ for ul as follows:

µl(ul) = {µ̂l(ul) \ n̂} ∪ n. (D.1)

Hence, the new data rate of UE ul is

Rul,l(µl) =
∑

j∈µl(ul)

R(j)
ul

= R(n)
ul

+
∑

j∈µl(ul),
j 6=n

R(j)
ul

> R(n̂)
ul

+
∑

j∈µ̂l(ul),
j 6=n

R(j)
ul

=
∑

j∈µ̂l(ul)

R(j)
ul

= Rul,l(µ̂l) (D.2)

where R
(n)
ul is given by (5.24). Since ul strictly prefers RB n to n̂ and the data rates for

other UEs remain unchanged, for condition (i), it can be shown that Rl(µl) ≥ Rl(µ̂l).

When condition (ii) is true,

Rul,l(µl) =
∑

j∈µ̂l(ul)

R(j)
ul

+R(n)
ul

>
∑

j∈µ̂l(ul)

R(j)
ul

= Rul,l(µ̂l). (D.3)

Let ûl = µ̂l(n) with data rate R
(n)
ûl

. Then

Rûl,l(µl) =
∑

j∈µ̂l(ûl)

R
(j)
ûl
−R(n)

ûl

<
∑

j∈µ̂l(ûl)

R
(j)
ûl

= Rûl,l(µ̂l). (D.4)
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From (D.3) and (D.4), neither Rl(µl) > Rl(µ̂l) nor Rl(µ̂l) > Rl(µl). Since for both

cases 1) and 2) there is no outcome µ̂l better than µl, by Definition 5.6, µl is an

optimal allocation and the proof follows.
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